In steady flow the velocity of the fluid particles at any point is constant as time passes.

Size: px
Start display at page:

Download "In steady flow the velocity of the fluid particles at any point is constant as time passes."

Transcription

1 Chapter 10 Fluids

2 Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point changes as time passes. Turbulent flow is an extreme kind of unsteady flow in which the velocity of the fluid particles at a point change erratically in both magnitude and direction.

3 Fluids in Motion Fluid flow can be compressible or incompressible. Most liquids are nearly incompressible. Fluid flow can be viscous such that the fluid does not flow readily due to internal frictional forces being present (e.g. honey), or nonviscous such that the fluid flows readily due to no internal frictional forces being present (e.g. water is almost nonviscous). An incompressible, nonviscous fluid is called an ideal fluid.

4 Fluids in Motion Steady flow is also sometimes called streamline or laminar flow since the neighboring layers of fluid slide by each other smoothly, i.e. each particle of the fluid follows a smooth path and the paths do not cross. Streamlines are often used to represent the trajectories of the fluid particles.

5 Fluids in Motion Making streamlines with dye in a flowing liquid, and smoke, in a wind tunnel.

6 The Equation of Continuity The mass of fluid per second that flows through a tube is called the mass flow rate.

7 The Equation of Continuity Consider the steady (laminar) flow of a fluid through a tube with a varying cross sectional area: Δm = ρ ΔV = ρ A vδt! distance Δm Δt = ρ Av Δm Δt 1 = ρ 1A1 v1 Since mass must be conserved as the fluid flows Δm 1 Δt = Δm Δt

8 The Equation of Continuity EQUATION OF CONTINUITY The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow. ρ = 1A1 v1 ρav SI Unit of Mass Flow Rate: kg/s

9 The Equation of Continuity Incompressible fluid: A 1v1 = Av Volume flow rate Q: Q Av = A Δl Δt = AΔl Δt = ΔV Δt

10 The Equation of Continuity Example: A Garden Hose A garden hose has an unobstructed opening with a cross sectional area of.85x10-4 m. It fills a bucket with a volume of 8.00x10-3 m 3 in 30 seconds. Find the speed of the water that leaves the hose through (a) the unobstructed opening and (b) an obstructed opening with half as much area.

11 The Equation of Continuity (a) Q = Av v = Q A = 3 3 ( m ) ( 30.0 s) m = 0.936m s (b) A 1v1 = Av v = A 1 v 1 = A 1 A A 1 ( ) v 1 = ( )( 0.936m s) =1.87m s

12 Bernoulli s Equation Consider the steady flow of an incompressible and nonviscous fluid in two situations: The fluid accelerates from higher to lower pressure regions from Newton s nd law due to the unbalanced non-conservative forces According to the pressure-depth relationship, the pressure is lower at higher levels, provided the area of the pipe does not change. Incorporate both of these situations into a single equation!

13 Bernoulli s Equation Combined situation: Use the Work-Energy theorem to derive a relationship among P, v, and y at two different points along the tube à look at the fluid elements at 1 and. W nc = E 1 E = 1 mv 1 + mgy 1 ( ) ( 1 mv + mgy ) " $ " $ W nc = ΔW nc = "# ( ΔF)s$ % = (( ΔP)! As) = ( ( ΔP) ) ΔV = ( P P 1 )ΔV 1 1 1# ΔV % # 1 %!# " $# P P 1

14 Bernoulli s Equation ( P P 1 )ΔV = 1 mv 1 + mgy 1 ( ) ( 1 mv + mgy ) ( ) ( ) ( ) 1 1 P P = ρ v + ρgy ρv + ρ gy BERNOULLI S EQUATION In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by: P ρ v1 + ρgy1 = P + ρv + ρgy

15 Applications of Bernoulli s Equation Example: Efflux Speed The tank is open to the atmosphere at the top. Find and expression for the speed of the liquid leaving the pipe at the bottom.

