Physics 201 Chapter 13 Lecture 1


 Gervase George
 3 years ago
 Views:
Transcription
1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1
2 Fluids Density = Mass/Volume ρ = M / V units = kg/m 3 Pressure (P) P = Force/Area [N/m 2 ] 1 N/m 2 = 1 Pascal (Pa) Pressure variation with depth P = ρ g h Atmospheric Pressure Even when there is no breeze air molecules are continuously bombarding everything around  results in pressure normal atmospheric pressure = 1.01 x 10 5 Pa (14.7 lb/in 2 ) 11/30/2009 Physics 201, UWMadison 2
3 Densities of substances 11/30/2009 Physics 201, UWMadison 3
4 Compressiblity Density & Pressure are related by the Bulk Modulus LIQUID: incompressible (density almost constant) GAS: compressible (density depends a lot on pressure) B = Δp ( ΔV / V ) 11/30/2009 Physics 201, UWMadison 4
5 Variation of pressure with depth m = ρv; V = Ah m = ρah P = F A = mg A ( ρah)g ; i.e., P = A P = hρg True for all shapes of containers 11/30/2009 Physics 201, UWMadison 5
6 Pressure difference of 3 m of water compares to the change of descending 3000m in air 11/30/2009 Physics 201, UWMadison 6
7 Pascal s Principle A change in pressure in an enclosed fluid is transmitted undiminished to all the fluid and to its container. This principle is used in hydraulic system P 1 = P 2 (F 1 / A 1 ) = (F 2 / A 2 ) F 2 11/30/2009 Physics 201, UWMadison 7
8 Pascal s Principle This principle is used in hydraulic system F 1 P 1 = P 2 (F 1 / A 1 ) = (F 2 / A 2 ) Can be used to achieve a mechanical advantage F 2 = F 1 (A 2 / A 1 )» Work done is the same: height by which the surface A 2 rises is smaller than the change in the height of surface with area A 1. A 1 F 2 A 2 11/30/2009 Physics 201, UWMadison 8
9 Using Fluids to Measure Pressure Use Barometer to measure Absolute Pressure Top of tube evacuated (p=0) Bottom of tube submerged into pool of mercury open to atmosphere (p=p 0 ) Pressure dependence on depth: h = p 0 ρg Barometer Use Manometer to measure Gauge Pressure Measure pressure of volume (p 1 ) relative to the atmospheric pressure ( gauge pressure ) p 1 Manometer p 0 The height difference (Δh) measures the gauge pressure: Δh = (p p ) atm = 760 mm (29.9 in) Hg ρg Δh = 10.3 m (33.8 ft) H /30/2009 Physics 201, UWMadison 9
10 Measurement of Pressure Manometer If both sides of an Utube are open to atmosphere the levels of the fluid are the same on both sides If one side is connected to a pressurized side the level difference between the two sides can be used to measure pressure. 11/30/2009 Physics 201, UWMadison 10
11 Measuring the tire pressure: Is this a manometer or a barometer? 11/30/2009 Physics 201, UWMadison 11
12 Measuring Blood Pressure Blood pressure is quite high, 120/80 mm of Hg Use higher density fluid in a manometer: Mercury 11/30/2009 Physics 201, UWMadison 12
13 Atmosphere  pressure vs height P = P 0 e ρ 0 P 0 gh > whiteboard 11/30/2009 Physics 201, UWMadison 13
14 Pressure in a fluid Impulse to wall: F x!t =!p x =!(Mv x ) F x =!(Mv x )/!t Force is perpendicular to surface Force proportional to area of surface pressure (p) p = Force/area [N/m 2 ] 1 N/m 2 = 1 Pascal (Pa) molecule v v F x wall 11/30/2009 Physics 201, UWMadison 14
15 Pressure y average vertical force = f y =!p y!t Atmospheric Pressure Even when there is no breeze air molecules are continuously bombarding everything around  results in pressure normal atmospheric pressure = 1.01 x 10 5 Pa (14.7 lb/in 2 ) 11/30/2009 Physics 201, UWMadison 15 = "! mv $ y #!t % & '
16 Archimedes Object immersed in a fluid is subject to a buoyant force. Force on sides cancel Force on top F t = ρgh T A Force on bottom F b = ρgh B A ΔF = ρg A Δh F B = (mg) disp 11/30/2009 Physics 201, UWMadison 16
17 Archimedes Object immersed in a fluid is subject to a buoyant force. Force on sides cancel Force on top F t = ρgh T A Force on bottom F b = ρgh B A ΔF = ρg A Δh F B = (mg) disp 11/30/2009 Physics 201, UWMadison 17
