Steven Burian Civil & Environmental Engineering September 25, 2013


 Cathleen Harris
 10 months ago
 Views:
Transcription
1 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013
2 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session C. statics D. impulse, and momentum equations E. Pipe and other internal flow Afternoon (Depends on Discipline) A. Bernoulli equation and mechanical energy balance B. Hydrostatic pressure C. Dimensionless numbers (e.g., Reynolds Number) D. Laminar and turbulent flow E. Velocity head F. Friction losses (e.g., pipes, valves, fittings) G. Pipe networks H. Compressible and incompressible flow I. Flow measurement (e.g., orifices, Venturi meters) J. Pumps, turbines, and compressors K. NonNewtonian flow L. Flow through packed beds Up to 15% of FE Afternoon Session
3
4
5 FE s Statics s s  substances in liquid or gas phase s cannot support shear; they deform continuously to minimize applied shear forces
6 FE s Statics
7
8 FE s Statics Viscosity Shear stress (τ): force required to slide one unit area layer of a substance over another Viscosity (µ): measure of a fluid s resistance to flow when acted upon by an external force (i.e., ease with which a fluid pours) As a fluid moves a shear stress is developed in it; magnitude is dependent on viscosity of fluid
9 FE s Statics F/A is the fluid shear stress (τ) and the constant of proportionality is the absolute viscosity (µ): du τ = µ dy Newtonian fluids: strains are proportional to the applied shear stress NonNewtonian fluids: fluid shear stress can be computed using the power law The kinematic viscosity is the ratio of the absolute viscosity to mass density: ν = µ ρ
10 FE s Statics
11
12 FE s Statics Surface Tension skin that seems to form on free surface of a fluid; caused by intermolecular cohesive forces and is known as surface tension, σ Surface tension  tensile force between two points a unit distance apart on the surface
13 FE s Statics Capillarity Capillary action: caused by surface tension between liquid and a vertical solid surface Adhesive forces between liquid molecules and surface > cohesive forces between liquid molecules; in water, adhesive forces cause fluid to attach itself to and climb solid vertical surface
14
15 FE s Pressure Statics Hydrostatic pressure: pressure of fluid on immersed object or container walls Pressure = force per unit area of surface: P = F A
16 FE s Statics Pressure Gage pressure: measured relative to a reference pressure  typically local atmospheric pressure Absolute pressure: measured relative to a perfect vacuum Absolute, gage, and atmospheric pressure are related as follows: P abs = P gage + P atm
17 FE s Pressure Statics P 1 gage P 1 abs P 2 abs P 2 gage Munson et al. (2002)
18
19 FE s Hydrostatic Pressure Statics ΔP = change in pressure γ = specific weight of fluid Δh = change in depth in fluid ΔP = γδh ***Incompressible fluid at rest
20
21 FE s Statics Manometry Measure pressure or pressure differences Differential manometers: both ends connected to pressure sources Open manometers: one end open to the atmosphere
22 FE s Barometers Statics
23
24 FE s Buoyancy Statics Buoyant force = weight of fluid displaced and is directed vertically upward (Archimedes Principle): F b = γv d where F b = buoyant force γ = specific weight of fluid V d = displaced volume of fluid
25 FE s Displaced Volume Statics Displaced volume
26 FE s Statics Solving Buoyancy Problems If object at rest in fluid, then use equation of static equilibrium in vertical direction, ΣF y = 0 Buoyant force passes vertically through centroid of displaced volume; called the center of buoyancy.