16 Applications of Bernoulli s Equation = P P v 0 1 atm P = P ρ v1 + ρgy1 = P + ρv + ρgy y y = 1 h 1 ρ v = ρgh 1 For an element of fluid of mass, m 1 mv 1 = mgy v = 1 gh ( 1 gh) = gy y = h

17 Applications of Bernoulli s Equation When a moving fluid is contained in a horizontal pipe, all parts of it have the same elevation, i.e. y 1 = y, and Bernoulli s equation simplifies to: P ρv 1 = P + 1 ρv Thus, P + ½ρv remains constant, so that If v increases à P decreases If v decreases à P increases

18 Applications of Bernoulli s Equation Example: An enlarged horizontal blood vessel à Find P P 1 ρ Blood = 1060 kg/m3 A 1 v 1 = 0.40 m/s v A = 1.7A 1 P ρv 1 = P + 1 ρv P 1 P P P 1 = 1 ρ v ( 1 v ) Use the continuity equation to find v A 1 v 1 = A v v = A 1 A v 1 * P P 1 = 1 ρ v $ 1 A ' 1, & ) + % A ( v 1 - * / = 1 ρv $ 1 1 A ' 1, & ). + % A ( - / = ( ), 1 ( ) 0.40 *, + = 55 Pa = 0.41 mmhg $ A 1 ' & ) % 1.7A 1 ( - /.

19 Applications of Bernoulli s Equation Conceptual Example: Tarpaulins and Bernoulli s Equation When the truck is stationary, the tarpaulin lies flat, but it bulges outward when the truck is speeding down the highway. Account for this behavior.

20 Applications of Bernoulli s Equation

21 Applications of Bernoulli s Equation

Chapter 11. Fluids. continued

Chapter 11. Fluids. continued Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density

More information

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Chapter 11 - Fluids in Motion. Sections 7-9

Chapter 11 - Fluids in Motion. Sections 7-9 Chapter - Fluids in Motion Sections 7-9 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS MOTIVATION Introductory Video Giancoli Lesson 0-8 to 0-0 0-8: Fluids In Motion; Flow Rate And Equation Of Continuity 0-9: Bernoulli s equation 0-0:

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

Pressure in a fluid P P P P

Pressure in a fluid P P P P Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set

More information

Fluids, Continuity, and Bernouli

Fluids, Continuity, and Bernouli Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,

More information

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009 Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure

More information

Fluids Bernoulli s equation

Fluids Bernoulli s equation Chapter 11 Fluids Bernoulli s equation 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work yields a

More information

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009 Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

More information

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s) Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Physics 111. Thursday, November 11, 2004

Physics 111. Thursday, November 11, 2004 ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Chapter 9. Solids and Fluids (c)

Chapter 9. Solids and Fluids (c) Chapter 9 Solids and Fluids (c) EXAMPLE A small swimming pool has an area of 0 square meters. A wooden 4000-kg statue of density 500 kg/m 3 is then floated on top of the pool. How far does the water rise?

More information

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1

Stream Tube. When density do not depend explicitly on time then from continuity equation, we have V 2 V 1. δa 2. δa 1 PH6L24 1 Stream Tube A region of the moving fluid bounded on the all sides by streamlines is called a tube of flow or stream tube. As streamline does not intersect each other, no fluid enters or leaves across the

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Phy 212: General Physics II. Daniel Bernoulli ( )

Phy 212: General Physics II. Daniel Bernoulli ( ) Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700-178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as

More information

Fluids Bernoulli s equation

Fluids Bernoulli s equation Chapter 11 Fluids Bernoulli s equation 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work yields a

More information

Fluid dynamics - Equation of. continuity and Bernoulli s principle.

Fluid dynamics - Equation of. continuity and Bernoulli s principle. Fluid statics Fluid dynamics - Equation of What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle continuity and Bernoulli s principle. Lecture 4 Dr

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

LECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich

LECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich LECTURE 4 FLUID FLOW & SURFACE TENSION Lecture Instructor: Kazumi Tolich Lecture 4 2 Reading chapter 15.6 to 15.9 Continuity equation Bernoulli s equation n Torricelli s law Viscosity Surface tension Equation

More information

Introduction to Fluid Flow

Introduction to Fluid Flow Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

Announcements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe.