18 The pressure is a function of the depth only (for a given density of the fluid and of g) 11/30/2009 Physics 201, UWMadison 18
19 Float Weight of object = ρ 0 gv Buoyant force is the weight of the displaced fluid Weight of fluid = ρ f gv Displace just enough fluid such that forces = 0! 11/30/2009 Physics 201, UWMadison 19
20 Buoyant Force (B) Archimedes Principle weight of fluid displaced (P=F/A, P=ρgh)» B = ρ fluid g V displaced» W = ρ object g V object» object sinks if ρ object > ρ fluid» object floats if ρ object < ρ fluid» Eureka! If object floats.» B=W» Therefore ρ fluid g V displaced = ρ object g V object» Therefore V displaced /V object = ρ object / ρ fluid 11/30/2009 Physics 201, UWMadison 20
21 Float Buoyant force is the weight of the displaced fluid Weight of object = ρ Ice V total g Weight of fluid = ρ SeaWater gv submersed General solution: V displaced /V object = ρ object / ρ fluid Displace just enough fluid such that forces = 0! 11/30/2009 Physics 201, UWMadison 21
22 The weight of a glass filled to the brim with water is W b. A cube of ice is placed in it, causing some water to spill. After the spilled water is cleaned up, the weight of the glass with ice cube is W a. How do the weights compare: 1. W b > W a. 2. W b < W a. 3. W b = W a. Archimedes Principle Archimedes Principle: The buoyant force on an object equals the weight of the fluid it displaces. Weight of water displaced = Buoyant force = Weight of ice 11/30/2009 Physics 201, UWMadison 22
23 Question Suppose you float a large icecube in a glass of water, and that after you place the ice in the glass the level of the water is at the very brim. When the ice melts, the level of the water in the glass will: 1. Go up causing the water to spill. 2. Go down. 3. Stay the same. Archimedes Principle: The buoyant force on an object equals the weight of the fluid it displaces. Weight of water displaced = Buoyant force = Weight of ice When ice melts it will turn into water of same volume 11/30/2009 Physics 201, UWMadison 23
24 Buoyancy Two cups hold water at the same level. One of the two cups has plastic balls (projecting above the water surface) floating in it. Which cup weighs more? 1) Cup I 2) Cup II 3) Both the same Cup I Cup II Archimedes principle tells us that the cups weigh the same. Each plastic ball displaces an amount of water that is exactly equal to its own weight. 11/30/2009 Physics 201, UWMadison 24
25 Sunken Balls Two identical glasses are filled to the same level with water. Solid steel balls are at the bottom in one of the glasses. Which of the two glasses weighs more? 1. The glass without steel balls 2. The glass with steel balls 3. Both glasses weigh the same The steel balls sink. The buoyant force equal to the weight of the displaced water is not sufficient to counter the weight of the steel balls. Therefore, the glass with steel balls weighs more. 11/30/2009 Physics 201, UWMadison 25
26 Buoyant force and depth Imagine holding two identical bricks under water. Brick A is just beneath the surface of the water, while brick B is at a greater depth. The force needed to hold brick B in place is: 1. larger 2. the same as 3. smaller than the force required to hold brick A in place. The buoyant force on each brick is equal to the weight of the water it displaces and does not depend on depth. 11/30/2009 Physics 201, UWMadison 26
27 Fluid Flow Fluid flow without friction Volume flow rate: ΔV/Δt = A Δd/Δt = Av (m 3 /s) Continuity: A 1 v 1 = A 2 v 2 i.e., flow rate the same everywhere e.g., flow of river 11/30/2009 Physics 201, UWMadison 27
28 Problem Two hoses, one of 20mm diameter, the other of 15mm diameter are connected one behind the other to a faucet. At the open end of the hose, the flow of water measures 10 liters per minute. Through which pipe does the water flow faster? 1. The 20mm hose 2. The 15mm hose 3. Water flows at the same speed in both cases 4. The answer depends on which of the two hoses comes first in the flow When a tube narrows, the same volume occupies a greater length. For the same volume to pass through points 1 and 2 in a given time, the velocity must be greater at point 2. The process is reversible. 11/30/2009 Physics 201, UWMadison 28
