Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.

Size: px
Start display at page:

Download "Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V."

Transcription

1 Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m 3 = 1 g/cm 3 B. The specific gravity of a substance is defined as the ratio of the density of that substance to the density of water at 4 o C. The density of gold is 19.3g/cm 3. Hence the specific gravity of gold is Pressure in a Fluid The average pressure P is the perpendicular component of the force F divided by the area A on which the force acts. 1

2 P = F " A The force exerted by a fluid on a submerged object at any point on the object is perpendicular to the surface of the object. The unit of pressure in the metric system is the Pascal = Pa = 1 N/m 2. Force is a vector and pressure is a scalar. No direction is associated with pressure, but the direction of the force associated with the pressure is perpendicular to the surface of interest. Variation of Pressure with depth Consider a fluid at rest. Then all portions of the fluid are in static equilibrium. In the following figure, how is the pressure P 1 related to the pressure P 2? Consider a sample of liquid of cross-sectional area A and height h. Then since the fluid is in static equilibrium,! F y = 0. Thus, F! F! mg = use F 2 = P 2 A F 1 = P 1 A m =! V =! Ah ( ) 2

3 so that F 2 F 1 mg = 0 becomes P 2 A P 1 A - ρahg = 0 P deeper level = P upper level + "gh Clearly, the pressure increases as you go deeper in the fluid. At sea level, the atmospheric pressure is P o = 1.013x10 5 Pa = 1 atm. Pressure is constant at the same depth. Pascal s Principle ( ) If an external pressure is applied to an enclosed fluid, the pressure at every point within the fluid increases by that amount. Pascal s principle underlies the operation of a hydraulic press. ΔP in = ΔP out F in = F out A in A out " F out = A % out $ ' F in # & A in 3

4 That is, a small force F in applied to the left end results in a large force F out applied to the right end if A out >> A in. Gauge pressure: The excess pressure above atmospheric pressure is called gauge pressure, and the total pressure is called absolute pressure. Pressure Measurements A. The open-tube manometer This apparatus is used to measure the pressure in an enclosed fluid. The governing equation is P = P o + ρgh. 4

5 B. The Barometer (Torricelli ) This apparatus is used to measure atmospheric pressure. The governing equation is: P o = P + ρgh P o = ρgh. For mercury ρ = 13.6x10 3 kg/m 3, and atmospheric pressure at sea level is P o = 1.013x10 5 Pa which corresponds to a height of 76 cm = 0.76 m = 760 mm = inches of mercury. 5

6 12.3 Buoyancy Archimedes s Principle ( B.C.) Any object completely or partially submerged in a fluid is buoyed upward by a force whose magnitude is equal to the weight of the fluid displaced by the object. Buoyant force = F B F B = " fluid V submerged g volume only F B " F 2 # F 1 F B = P 2 A " P 1 A F B = ( P 2 " P 1 )A but P 2 " P 1 = # g $h so that F B = " g A#h The magnitude of the buoyant force F B is equal to the weight of the fluid displaced by the submerged object. 6

7 12.4 Fluid Flow Laminar flow: when each particle of the fluid follows a smooth path so that the paths of different particles never cross each other. The Continuity Equation!results from conservation of mass in laminar flow. dv = A 1 v 1 = A 2 v 2 Mass Flow Rate! mass of fluid per unit time passing through any cross-section. The law of conservation of mass in fluid dynamics states that mass flow rate through A 1 = mass flow rate through A 2 7

8 dm 1 = dm 2 dm 1 = " 1 (dv 1 ) dm 2 = " 2 (dv 2 ) " 1 (dv 1 ) = " 2(dV 2 ) but dv 1 = A 1 ds 1 dv 2 = A 2 ds 2 so that the above becomes " 1 A 1 ds 1 = " 2A 2 ds 2 using ds 1 = v 1 ds 2 = v 2 one obtains ρ 1 A 1 v 1 = ρ 2 A 2 v 2 8

