Introduction to Fluid Flow


 Moses Scott
 10 months ago
 Views:
Transcription
1 Introduction to Fluid Flow
2 Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow by using the Reynolds number Determine if a flowrate is laminar or turbulent Write and Explain the Bernoulli equation Apply the Bernoulli equation
3 Basics of Fluid Flow A fluid is a substance that flows When subjected to a shearing stress layers of the fluid slide relative to each other Both gases and liquids are defined as fluids Fluid mechanics is the study of the flow of gases and liquids The degree of resistance to shear stress is represented by the term viscosity High viscosity means high resistance to shear stress does not flow easily
4 Viscosity Dynamic Viscosity or Viscosity is a measure of resistance to shearing motion The unit is Ns/m 2.but it has no name! The poise or centipoise is the SI cgs unit 1 centipoise = 1 x 103 Ns/m 2 Typical values for viscosity Water at 20 C = 1 cp Air at 20 C = 1.8 x 102 cp Crude Oil = 7.2 cp Petrol = 0.29 cp You may hear the term kinematic viscosity This is dynamic viscosity divided by fluid density Its SI cgs unit is the Stoke (= 1 cm 2 /s) NB Viscosity is a function of temperature. For liquids, viscosity decreases as temperature increases
5 Basics Equations for Fluid Flow The continuity equation Q = v.a where v is the velocity (m/s) and a the area available for flow (m 2 e.g. cross sectional area of a pipe) and Q is the flowrate (m 3 /s) The Reynolds number is used to define laminar and turbulent flow Laminar flow is defined by slow moving, uniform, even, smooth flow (e.g. a canal) Turbulent flow is uneven and rough (e.g. a white water river) Bernoulli equation. Daniel Bernoulli lived in the 18 th century and derived a relationship between velocity, height and pressure
6 The Continuity equation Q=va Q flowrate, m 3 /s v fluid velocity, m/s a area available for flow, m 2 What is the flowrate from your kitchen tap? (What is the volume of your kettle and how long does it take to fill it?) The pipe feeding the tap is 15mm. What is the cross sectional area? Use the continuity equation to determine the velocity
7 Continuity Equation contd. Imagine a long pipe of varying diameter. The flowrate is constant Where the diameter is large, the velocity is small Where the diameter is small, the velocity is large 1 2 d 1 v 1 < > d 2 v 2
8 Osborne Reynolds A pioneer in Fluid Mechanics He discovered the nature of flow depends on Velocity Fluid physical properties Geometry of the channel/pipe Sometimes flow is even and smooth Sometimes it is uneven and rough He asked Why?
9 Reynolds Experiment He investigated fluid flow using this apparatus Dye
10 Reynolds Experiment  Velocity His first discovery At very low water flowrates, dye did not break up Implies no mixing between dye and water! Dye
11 Reynolds Experiment  Velocity.. And at high water flowrates, dye did break up Dye mixed with water Dye
12 Reynolds Concluded that At low flowrates we get streamline or laminar flow Flow is characterised by streams that don t mix At high flowrates we get turbulent flow and a lot of mixing Increase Velocity
13 Further Experiments  Viscosity Reynolds heated the water When heated the change from laminar to turbulent occurred sooner (at a lower velocity) This is explained by viscosity Viscosity decreases as temperature increases Decrease Viscosity
14 Further Experiments  Density Reynolds replaced water with liquids of different density The change from laminar to turbulent occurred sooner for high density liquids Increase Density
15 Further Experiments Tube diameter Reynolds used tubes of different diameter He discovered that as the diameter increased the change to turbulent occurred sooner Increase Diameter
16 Reynolds Number He combined these observations into a dimensionless number which now carries his name Re = ρvd µ Re = Reynolds number ρ = density (kg/m 3 ) v = velocity (m/s) d = pipe diameter (m) µ = viscosity (kg/ms)
17 Activity Laminar or Turbulent? Is the flow from your kitchen tap laminar or turbulent? Determine the Reynolds No. and then use the table below 0 < Re <2000 Laminar flow 2000 < Re < 4000 Transition region Re > 4000 Turbulent flow
18 Daniel Bernoulli ( ) Bernoulli was a pioneer in Science. His interests were medicine and engineering Bernoulli, with Leonard Euler, investigated the relationship between pressure and velocity They punctured a pipe with a straw and observed that the height of liquid in the straw is related to the pressure in the pipe This was used to measure blood pressure where patients arms were punctured with glass capillaries
19 Conservation of Energy Bernoulli reasoned that the sum of pressure and kinetic energy is the same for any two points in a pipe 1 ρ 2 v + P = 2 C This implies that if the velocity increases, pressure decreases. This is true for a horizontal pipe only.