27
28 FE s Forces on Surfaces Statics Pressure on horizontal plane is uniform over surface Resultant force of pressure distribution acts through center of pressure of surface and is: R = PA R = resultant vertical force P = pressure on horizontal surface A = area of submerged horizontal surface
29 FE s Forces on Surfaces Statics
30 FE s Statics Forces on Surfaces Free Surface O θ h C y h y c x R df y R A R = P A = γh A R c avg c y I da Centroid, c Center of Pressure, CP xc xyc y = + y x R = + xc Ayc Ayc I
31
32 FE s Statics Laminar and Turbulent Flow Laminar Flow: Relatively low velocities No mixing or a very small degree of mixing appears to flow in continuous layers with no interaction between the layers Turbulent Flow: Relatively high velocities High degree of mixing motion appears chaotic
33 FE s Flow Distribution Statics
34 FE s Reynolds Number Statics
35 FE s Statics Reynolds Number Circular Pipe Flow Re < 2000 laminar flow 2000 < Re < 4000 transition region Re > 4000 turbulent flow Open Channel Re < 500 laminar flow 500 < Re < 2000 transition region Re > 2000 turbulent flow
36
37
38 FE s OneDimensional Flows Statics
39 FE s Bernoulli Equation Statics
40
41
42
43 FE s Mechanical Energy Equation Statics
44 FE s Friction Loss Statics Valid for laminar and turbulent flow
45 FE s Moody Chart Statics
46 FE s Minor Loss Statics
47
48
49 FE s HGL and EGL Statics
50 FE s Statics HGL and EGL Velocity Head (v 2 /2g) Pressure Head (P/ γ) Total Head or Energy Grade Line (EGL) Hydraulic Grade Line HGL Elevation Head (z) Z = 0
51
52 FE s Statics PumpTurbines Net head added to system by mechanical device 2 P v P 1 + z h h = 2 + z + 1 s L 2 γ 2g γ v 2 2 2g
53
54 FE s Open Channel & Pipe Flow Statics
55
56 FE s Impulse Statics
57 FE s Impulse Statics Σ F x = Q 2 ρ 2 v 2x Q 1 ρ 1 v 1x Σ F y = Q 2 ρ 2 v 2 y Q 1 ρ 1 v 1y Σ F z = Q 2 ρ 2 v 2z Q 1 ρ 1 v 1z Sum of the external forces Net rate of momentum entering control volume
58
59 FE s Pipe Networks Statics
60
61 Good Luck!!! Steve Burian Department of Civil & Environmental Engineering
Sourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationFluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman
Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationHydrostatic. Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies.
Hydrostatic Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies. M. Bahrami ENSC 283 Spring 2009 1 Fluid at rest hydrostatic condition: when a
More informationMEB41 Lab 1: Hydrostatics. Experimental Procedures
MEB41 Lab 1: Hydrostatics In this lab you will do four brief experiments related to the following topics: manometry, buoyancy, forces on submerged planes, and hydraulics (a hydraulic jack). Each experiment
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationAMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination  Syllabus
AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE PhD Entrance Examination  Syllabus The research being carried out in the department of Chemical Engineering & Materials
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationStatic Forces on SurfacesBuoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface:
Force on a Curved Surface due to Hydrostatic Pressure If the surface is curved, the forces on each element of the surface will not be parallel (normal to the surface at each point) and must be combined
More informationPressure in stationary and moving fluid Lab Lab On On Chip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;
More informationFluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012
Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationChapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationMomentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics
Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum
More informationUniversität DuisburgEssen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi
1 Universität DuisburgEssen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationAerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)
Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation
More informationProcess Fluid Mechanics
Process Fluid Mechanics CENG 2220 Instructor: Francesco Ciucci, Room 2577A (Lift 2729), Tel: 2358 7187, email: francesco.ciucci@ust.hk. Office Hours: Tuesday 17:0018:00 or by email appointment Teaching
More informationDEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing
More informationME3250 Fluid Dynamics I
ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/
More informationPhysics 207 Lecture 20. Chapter 15, Fluids
Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationPressure in stationary and moving fluid. LabOnChip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at
More informationBME 419/519 Hernandez 2002
Vascular Biology 2  Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient
More informationEXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013
EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and
More informationFluids, Continuity, and Bernouli
Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,
More informationSection 1 Matter and Energy
CHAPTER OUTLINE Section 1 Matter and Energy Key Idea questions > What makes up matter? > What is the difference between a solid, a liquid, and a gas? > What kind of energy do all particles of matter have?
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationReference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical
1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,
More informationCourse Book of Fluid Mechanics
Course Book of Fluid Mechanics By Mr. Brosk Frya Ali Petroleum Engineering Department Faculty of Engineering Koya University 20132014 1 CONTENT 2 1. Course Coordinator and List of Lecturers on this Course...
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationCustom Search Sponsored Links
Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More informationCE MECHANICS OF FLUIDS
CE60  MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationSECOND ENGINEER REG. III/2 APPLIED MECHANICS
SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More information3.8 The First Law of Thermodynamics and the Energy Equation
CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and
More informationBernoulli and Pipe Flow
Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems
More informationDynamic (absolute) Viscosity
Viscosity Taken from: http://www.engineeringtoolbox.com/dynamicabsolutekinematicviscosityd_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationTopic: Fluids PHYSICS 231
Topic: Fluids PHYSICS 231 Key Concepts Density, Volume, Mass density as material property Pressure units, how to measure, direction Hydrostatic pressure in liquid on earth Buoyancy and Archimedes Principle
More informationPrerequisites: Concepts of Engineering mechanics, basic physics, Newton s Laws
KLS s Gogte Institute of Technology, Udyambag, Belagavi Course Document Academic Year: 201617 Department of Mechanical Engineering Course Title : FLUID MECHANICS Credits: 04 Course Code : 15ME36/46 L:T:P
More informationExternal Flows. Dye streak. turbulent. laminar transition
Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed
More informationStates of Matter Unit
Learning Target Notes Section 1: Matter and Energy What makes up matter? Matter is made of atoms and molecules that are in constant motion. Kinetic Theory of Matter A. Particles that make up matter are
More informationPHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.
PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion
More informationUniform Channel Flow Basic Concepts. Definition of Uniform Flow
Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,
More informationTutorial 10. Boundary layer theory
Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0
More information1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement
Textbook Correlation Textbook Correlation Physics 1115/2015 Chapter 1 Introduction, Measurement, Estimating 1.1 Describe thoughts of Aristotle vs. Galileo in describing motion 1 1 Nature of Science 1.2
More informationPressure and Flow Characteristics
Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to
More informationChapter 15  Fluid Mechanics Thursday, March 24 th
Chapter 15  Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli
More informationIntroduction to Fluid Flow
Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow
More informationFluid Mechanics. Spring Course Outline
Fluid Mechanics (Fluidmekanik) Course Code: 1TV024 5 hp Fluid Mechanics Spring 2011 Instruct: Chris Hieronymus Office: Geocentrum Dk255 Phone: 471 2383 email: christoph.hieronymus@geo.uu.se Literature:
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationCHIEF ENGINEER REG III/2 APPLIED MECHANICS
CHIEF ENGINEER REG III/2 APPLIED MECHANICS LIST OF TOPICS A B C D E F G H I J Vector Representation Statics Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics Control
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More informationMeasurements using Bernoulli s equation
An Internet Book on Fluid Dynamics Measurements using Bernoulli s equation Many fluid measurement devices and techniques are based on Bernoulli s equation and we list them here with analysis and discussion.
More informationNon Newtonian Fluid Dynamics
PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax: 7039880088 www.pdhonline.org
More informationESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria
ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere
More informationCHAPTER 4  STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School
CHAPTER 4  STATES OF MATTER Mr. Polard Physical Science Ingomar Middle School SECTION 1 MATTER VOCABULARY SECTION 1 Matter : anything that takes up space and has mass (pg 72, 102) Solid : Matter with
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationCalculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.
Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 201013th Conference on Process Integration, Modelling
More informationUniversal Viscosity Curve Theory
TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.
More informationChapter 9 Fluids. Pressure
Chapter 9 Fluids States of Matter  Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationP = ρ{ g a } + µ 2 V II. FLUID STATICS
II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant
More informationFlow and Transport. c(s, t)s ds,
Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationCHEMISTRY Matter and Change. Chapter 12: States of Matter
CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click
More informationA Physical Introduction to Fluid Mechanics. Study Guide and Practice Problems Spring 2017
A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 by Alexander J. Smits
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More information6. Laminar and turbulent boundary layers
6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM  SGM  EPFL) Heat transfer  Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary
More informationMASS, MOMENTUM, AND ENERGY EQUATIONS
MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the
More informationCHARACTERISTICS OF SILICA SLURRY FLOW IN A SPIRAL PIPE. Keywords: Drag reduction; Particle concentration; Pitch ratio; Silica slurry flow; Spiral pipe
International Journal of Technology (2015) 6: 916923 ISSN 20869614 IJTech 2015 CHARACTERISTICS OF SILICA SLURRY FLOW IN A SPIRAL PIPE Yanuar 1*, Gunawan 1, Dedih Sapjah 1 1 Department of Mechanical Engineering,
More information1. Introduction 1.1 Course Outline Goals The goal is that you will: 1. Have fundamental knowledge of fluids: a. compressible and incompressible; b. their properties, basic dimensions and units;. Know the
More informationFluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food
Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature
More informationDEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.
DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,
More informationLESSON 1 FLUID MECHANICS
LESSON FLUID MECHNICS Session Duration: hr Fundamental Concepts: Mechanics : Deals with action of forces on bodies at rest or in motion. State of rest and Motion: They are relative and depend on the frame
More informationChapter 3 NonNewtonian fluid
Chapter 3 NonNewtonian fluid 31. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 31. Newtonian fluids,
More informationThe general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept
More informationInstructor : Dr. Jehad Hamad. Chapter (7)
Instructor : Dr. Jehad Hamad Chapter (7) 20172016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility SoilWater Relationships Shear Strength Bearing Capacity
More informationEXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH
EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED
More informationcos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015
skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional
More informationDOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3
DOEHDBK1012/392 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved
More information