29 Faucet A stream of water gets narrower as it falls from a faucet (try it & see). V 1 A 1 A 2 V 2 The velocity of the liquid increases as the water falls due to gravity. If the volume flow rate is conserved, them the crosssectional area must decrease in order to compensate The density of the water is the same no matter where it is in space and time, so as it falls down and accelerates because of gravity,the water is in a sense stretched, so it thins out at the end. 11/30/2009 Physics 201, UWMadison 29
30 Types of Fluid Flow Laminar flow Steady flow Each particle of the fluid follows a smooth path The paths of the different particles never cross each other The path taken by the particles is called a streamline Turbulent flow An irregular flow characterized by small whirlpool like regions Turbulent flow occurs when the particles go above some critical speed 12/01/
31 Viscosity Characterizes the degree of internal friction in the fluid This internal friction, viscous force, is associated with the resistance that two adjacent layers of fluid have to moving relative to each other It causes part of the kinetic energy of a fluid to be converted to internal energy 12/01/
32 Ideal Fluid Flow There are four simplifying assumptions made to the complex flow of fluids to make the analysis easier 1. The fluid is nonviscous internal friction is neglected 2. The flow is steady the velocity of each point remains constant 3. The fluid is incompressible the density remains constant 4. The flow is irrotational the fluid has no angular momentum about any point 12/01/
33 Streamlines The path the particle takes in steady flow is a streamline The velocity of the particle is tangent to the streamline A set of streamlines is called a tube of flow 12/01/
34 Streamlines 11/30/2009 Physics 201, UWMadison 34
35 Continuity equation Δm 1 = ρ 1 ΔV 1 = ρ 1 Av 1 Δt Volume Flow rate Mass flow rate I V = ΔV Δt I M 1 = Δm 1 Δt = Av = ρ 1 A 1 v 1 In steady state Δm 1 Δt = Δm 2 Δt ρ 2 A 2 v 2 = ρ 1 A 1 v 1 General case: mass may be accumulated or decreased in the volume between A1 and A2 I M 2 I M 1 = dm 2 dt dm 1 dt = dm 12 dt Continuity equation 11/30/2009 Physics 201, UWMadison 35
36 Continuity equation Volume Flow rate I V = ΔV Δt = Av Mass flow rate I M 1 = Δm 1 Δt = ρ 1 A 1 v 1 In steady state ρ 2 A 2 v 2 = ρ 1 A 1 v 1 Case of incompressible fluid: density constant A 2 v 2 = A 1 v 1 11/30/2009 Physics 201, UWMadison 36
37 Bernoulli s Equation As a fluid moves through a region where its speed and/or elevation above the Earth s surface changes, the pressure in the fluid varies with these changes Consider the two shaded segments The volumes of both segments are equal The net work done on the segment is W =(P 1 P 2 ) V Part of the work goes into changing the kinetic energy and some to changing the gravitational potential energy 12/01/2009 Physics 201, UWMadison
38 Bernoulli s Equation The change in kinetic energy: ΔK = 1/2 mv 2 21/2 mv 1 2 The masses are the same since the volumes are the same The change in gravitational potential energy: ΔU = mgy 2 mgy 1 The work also equals the change in energy Combining: W = (P 1 P 2 )V =1/2 mv 2 21/2 mv mgy 2 mgy 1 Rearranging and expressing in terms of density: P 1 + 1/2 ρv mgy 1 = P 2 + 1/2 ρv mgy 2 12/01/2009 Physics 201, UWMadison 38
39 Bernoulli s Equation Pressure drops in a rapidly moving fluid whether or not the fluid is confined to a tube For incompressible, frictionless fluid: P ρv2 + ρgh = constant 1 2 ρv2 = mv2 V = KE V ρgh = mgh V = PE V Bernoulli equation states conservation of energy For Static Fluids:P 1 + ρgh 1 = P 2 + ρgh 2 Bernoulli's Principle (constant depth):p ρv 2 1 = P ρv /01/