20 Bernoulli Equation Include a term for gravity, ρgh, to get the Bernoulli Equation as follows 1 2 ρ 2 v + P + ρgh = This is often written as follows: P 1 + C 1 2 ρ gh1 + ρv1 = P2 + ρgh ρv Points 1 and 2 could be at two places in a pipe: d 1 v 1 P 1 < > < d 2 v 2 P 2
21 Activity Bernoulli Eqn Units Determine the units of each term in the Bernoulli equation 1 2 ρ 2 v + P + ρgh = C
22 Bernoulli Eqn Rearranged Instead of expressing each term in units of Pressure, rearrange to give units of height v 2 2 g P + ρ g + h = C
23 How a chimney works Point 1 is at the top of the chimney where the velocity is the same as the wind speed Point 2 is in the fireplace where the velocity is almost zero
24 Activity Flow in a pipe A water mains supply enters a house at ground level (point 1) and rises vertically to the attic tank at an elevation of 10 m (point 2). No change in diamter. What is the P? Point 2 V = 2 m/s 10m Point 1
25 Activity Bernoulli Eqn 2 Same as before except the pipe changes from 40mm diameter to 20mm. What is the P? Point 2 20mm V = 2 m/s 10m Point 1 40mm V =? m/s
26 Conversion Table Litre/s Litre/min m 3 /hr m 3 /s Ft 3 /hr Ft 3 /min gpm 1 Litre/s litre/min x m 3 /hr m 3 /s 1, , ,133 2,119 15,850 1 Ft 3 /hr x Ft 3 /min
Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationIn steady flow the velocity of the fluid particles at any point is constant as time passes.
Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point
More informationLecture 30 (Walker: ) Fluid Dynamics April 15, 2009
Physics 111 Lecture 30 (Walker: 15.67) Fluid Dynamics April 15, 2009 Midterm #2  Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68)
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationFLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationDynamic (absolute) Viscosity
Viscosity Taken from: http://www.engineeringtoolbox.com/dynamicabsolutekinematicviscosityd_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationFor more info
Characteristic of Ideal fluid: (a) It is incompressible (b) It is nonviscous (c) Flow of ideal fluid is irrational (d) It is capable of exhibiting steady flow Stream line flow: Flow of a liquid fluid
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationBernoulli and Pipe Flow
Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems
More informationLECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS
LECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a
More informationCustom Search Sponsored Links
Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationPipe Flow/Friction Factor Calculations using Excel Spreadsheets
Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction
More informationFluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number
Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationTutorial 10. Boundary layer theory
Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0
More informationIntroductory Physics PHYS101
Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 3846006 My email: rcyburt@concord.edu TRF 9:3011:00am
More informationIntroduction to Aerospace Engineering
Introduction to Aerospace Engineering Lecture slides Challenge the future 300 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationLecture 2 Flow classifications and continuity
Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today
More informationTheory and Fundamental of Fluid Mechanics
1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationPHY121 Physics for the Life Sciences I
PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationThere are basically two equations needed to design gravity flow water systems :
1 1. Introduction There are basically two equations needed to design gravity flow water systems : 1. The Continuity Equation 2. The Bernoulli Equation With these two relations and an understanding of frictional
More informationFluid Mechanics III. 1. Dimensional analysis and similarity
Fluid Mechanics III 1. Dimensional analysis and similarity Similarity The real world is nondimensional. The proposition the Eiffel Tower is tall has no sense unless we state what is the object we compare
More informationDarcy's Law. Laboratory 2 HWR 531/431
Darcy's Law Laboratory HWR 531/4311 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify
More informationViscosity. appearance.
