# Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi

Save this PDF as:

Size: px
Start display at page:

Download "Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi"

## Transcription

1 1 Universität Duisburg-Essen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2

2 2 Pressure Measurement Experiments Introduction Pressure is a state property and describes the state of a thermodynamical system. It is defined as a force per area unit. It may be expressed as a Gauge, Absolute, Negative gauge or Vacuum reading. Although pressure is an absolute quantity, everyday pressure measurements, such as for tire pressure, are usually made relative to ambient air pressure. In other cases measurements are made relative to a vacuum or to some other ad hoc reference. When distinguishing between these zero references, the following terms are used: Absolute pressure is zero referenced against a perfect vacuum, so it is equal to gauge pressure plus atmospheric pressure. Gauge pressure is zero referenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure. Negative signs are usually omitted. Differential pressure is the difference in pressure between two points. Atmospheric pressure is typically about 100 kpa at sea level, but is variable with altitude and weather. If the absolute pressure of a fluid stays constant, the gauge pressure of the same fluid will vary as atmospheric pressure changes. For example, when a car drives up a mountain (atmospheric air pressure decreases), the (gauge) tire pressure goes up. Some standard values of atmospheric pressure such as kpa or 100 kpa have been defined, and some instruments use one of these standard values as a constant zero reference instead of the actual variable ambient air pressure. This impairs the accuracy of these instruments, especially when used at high altitudes. One Pascal is the pressure which is exerted by a force of 1 Newton on 1 m 2 area (the force acting perpendicular to the surface), i.e. 1 Pa = 1 N/m 2 = 1 kg/(m s 2 ). Pascal (Pa) is the SI unit of pressure. Figure 1.1 shows some other common units and the conversion factors. As with most measurements, pressure measurement methods have varying suitability for different applications. Measurement engineers need to be familiar with several techniques in order to select the one that is most appropriate for their specific requirements.

3 3 N/m 2 at atm Torr kp/m 2 bar 1 N/m 2 = 1 Pa kp/cm 2 = 1 at atm = 760 Torr Torr = 1 mm Hg kp/m 2 = 1 mm WS bar = 10 6 dyn/cm Abbreviations used: N = Newton, Pa = Pascal, at = techn. atmosphere, atm = physical atmosphere, WS = Water column, Hg = Mercury column American and english units: N/m 2 Torr bar Psi 1 psi = 1 lbf/sqi inch WS inch Hg lbf/ft psi = pounds per square inch, lbf = pound force (force unit), ft = feet = 12 inches Figure 1.1 Some important pressure units and their conversion factors

4 4 3 Pressure in a flowing medium 3.1 Physical basis Fluid mechanics basics When a fluid flows through a pipe the internal roughness of the pipe wall can create local eddy currents within the fluid adding a resistance to the flow of the fluid. Pipes with smooth walls such as glass, copper, brass and polyethylene have only a small effect on the frictional resistance. Pipes with less smooth walls such as concrete, cast iron and steel will create larger eddy currents which will sometimes have a significant effect on the frictional resistance. The velocity profile in a pipe will show that the fluid at the centre of the stream will move more quickly than the fluid towards the edge of the stream. Therefore friction will occur between layers within the fluid. Fluids with a high viscosity will flow more slowly and will generally not support eddy currents and therefore the internal roughness of the pipe will have no effect on the frictional resistance. The shear stress is directly proportional to the velocity gradient direction of flow: ν / n perpendicular to the v τ = η n The proportionality factor η is known as the dynamic viscosity or shear viscosity. This viscosity is almost independent of pressure but depends on temperature (see Table in Figure 3.1, Figure 3.2 and Figure 3.3). For a stationary flow condition the frictional force due to shear stress should be compensated by the forces in the direction of flow. Consider an element dl in a pipe in the direction of its axis and make the balance of forces for this element as shown in Figure 3.4 then Adp = τ w U dl + m dv where A is the cross sectional area, dp the change in pressure across the distance dl,τ w the shear stress on the wall, U the circumference, m the mass flow rate and dv the change in velocity in the direction of the pipe axis. The flow of an incompressible fluid is through a pipe of a uniform diameter is considered. Figure 3.5 shows the building of the velocity profile in a flow through a tube. After a definite time the velocity over the complete cross section is constant v/ l = 0. The pressure drop due to friction is then given by U dp/dl = -τ W. A Based on a number of theoretical and experimental studies the following formula is suggested for the shear stress on wall:

5 5 τ w λ = ρ v 8 2 Where the proportionality factor λ is the friction factor/coefficient, ρ the density of liquid and v the average velocity of flow. The factor 4A/U is sometimes called as the hydraulic diameter d H. So the pressure drop due to friction Δp in a tube of length L and uniform cross section for an incompressible medium of density ρ and average flow velocity v is given as = L p λ d H ρ v 2 2 The force caused by the friction is K R = Δp A. For well formed turbulent flow on a hydraulic smooth wall the friction factor λo is calculated as 0,25 λ = 0,3164 Re o Reynolds number Re is calculated using the equation d Re = v ν where the kinematic viscosity ν is the ratio of (dynamic)viscosity and density (ν = η/ρ). The viscosity depends upon temperature (see Figures 3.1, 3.2 and 3.3). The viscosity of water at any temperature t C can be calculated using the relation 2 [ 1,37023 ( t 20) + 0, ( t 20) ] η 20 log = ηt (109 + t) The viscosity of water at 20 C (η 20 ) is cp (1002 μpas). The density of water under atmospheric conditions is taken as 1000 kg/m Systematic sources of error in the measurement of pressure in flow mediums Errors due to the position of bored hole for pressure sensor Figure 3.7 shows five different forms of the bored holes used for pressure measurement along the tube. The effect on pressure is also shown Experimental set up and the procedure for the measurement of the friction factor for the tube The pressure drop along the tube for the completely developed stream will be measured. The pressure drop will be used to determine the friction factor under different flow velocities. The experimental set up is shown in Figure 3.8. Water from a storage tank is pumped through the pressure line with the help of a circulation pump having a constant rotation speed. An extra storage tank and an impeller water meter

7 7 12. Calculte with tube diameter d built up Reynolds number (Re = v d, use correct v units). 13. Take the average of the pressure values recorded during the measurements. 14. Calculate the friction factor for the tube λ using the difference between the two pressure values (e. g., p = p 1 p 2 or p = p 1 - p 3 where p 1, p 2, p 3 are the average pressure values from the first, second or third measuring position) and the distance between the measuring positions (L 1 L 2 = L 2 L 3 = 400 mm = 40 cm; and L 1 L 3 = 800mm = 80 cm). (Use Figure 1 for the conversion of different pressure units) Achten Sie unbedingt auf die richtigen Einheiten! 15. Calculate the friction factor for the tube λ o and make the percentage relative deviation F = (λ ik - λ o ) / λ o 100 from the experimentally measured values λ ik.

8 8 Protocol-3 Date: Time. Matr.-No.: Name: Experiment 3: Determination of friction factor in tube Time t(s) for V = 20 Liter Average velocity v (m/s) Reynolds number Re 1.Meas. 2.Meas. 3.Meas. 1.Meas. 2.Meas. 3.Meas. 1.Meas. 2.Meas. 3.Meas. 1st Measurement 2nd Measurement 3rd Measurement Tube 1 Tube 2 Tube 3 Tube 1 Tube 2 Tube 3 Tube 1 Tube 2 Tube 3 Reading Δp (N/m 2 ) h 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 Δp 12 Δp 13 Δp 12 Δp 13 Δp 12 Δp 13 ρ H 2 O = 10 3 kg/m 3 ; ΔL = 40 cm; d H = d Rohr = 0.,0101 m; ν from Diagram 3.3; Temperatur H 2 O ~ 22 C Friction factor in tube λ (Diagram) λ 0 λ 12 (calculated) λ 13 (calculated) 1.Meas. 2.Meas. 3.Meas. 1.Meas. 2.Meas. 3.Meas. 1.Meas. 2.Meas. 3.Meas. % Relative deviation = 100 λ - λ ik λ 0 0 *

9 9 Figure 3.1 Viscosity (dynamic) of some substances at 0 C Figure 3.2 Viscosity (dynamic) of some substances (liquids and gases) as a function of temperature

10 Figure 3.3 Kinematic viscosity as a function of temperature 10

11 11 Figure 3.4 Force balance in flow with friction Figure 3.5 Development of velocity profile

12 Figure 3.6 Friction factor in tube as a function of Reynolds number 12

13 Figure 3.7 Influence of wrong bored hole on the measured pressure 13

14 Figure 3.8 Schematic set up for determining the friction factor in tube 14

### DIMENSIONS AND UNITS

DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### Non Newtonian Fluid Dynamics

PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### Hydraulics and hydrology

Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

### CHAPTER 2 Pressure and Head

FLUID MECHANICS Gaza, Sep. 2012 CHAPTER 2 Pressure and Head Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce the concept of pressure. Prove it has a unique value at any particular elevation.

### Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

### Pressure and Flow Characteristics

Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to

### Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

### Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

### F L U I D S Y S T E M D Y N A M I C S

F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include

### R09. d water surface. Prove that the depth of pressure is equal to p +.

Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

### Introduction to Fluid Flow

Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### Chapter 1 Introduction

Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE2022-01 Thermodynamics : Science of energy and entropy - Science of heat and work and properties related to

### Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

### Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation

1 Physics 213 Waves, Fluids and Thermal Physics Summer 2007 Lecturer: Mike Kagan (mak411@psu.edu, 322 Whitmore) Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle

### Chapter 9 Fluids. Pressure

Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume

### CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

### Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Zeroeth Law Two systems individually in thermal equilibrium with a third system (such

### Fluids. Fluids in Motion or Fluid Dynamics

Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

### PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

### CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander.

I n t r o d u c t i o n t o Chemical E n g i n e e r i n g CHE-201 I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander C h a p t e r 3 Processes and Process Variables Introduction What is a process?

### Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

### Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

### Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

### Reference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical

1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,

### Northern Lesson 2 Gear Pump Terminology. Gear Pump 101. Lesson 2: Gear Pump Terminology. When your reputation depends on it!

Gear Pump 101 Lesson 2: Gear Pump Terminology When your reputation depends on it! Symbol Term Metric Unit Abbreviation US Customary Unit Abbreviation Conversion factor a A Area square millimeter mm2 square

Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree

### Laboratory work No 2: Calibration of Orifice Flow Meter

Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring

### Chapter 8: Flow in Pipes

8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

### Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

### Frictional Losses in Straight Pipe

2/2/206 CM325 Fundamentals of Chemical Engineering Laboratory Prelab Preparation for Frictional Losses in Straight Pipe Professor Faith Morrison Department of Chemical Engineering Michigan Technological

### Bernoulli and Pipe Flow

Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems

### Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

### PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

### 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

### Lecture 13 Flow Measurement in Pipes. I. Introduction

Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate

### ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

### Friction Factors and Drag Coefficients

Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

### When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

### Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

### States of Matter. Physics 201, Lecture 25. Density ρ. Fluids

Physics 201, Lecture 25 Today s Topics n Fluid Mechanics (chapter 14) n Solids, Liquids, Gases, Plasmas n Pressure (14.1) n Pascal s Principle, Pressure Variation with Depth (14.2) n Pressure Measurement

### FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 MATERIAL & ENERGY BALANCES Instructor: Dr. Ilgin Paker Yikici Fall 2015 Meet & Greet Hello! My name is I am from 2 Class Overview Units & Conversions Process & Process Variables Process Units &

### Dynamic (absolute) Viscosity

Viscosity Taken from: http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion

### SIZING 2 E DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2

SIZING 2 E 01-12 DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2 DEFINITIONS AND UNITS OF MEASUREMENT 2.1 E 01-12 2.1.1 DEFINITIONS Po = nitrogen pre-charge pressure (relative

### The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:

ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept

### Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

### ME-B41 Lab 1: Hydrostatics. Experimental Procedures

ME-B41 Lab 1: Hydrostatics In this lab you will do four brief experiments related to the following topics: manometry, buoyancy, forces on submerged planes, and hydraulics (a hydraulic jack). Each experiment

### Physics 207 Lecture 20. Chapter 15, Fluids

Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that

### Gas Thermometer and Absolute Zero

Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

### Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

### A Physical Introduction to Fluid Mechanics. Study Guide and Practice Problems Spring 2017

A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 by Alexander J. Smits

### Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

### EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH

EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED

### ! =!"#\$% exerted by a fluid (liquid or gas) !"#\$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#\$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

### cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

### Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems

Chapter 3 Basic Physical Principles Applications to Fluid Power Systems 1 Objectives Identify and explain the design and operation of the six basic machines. Describe the factors that affect energy in