40 What is the pressure of an incompressible fluid in the constricted region? Continuity equation gives velocity in the constricted region (increases with A1/A2)): A 2 v 2 = A 1 v 1 Bernoulli equation P ρv 2 1 = const 12/01/2009 says that pressure drops as P 1 v 2 40
41 Applications of Bernoulli s Principle Wings and sails Higher velocity on one side of sail versus the other results in a pressure difference that can even allow the boat to sail into the wind Entrainment Reduced pressure in high velocity fluid pulls in particles from static or lower velocity fluid» Bunsen burner, Aspirator, Velocity measurement 12/01/
42 Problem (a) Calculate the approximate force on a square meter of sail, given the horizontal velocity of the wind is 6 m/s parallel to its front surface and 3.5 m/s along its back surface. Take the density of air to be 1.29 kg/m 3. (b) Discuss whether this force is great enough to be effective for propelling a sail boat. Bernoulli eq.for constant height P ρv 2 1 = P ρv 2 2 Force, F = (P 1 P 2 )A = 1 2 ρ(v 2 2 v 2 1 )A = 15.3 N The force is small. However, when the sails are large, the force can be high enough to propel a sail boat. For larger boats, one can add more than one sail to increase the surface area. One can even sail into the wind, where (P 1 P 2 ) is small. 12/01/
43 Applications of Fluid Dynamics Streamline flow around a moving airplane wing Lift is the upward force on the wing from the air Drag is the resistance The lift depends on the speed of the airplane, the area of the wing, its curvature, and the angle between the wing and the horizontal 12/01/
44 Lift General In general, an object moving through a fluid experiences lift as a result of any effect that causes the fluid to change its direction as it flows past the object Some factors that influence lift are: The shape of the object The object s orientation with respect to the fluid flow Any spinning of the object The texture of the object s surface 12/01/
45 Golf Ball The ball is given a rapid backspin The dimples increase friction Bernoulli says: Higher relative velocity will reduce the pressure. Increases lift It travels farther than if it was not spinning 12/01/
46 12/01/
47 Problem (a) What is the pressure drop due to Bernoulli effect as water goes into a 3 cm diameter nozzle from a 9 cm diameter fire hose while carrying a flow of 40 L/s? (b) To what maximum height above the nozzle can this water rise neglecting air resistance. v 1 = F 1 = m 3 /s A 1 π(0.045) 2 v 2 = F 2 = m 3 /s A 2 π(0.015) 2 = 6.29 m/s = 56.6 m/s P 1 P 2 = 1 2 ρ(v 2 2 v 2 1 ) = N/m 2 h = v2 2g = (56.6) m=163 m 12/01/
48 P 1, v 1, h 1 Torricelli s Theorem h1 P 2 =P 1, v 2, h 2 h2 Bernoulli's equation at constant pressure (P 1 = P 2 ) P ρv ρgh 1 = P ρv ρgh ρv ρgh 1 = 1 2 ρv ρgh 2 v 2 2 = v g(h 1 h 2 ) Density is constant h = h 1 h 2 Same as kinematics equation for any object falling with negligible friction. 12/01/
49 F Friction in fluids Viscosity L V 0 η = F A v L shearing stress strain V=0 Newton s law Laminar flow  no turbulence Pressure, τ = η dv dz η is the coefficient of viscosity 'A' is the moving surface 12/01/
50 Real fluid flow At constant velocity net force is zero. F = ( P 1 P 2 )πr 2 and the area on which the force is acting is A = 2πrL τ = F A = ΔPr 2L τ η = Δv or dv = ( P P 1 2 )r dr 2Lη Δr 12/01/
51 12/01/
52 More Viscosity for a given situation P 1, P 2,η, and L are constant let b = ΔP 2ηL and dv = brdr and integrating v = br C v = 0 at the boundary r = R and, substituting, ( v = P 1 P ) 2 4ηL ( R 2 r 2 ) 12/01/
53 Flow and Viscosity ΔV = ( vt)2πrδr and again let B = πtb and, then dv = BR 2 rdr Br 3 dr V = BR 2 Finally, rdr B r 3 dr 0 R V t 0 R = π ( P 1 P ) 2 R 4 8ηL = B R4 2 B R4 4 = B R4 4 Poiseuille s Eqn. no turbulence no sized particles constant η 12/01/
Physics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationChapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.
Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationChapter 11. Fluids. continued
Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationChapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE
9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m
More informationChapter 14  Fluids. Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14  Fluids. Objectives (Ch 14)
Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. Archimedes, On Floating Bodies David J.
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density
More informationChapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are
More informationPhysics 207 Lecture 20. Chapter 15, Fluids
Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about
More informationFluids, Continuity, and Bernouli
Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationPhysics 220: Classical Mechanics
Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More informationFluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman
Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get
CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)
More informationChapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation
Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationChapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities
Chapter 15 Density Often you will hear that fiberglass is used for racecars because it is lighter than steel. This is only true if we build two identical bodies, one made with steel and one with fiberglass.
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationLecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationFluid Mechanics. The atmosphere is a fluid!
Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid
More informationPhysics 111. Thursday, November 11, 2004
ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 89 pm in NSC 118/119
More informationFluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number
Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the
More informationFluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012
Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study
More informationChapter 15  Fluid Mechanics Thursday, March 24 th
Chapter 15  Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli
More informationPhy 212: General Physics II. Daniel Bernoulli ( )
Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as
More informationIn steady flow the velocity of the fluid particles at any point is constant as time passes.
Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point
More informationLecture 30 (Walker: ) Fluid Dynamics April 15, 2009
Physics 111 Lecture 30 (Walker: 15.67) Fluid Dynamics April 15, 2009 Midterm #2  Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68)
More informationPhysics 201, Lecture 26
Physics 201, Lecture 26 Today s Topics n Fluid Mechanics (chapter 14) n Review: Pressure n Buoyancy, Archimedes s Principle (14.4) n Fluid Dynamics, Bernoulli s Equation (14.5,14.6) n Applications of Fluid
More informationChapter 10. Solids & Liquids
Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density
More informationPHYSICS 220 Lecture 16 Fluids Textbook Sections
PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.110.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume
More informationPressure in stationary and moving fluid Lab Lab On On Chip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density
More informationPhysics 123 Unit #1 Review
Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics
More informationChapter 9 Fluids. Pressure
Chapter 9 Fluids States of Matter  Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume
More informationPage 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter
Physics 131: Lecture 3 Today s Agenda Description of Fluids at Rest Pressure vs Depth Pascal s Principle: hydraulic forces Archimedes Principle: objects in a fluid Bernoulli s equation Physics 01: Lecture
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationPhysics 106 Lecture 13. Fluid Mechanics
Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle
More informationFluid dynamics  Equation of. continuity and Bernoulli s principle.
Fluid statics Fluid dynamics  Equation of What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle continuity and Bernoulli s principle. Lecture 4 Dr
More informationI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
MECHNICS O LUIDS luids are both liquids and gases. The common property of fluids is that the particles can be separated easily (liquids do not have their own shape etc.). Real fluids have something like
More informationReminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)
Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure
More informationBernoulli s Equation
Bernoulli s Equation Bởi: OpenStaxCollege When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where does that change in kinetic energy come from?
More informationMomentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics
Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum
More informationFinal Mock Exam PH 2211D
Final Mock Exam PH 2211D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson
More informationDEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS
DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set
More informationGeneral Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat
More informationPressure in a fluid P P P P
Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all oddball states of matter We
More informationFor more info
Characteristic of Ideal fluid: (a) It is incompressible (b) It is nonviscous (c) Flow of ideal fluid is irrational (d) It is capable of exhibiting steady flow Stream line flow: Flow of a liquid fluid
More informationPhysics 101: Lecture 18 Fluids II
Exam III Physics 101: Lecture 18 Fluids II Textbook Sections 9.6 9.8 Physics 101: Lecture 18, Pg 1 Review Static Fluids Pressure is force exerted by molecules bouncing off container P = F/A Gravity/weight
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationRecap: Static Fluids
Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid
More informationUniversity Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review
University Physics 226N/231N Old Dominion University Ch 12: Finish Fluid Mechanics Exam Review Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016odu Wednesday, November
More informationPressure in stationary and moving fluid. LabOnChip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at
More informationFluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.
Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density
More informationMock Exam III PH 201, PH 221
Mock Exam III PH 201, PH 221 April 12, 2015 You will have 1 hour to complete this exam, and must answer 7 of the problems correctly to make a perfect score. 1 Chapter Concept Summary Equations: Cutnell
More informationIntroductory Physics PHYS101
Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 3846006 My email: rcyburt@concord.edu TRF 9:3011:00am
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationSummary PHY101 ( 2 ) T / Hanadi Al Harbi
الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationPHY121 Physics for the Life Sciences I
PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes
More informationPhysics 220: Classical Mechanics
Lecture 10 1/34 Phys 220 Physics 220: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 114) Michael Meier mdmeier@purdue.edu Office: Phys Room 381 Help Room: Phys Room 11 schedule on course webpage
More informationToday s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation
1 Physics 213 Waves, Fluids and Thermal Physics Summer 2007 Lecturer: Mike Kagan (mak411@psu.edu, 322 Whitmore) Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationIf we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area.
2/24 Chapter 12 Solids Recall the rigid body model that we used when discussing rotation. A rigid body is composed of a particles constrained to maintain the same distances from and orientations relative
More informationChapter 9. Solids and Fluids (c)
Chapter 9 Solids and Fluids (c) EXAMPLE A small swimming pool has an area of 0 square meters. A wooden 4000kg statue of density 500 kg/m 3 is then floated on top of the pool. How far does the water rise?
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationAerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)
Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation
More informationAMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationBarometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)
FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)
More information43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,
43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.
More informationTridib s Physics Tutorials visit
Pressure  If F is the magnitude of this normal force on the piston of area A then the average pressure P av is defined as the normal force acting per unit area. P= F/A, Its dimensions are [ML 1 T 2 ].
More informationChapter 11  Fluids in Motion. Sections 79
Chapter  Fluids in Motion Sections 79 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that
More informationChapter 18 Fluids Pearson Education, Inc. Slide 181
Chapter 18 Fluids Slide 181 Section 18.1: Forces in a fluid We dealt with solid objects in the previous chapters. We now turn our attention to liquids and gasses. Liquids and gasses are collectively called
More informationMULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
More informationPhysics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout
Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 6103486495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily
More informationMoving earth crust. 100 m
example An architect wants to design a 5 m high circular pillar with a radius of 0.5 m that holds a bronze statue that weighs 1.0E+04 kg. He chooses concrete for the material of the pillar (Y=1.0E+10 Pa).
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationPhysics 101: Lecture 17 Fluids
Exam III Physics 101: Lecture 17 Fluids Exam 2 is Mon Nov. 4, 7pm Extra office hours on Fri. (see webpage!) Physics 101: Lecture 17, Pg 1 Homework 9 Help A block of mass M 1 = 3 kg rests on a table with
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationAnnouncements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe.
nnouncements Exam reakdown on Lectures link Exam Wednesday July 8. Last name K McCC 00, LZ CSE 0 Reviews Sunday 7:009:00, Monday 5:307:30, Tuesday 5:307:00 N 00 Finish Chapter 9 today Last time we
More information123 Bernoulli's Equation
OpenStaxCNX module: m50897 1 123 Bernoulli's Equation OpenStax Tutor Based on Bernoulli's Equation by OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More information11/4/2003 PHY Lecture 16 1
Announcements 1. Exams will be returned at the end of class. You may rework the exam for up to 1 extra credit points. Turn in your old exam and your new work (clearly indicated). Due 11/11/3. You may sign
More information