Viscosity Viscosityit is probably bbl the single most important t property of a hydraulic fluid. It is a measure of a fluid's resistance to flow. When the viscosity is low, the fluid flows easily and is
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationChapter 3 NonNewtonian fluid
Chapter 3 NonNewtonian fluid 31. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 31. Newtonian fluids,
More informationCHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationUniversität DuisburgEssen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi
1 Universität DuisburgEssen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationChapter 15B  Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 15B  Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationLecture Slides. Chapter 12. Lubrication and Journal Bearings
Lecture Slides Chapter 12 Lubrication and Journal Bearings The McGrawHill Companies 2012 Chapter Outline Types of Lubrication Hydrodynamic Hydrostatic Elastohydrodynamic Boundary Solid film Viscosity
More informationSummary Fluids. Density (r), pressure (p),
Density (r), pressure (p), Summary Fluids Pressure transmitted uniformly and isotropically (all directions): Paschal s Principle Pressure vs depth for static liquid Bouyancy: upward force = weight of displaced
More informationM E 320 Supplementary Material Pralav Shetty
M E 320 Supplementary Material Pralav Shetty Note: In order to view the demonstrations below, you must first download CDF player to your PC/Mac/Linux. Link for CDF player http://www.wolfram.com/cdfplayer/
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationPressure in stationary and moving fluid Lab Lab On On Chip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationLaboratory work No 2: Calibration of Orifice Flow Meter
Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationLecture 30 Review of Fluid Flow and Heat Transfer
Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationcentrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration
Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit
More informationUniversal Viscosity Curve Theory
TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationOpen Channel Hydraulics I  Uniform Flow
PDHonline Course H138 (2 PDH) Open Channel Hydraulics I  Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax:
More informationWater Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:
Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationFRICTION LOSS ALONG A PIPE
FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates
More informationPressure and Flow Characteristics
Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to
More informationLECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich
LECTURE 4 FLUID FLOW & SURFACE TENSION Lecture Instructor: Kazumi Tolich Lecture 4 2 Reading chapter 15.6 to 15.9 Continuity equation Bernoulli s equation n Torricelli s law Viscosity Surface tension Equation
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationcos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015
skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional
More informationAerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)
Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation
More informationReference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical
1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,
More informationTALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD
13. STOKES METHOD 1. Objective To determine the coefficient of viscosity of a known fluid using Stokes method.. Equipment needed A glass vessel with glycerine, micrometer calliper, stopwatch, ruler. 3.
More informationMECHANICAL PROPERTIES
MECHANICAL PROPERTIES Rheology S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 481091078 sbayne@umich.edu 2 Nova Southeastern College of Dental Medicine, Ft.
More informationStream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1
Stream Tube A region of the moving fluid bounded on the all sides by streamlines is called a tube of flow or stream tube. As streamline does not intersect each other, no fluid enters or leaves across the
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationNon Newtonian Fluid Dynamics
PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax: 7039880088 www.pdhonline.org
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationcompare to Mannings equation
330 Fluid dynamics Density and viscosity help to control velocity and shear in fluids Density ρ (rho) of water is about 700 times greater than air (20 degrees C) Viscosity of water about 55 times greater
More informationEGN 3353C Fluid Mechanics
Lecture 8 Bernoulli s Equation: Limitations and Applications Last time, we derived the steady form of Bernoulli s Equation along a streamline p + ρv + ρgz = P t static hydrostatic total pressure q = dynamic
More informationIn this process the temperature difference across the given length of pipe can be described as:
Dimensional Analysis/Model Testing You are tasked with designing a heat exchanger around a section of piping in a synthesis plant in which temperature control will be critical to prevent biproduct formation.
More informationBERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
Chapter 5 Fluid in Motion The Bernoulli Equation BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence
More informationChapter 3 Permeability
3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic
More informationMomentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics
Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationConvective Mass Transfer
Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface
More informationSummary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer
1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic
More informationLecture 7 Friction factors
Lecture 7 Friction factors We left off with a problem we developed a velocity profile (and therefore an average velocity) for laminar flow, and one for turbulent flow, and we developed a number (Reynolds
More informationForced Convection: Inside Pipe HANNA ILYANI ZULHAIMI
+ Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent
More informationCHAPTER 1 Basic Considerations
CHAPTER Basic Considerations FEtype Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa
More informationEXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH
EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED
More informationDEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing
More information(British) (SI) British Metric L T [V] = L T. [a] = 2 [F] = F = 2 T
Hydraulics ecture # CWR 40 age () ecture # Outline: Review of terminology in fluid mechanics: Energy or work Hydraulic head Bernoulli s aw, Conductivity (examle) ransient & turbulent Friction head loss
More information