Announcements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe. nnouncements Exam reakdown on Lectures link Exam Wednesday July 8. Last name -K McCC 00, L-Z CSE 0 Reviews Sunday 7:00-9:00, Monday 5:30-7:30, Tuesday 5:30-7:00 N 00 Finish Chapter 9 today Last time we

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 4. ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics. The atmosphere is a fluid! Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

More information

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

More information

Final Mock Exam PH 221-1D

Final Mock Exam PH 221-1D Final Mock Exam PH 221-1D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson

More information

Recap: Static Fluids

Recap: Static Fluids Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

More information

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE 9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Fluids II (Fluids in motion)

Fluids II (Fluids in motion) hys0 Lectures 6-7 Fluids II (Fluids in motion) Key points: Bernoulli s Equation oiseuille s Law Ref: 0-8,9,0,,. age 0-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the flow of a fluid

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

PHYSICS General Physics 1, Fall 2007

PHYSICS General Physics 1, Fall 2007 University of Michigan Deep Blue deepblue.lib.umich.edu 2007-09 PHYSICS 140 - General Physics 1, Fall 2007 Evrard, Gus Evrard, G. (2009, January 26). General Physics 1. Retrieved from Open.Michigan - Educational

More information

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)

More information

Physics 9 Wednesday, March 2, 2016

Physics 9 Wednesday, March 2, 2016 Physics 9 Wednesday, March 2, 2016 You can turn in HW6 any time between now and 3/16, though I recommend that you turn it in before you leave for spring break. HW7 not due until 3/21! This Friday, we ll

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

Mock Exam III PH 201, PH 221

Mock Exam III PH 201, PH 221 Mock Exam III PH 201, PH 221 April 12, 2015 You will have 1 hour to complete this exam, and must answer 7 of the problems correctly to make a perfect score. 1 Chapter Concept Summary Equations: Cutnell

More information

Lesson 7: Thermal and Mechanical Element Math Models in Control Systems. 1 lesson7et438a.pptx. After this presentation you will be able to:

Lesson 7: Thermal and Mechanical Element Math Models in Control Systems. 1 lesson7et438a.pptx. After this presentation you will be able to: Lesson 7: Thermal and Mechanical Element Math Models in Control Systems ET 438a Automatic Control Systems Technology Learning Objectives After this presentation you will be able to: Explain how heat flows

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE

10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE 1/9/17 AP PHYSICS LET S PERFORM 4 EXPERIMENTS: 1. Cans on a string. UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION. Blowing a piece of paper. 3. Index card & straw. 4. Ping Pong ball and

More information

For more info

For more info Characteristic of Ideal fluid:- (a) It is incompressible (b) It is non-viscous (c) Flow of ideal fluid is irrational (d) It is capable of exhibiting steady flow Stream line flow:- Flow of a liquid fluid

More information

Physics Courseware Physics I

Physics Courseware Physics I Definition of pressure: Force P = Area Physics Courseware Physics I Bernoulli Hydrostatics equation: PB PA = ρgh 1 1 Bernoulli s equation: P 1 + ρv1 + ρgh1 = P + ρv + ρgh Problem 1.- In a carburetor (schematically

More information

Chapter 9 Fluids. Pressure

Chapter 9 Fluids. Pressure Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume

More information

Ph.D. Qualifying Exam in Fluid Mechanics

Ph.D. Qualifying Exam in Fluid Mechanics Student ID Department of Mechanical Engineering Michigan State University East Lansing, Michigan Ph.D. Qualifying Exam in Fluid Mechanics Closed book and Notes, Some basic equations are provided on an

More information

Ch Buoyancy & Fluid Flow

Ch Buoyancy & Fluid Flow Ch 12.3-5 Buoyancy & Fluid Flow PHYS 1210 -- Prof. Jang-Condell 1 Which grading system do you prefer for your final grade? A. Letter grades only (A, B, C, D, F) B. Plus/minus grading (A, A-, B+, B, B-,

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Lecture 3 The energy equation

Lecture 3 The energy equation Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 15B - Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

equation 4.1 INTRODUCTION

equation 4.1 INTRODUCTION 4 The momentum equation 4.1 INTRODUCTION It is often important to determine the force produced on a solid body by fluid flowing steadily over or through it. For example, there is the force exerted on a

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

Chapter -5(Section-1) Friction in Solids and Liquids

Chapter -5(Section-1) Friction in Solids and Liquids Chapter -5(Section-1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction:- When two bodies are in contact with each other and if one body is made to move then the

More information

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter. SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

More information

Lecture 2 Flow classifications and continuity

Lecture 2 Flow classifications and continuity Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today

More information

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

More information

Worksheet for Exploration 15.1: Blood Flow and the Continuity Equation

Worksheet for Exploration 15.1: Blood Flow and the Continuity Equation Worksheet for Exploration 15.1: Blood Flow and the Continuity Equation Blood flows from left to right in an artery with a partial blockage. A blood platelet is shown moving through the artery. How does

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information