9 If the fluid is incompressible, then ρ 1 = ρ 2 and dv = A 1 v 1 = A 2 v 2 or Av = constant Note that Av has units of volume/time = volume flow rate Bernoulli s Principle (1738) Bernoulli s principle results from conservation of energy. Applying the work-energy theorem to the laminar flow of the entire shaded fluid described below at a particular instant of time: 9

10 E 1 + "W other = E 2 where E 1 is the initial mechanical energy of the fluid element, E 2 is the final mechanical energy of the fluid element, and "W other is the work done by the nonconservative forces (or the forces other than the conservative forces). Note that E 1 = 1 2 dm 1 v dm 1 g y 1 = 1 2 "dv v "dv g y 1 "W other = F 1 ds 1 # F 2 ds 2 = P 1 A 1 ds 1 " P 2 A 2 ds 2 = P 1 dv " P 2 dv E 2 = 1 2 dm v dm 2 g y 2 = 1 2 "dv v "dv g y 2 Plugging all these into the work-energy theorem equation yields E 1 + "W other = E 2 10

11 1 2 "dv v "dv g y 1 + P 1 dv # P 2 dv = 1 2 "dv v "dv g y 2 note that the volume elements cancel out, and rearranging terms yields P "v "gy 1 = P "v "gy 2 or P "v2 + "gy = cons tant Applications of Bernoulli s principle: 1. Blowing over sheet of paper in front of your mouth. 2. Canvas top puffs upward in moving convertible cars. 3. Houses may explode during thunderstorms. 4. Lift force on airplane wings: Lift force = (pressure difference)*(area of wing) Lift is greater when the wing area is large or when the plane moves fast so that the pressure difference across the top and bottom of the wing is large. The Magnus force is indicated by the red arrow in the figure below. 11

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density

More information

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE 9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics. The atmosphere is a fluid! Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Phy 212: General Physics II. Daniel Bernoulli ( )

Phy 212: General Physics II. Daniel Bernoulli ( ) Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700-178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as

More information

Physics 107 HOMEWORK ASSIGNMENT #9

Physics 107 HOMEWORK ASSIGNMENT #9 Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58-kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Chapter 11. Fluids. continued

Chapter 11. Fluids. continued Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the

More information

Pressure in a fluid P P P P

Pressure in a fluid P P P P Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

More information

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat

More information

PHYSICS 220 Lecture 16 Fluids Textbook Sections

PHYSICS 220 Lecture 16 Fluids Textbook Sections PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.1-10.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about

More information

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities Chapter 15 Density Often you will hear that fiberglass is used for racecars because it is lighter than steel. This is only true if we build two identical bodies, one made with steel and one with fiberglass.

More information

Physics 207 Lecture 20. Chapter 15, Fluids

Physics 207 Lecture 20. Chapter 15, Fluids Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation 1 Physics 213 Waves, Fluids and Thermal Physics Summer 2007 Lecturer: Mike Kagan (mak411@psu.edu, 322 Whitmore) Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle

More information

M o d u l e B a s i c A e r o d y n a m i c s

M o d u l e B a s i c A e r o d y n a m i c s Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Chapter 10. Solids & Liquids

Chapter 10. Solids & Liquids Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

States of matter. Density high > high >> low (pressure dependent)

States of matter. Density high > high >> low (pressure dependent) Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Inter-atomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material

More information

Fluids, Continuity, and Bernouli

Fluids, Continuity, and Bernouli Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,

More information

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter Physics 131: Lecture 3 Today s Agenda Description of Fluids at Rest Pressure vs Depth Pascal s Principle: hydraulic forces Archimedes Principle: objects in a fluid Bernoulli s equation Physics 01: Lecture

More information

11/4/2003 PHY Lecture 16 1

11/4/2003 PHY Lecture 16 1 Announcements 1. Exams will be returned at the end of class. You may rework the exam for up to 1 extra credit points. Turn in your old exam and your new work (clearly indicated). Due 11/11/3. You may sign

More information

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 610-348-6495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily

More information

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density?