### Physics. Assignment-1(UNITS AND MEASUREMENT)

Assignment-1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical

### STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma

Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) STATES OF MATTER The Four States of Matter Solid } Liquid Commonly found on Gas Earth Plasma STATES OF MATTER Based upon particle

### STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015

The Four States of Matter Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) Solid } Liquid Commonly found on Gas Earth Plasma Based upon particle arrangement Based upon energy of

### Open Channel Hydraulics I - Uniform Flow

PDHonline Course H138 (2 PDH) Open Channel Hydraulics I - Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

### Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

### Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Session-1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview

### 150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

### Lab O2. Variation of Atmospheric Pressure with Altitude. We all live near the bottom of an ocean of air. At sea level, the weight of the air

O2.1 Lab O2. Variation of Atmospheric Pressure with Altitude Introduction In this lab you will investigate the ideal gas law. By moving a plunger in a sealed container of air, you will find the variation

### Hydraulic (Fluid) Systems

Hydraulic (Fluid) Systems Basic Modeling Elements Resistance apacitance Inertance Pressure and Flow Sources Interconnection Relationships ompatibility Law ontinuity Law Derive Input/Output Models ME375

### Chapter 13 - States of Matter. Section 13.1 The nature of Gases

Chapter 13 - States of Matter Section 13.1 The nature of Gases Kinetic energy and gases Kinetic energy: the energy an object has because of its motion Kinetic theory: all matter is made if particles in

### GATE & PSUs CHEMICAL ENGINEERING

Postal Correspondence GATE & PSUs CHEMICAL ENGINEERING THERMODYNAMICS 1 T A B L E O F C O N T E N T S. No. Title Page no. 1. Introduction 3 2. Work and Heat Transfer 9 3. Second Law of Thermodynamics 27

### Today s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling

Last lecture Capacitive sensing elements. Inductive sensing elements. Reactive Deflection bridges. Electromagnetic sensing elements. Thermoelectric sensing elements. Elastic sensing elements. Piezoelectric

### 7. Basics of Turbulent Flow Figure 1.

1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

### Meteorology 432. Barometry Spring 2013

Meteorology 432 Barometry Spring 2013 Basics Revisited Objective: Measure the static pressure exerted by the atmosphere. Static Pressure: Force per unit area in the absence of air motion. In this case,

### Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 15B - Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National

### Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers

Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering

### Hydraulic (Piezometric) Grade Lines (HGL) and

Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have

### FRICTION LOSS ALONG A PIPE

FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates

### Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler

### FORMULA SHEET. General formulas:

FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

### Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

### Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

### MOTOR WIRING DATA From National Electrical Code 3 PHASE SQUIRREL CAGE INDUCTION MOTORS 230 Volt 460 Volt Min. # Max. Rating

MOTOR WIRING DATA From National Electrical Code PHASE SQUIRREL CAGE INDUCTION MOTORS 20 Volt 0 Volt Min. # Max. Rating Min. Size Size of Full Size Wire Conduit Branch Circuit Load Wire AWG (inches) Fuses

### UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

### Measurement of cyclone separator

Measurement of cyclone searator. Aim of the measurement Cyclones are widely used in industry (in food and chemical industry, in energy technology and in buildings) to remove dust and other articles from

### Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

### Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

### In steady flow the velocity of the fluid particles at any point is constant as time passes.

Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

### SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

### M o d u l e B a s i c A e r o d y n a m i c s

Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

### vector H. If O is the point about which moments are desired, the angular moment about O is given:

The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

### Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

### Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

### Lab 1a Wind Tunnel Testing Principles & Drag Coefficients of Golf balls

Lab 1a Wind Tunnel Testing Principles & Drag Coefficients of Golf balls OBJECTIVES - To perform air flow measurement using the wind tunnel. - To compare measured and theoretical velocities for various

### ADVANCED WATER DISTRIBUTION MODELING AND MANAGEMENT

ADVANCED WATER DISTRIBUTION MODELING AND MANAGEMENT Authors Thomas M. Walski Donald V. Chase Dragan A. Savic Walter Grayman Stephen Beckwith Edmundo Koelle Contributing Authors Scott Cattran, Rick Hammond,

### Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations

Introduction to Chemical Engineering Calculations Lecture 1. Mathematics and Engineering In mathematics, If x = 500 and y = 100, then (x + y) = 600 In engineering, If x = 500m and y = 100m, then (x + y)

### Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

### Mass of fluid leaving per unit time

5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.