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density? Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

Physics 111. Thursday, November 11, 2004

Physics 111. Thursday, November 11, 2004 ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

More information

CHAPTER 28 PRESSURE IN FLUIDS

CHAPTER 28 PRESSURE IN FLUIDS CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic

More information

9.4 A. Density The density of a substance of uniform composition is defined as its mass per unit volume (or mass:volume ratio)

9.4 A. Density The density of a substance of uniform composition is defined as its mass per unit volume (or mass:volume ratio) Page 1 of 24 AP Physics Mechanics Chapter 9-10 Fluid Mechanics - Text Ch. 9 - Select topics - 9.4-9.7 - Reading pp. 255-263 textbook HW -- #15,17,18,19,20,22,29,32,34,35,36,39,40 Ch 10 - Select topics

More information

Eric G. Paterson. Spring 2005

Eric G. Paterson. Spring 2005 Eric G. Paterson Department of Mechanical and Nuclear Engineering Pennsylvania State University Spring 2005 Reading and Homework Read Chapter 3. Homework Set #2 has been posted. Due date: Friday 21 January.

More information

Ch Buoyancy & Fluid Flow

Ch Buoyancy & Fluid Flow Ch 12.3-5 Buoyancy & Fluid Flow PHYS 1210 -- Prof. Jang-Condell 1 Which grading system do you prefer for your final grade? A. Letter grades only (A, B, C, D, F) B. Plus/minus grading (A, A-, B+, B, B-,

More information

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition:

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition: Fluid Mechanics Chapter 2: Fluid Statics Lecture 3 Forces on Fluid Elements Fluid Elements - Definition: Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9. Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =! Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Physics 201, Lecture 25. Density ρ. Fluids

States of Matter. Physics 201, Lecture 25. Density ρ. Fluids Physics 201, Lecture 25 Today s Topics n Fluid Mechanics (chapter 14) n Solids, Liquids, Gases, Plasmas n Pressure (14.1) n Pascal s Principle, Pressure Variation with Depth (14.2) n Pressure Measurement

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture 10 1/34 Phys 220 Physics 220: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 114) Michael Meier mdmeier@purdue.edu Office: Phys Room 381 Help Room: Phys Room 11 schedule on course webpage

More information

10 - FLUID MECHANICS Page 1

10 - FLUID MECHANICS Page 1 0 - FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics

More information

Physics 201, Lecture 26

Physics 201, Lecture 26 Physics 201, Lecture 26 Today s Topics n Fluid Mechanics (chapter 14) n Review: Pressure n Buoyancy, Archimedes s Principle (14.4) n Fluid Dynamics, Bernoulli s Equation (14.5,14.6) n Applications of Fluid

More information

Chapter 9 Fluids. Pressure

Chapter 9 Fluids. Pressure Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume

More information

Fluids, Thermodynamics, Waves, and Optics Overview of Course Fluids

Fluids, Thermodynamics, Waves, and Optics Overview of Course Fluids Fluids, Thermodynamics, Waves, and Optics Overview of Course Fluids Lana Sheridan De Anza College April 10, 2017 Overview of the Course There are 4 main sections to this course. Topics fluids thermodynamics

More information

Chapter 3 Fluid Statics

Chapter 3 Fluid Statics Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces

More information

DENSITY OF AN IRREGULAR SHAPED OBJECT

DENSITY OF AN IRREGULAR SHAPED OBJECT MASS 9/28/2017 AP PHYSICS 2 DENSITY UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 10 FLUIDS AT REST 0.12 0.1 0.08 0.06 0.04 0.02 0 MASS vs. VOLUME y = 1000x 0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

More information

GATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,

GATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) , For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and non-newtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Interference superposition principal: most waves can be added y(x, t) =y 1 (x vt)+y 2 (x + vt) wave 1 + wave 2 = resulting wave y 1 +

More information

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises) FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)

More information

Physics 2c Lecture 9. Recap of Entropy. First part of chapter 18: Hydrostatic Equilibrium Measuring Pressure Pascal's Law Archimedes Principle

Physics 2c Lecture 9. Recap of Entropy. First part of chapter 18: Hydrostatic Equilibrium Measuring Pressure Pascal's Law Archimedes Principle Physics 2c Lecture 9 Recap of Entropy First part of chapter 18: Hydrostatic Equilibrium Measuring Pressure Pascal's Law Archimedes Principle Defining Entropy Macroscopic Definition of entropy difference:

More information

Fluids, Thermodynamics, Waves, and Optics Fluids

Fluids, Thermodynamics, Waves, and Optics Fluids Fluids, Thermodynamics, Waves, and Optics Fluids Lana Sheridan De Anza College April 10, 2018 Overview static fluids pressure liquid pressure Pascal s law Elastic Properties of Solids We are considering

More information

Chapter 12: Gravity, Friction, & Pressure Physical Science, McDougal-Littell, 2008

Chapter 12: Gravity, Friction, & Pressure Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 381-388): GRAVITY IS A FORCE EXERTED BY MASSES. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction;

More information

Halliday/Resnick/Walker 7e Chapter 14

Halliday/Resnick/Walker 7e Chapter 14 HRW 7e Chapter 4 Page of 8 Halliday/Resnick/Walker 7e Chapter 4. The air inside pushes outard ith a force given by p i A, here p i is the pressure inside the room and A is the area of the indo. Similarly,

More information

Physics 101: Lecture 17 Fluids

Physics 101: Lecture 17 Fluids Exam III Physics 101: Lecture 17 Fluids Exam 2 is Mon Nov. 4, 7pm Extra office hours on Fri. (see webpage!) Physics 101: Lecture 17, Pg 1 Homework 9 Help A block of mass M 1 = 3 kg rests on a table with

More information

CE MECHANICS OF FLUIDS

CE MECHANICS OF FLUIDS CE60 - MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE

More information

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Conceptual Physics Matter Liquids Gases

Conceptual Physics Matter Liquids Gases Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 19, 2016 Last time the atom history of our understanding of the atom solids density Overview elasticity liquids pressure buoyancy

More information

Ch. 11: Some problems on density, pressure, etc.

Ch. 11: Some problems on density, pressure, etc. Q3 A pirate in a movie is carrying a chest (0.30 m 0.30 m 0.20 m) that is supposed to be filled with gold. To see how ridiculous this is, determine the mass (in kg) of the gold. Q15 A solid concrete block

More information

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density

More information

University Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review

University Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review University Physics 226N/231N Old Dominion University Ch 12: Finish Fluid Mechanics Exam Review Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Wednesday, November

More information

AMME2261: Fluid Mechanics 1 Course Notes

AMME2261: Fluid Mechanics 1 Course Notes Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

More information

Prince Sultan University Deanship of Educational Services Department of Mathematics and General Sciences

Prince Sultan University Deanship of Educational Services Department of Mathematics and General Sciences Prince Sultan University Deanship of Educational Services Department of Mathematics and General Sciences COURSE DETAILS: Introduction to Physical Science SCI101 MAJOR EXAM II Semester: First Semester --

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter with forces applied between (I.M.F.)

Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter with forces applied between (I.M.F.) \ Chapter 13 Fluids 1) Fluids exert pressure a) because they're made up of matter with forces applied between (I.M.F.) liquids gases b) they are made of matter in constant motion colliding with other matter

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Zeroeth Law Two systems individually in thermal equilibrium with a third system (such

More information

Discuss and apply Newton s laws (i.e., first, second, third, and law of universal gravitation)

Discuss and apply Newton s laws (i.e., first, second, third, and law of universal gravitation) PART I. SUBAREA I. UNDERSTANDING AND SKILL IN PHYSICS MOTION AND FORCES COMPETENCY 1.1 MOTION AND FORCES Skill 1.1a Discuss and apply Newton s laws (i.e., first, second, third, and law of universal gravitation)

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

Notes for Lecture 2 Fluids Buoyancy Fluid Dynamics Bernoulli s Equation

Notes for Lecture 2 Fluids Buoyancy Fluid Dynamics Bernoulli s Equation Notes for Lecture 2 Fluids Buoyancy Fluid Dynamics Bernoulli s Equation Lana Sheridan De Anza College April 12, 2017 Last time introduction to static fluids pressure and depth Pascal s principle measurements

More information