Chapter 9 Fluids. Pressure

Size: px
Start display at page:

Download "Chapter 9 Fluids. Pressure"

Transcription

1 Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume (appreciably) when they are heated. Gases do not have a definite volume or shape. ressure fluid particle collides with the surface. The change in momentum is caused by an impulse that acts to the right on the particle. y Newton s third law, the particle pushes to the left on the surface. Definition of pressure F av Surprisingly, pressure is a scalar and not a vector. ressure is measured in N/m which is also called a pascal (a). There are a zillion other units: atmosphere, lbs/square inch, torr, bar, etc. The atmosphere exerts pressure. atm a

2 ascal s rinciple change in pressure at any point in a confined fluid is transmitted everywhere throughout the fluid. ascal s principle is the basis of hydraulics. Hydraulics are the most effective way to transmit a force. Density is the mass per unit volume. It is defined as m V Density is measured in kg/m 3. s we descend down into a fluid the amount of fluid above us increases. That additional fluid pushes down and the pressure increases with depth. t depth d the pressure has increased gd

3 Measuring ressure manometer consists of a U-shaped tube containing some mercury. When both sides are open to the atmosphere, the height in both arms are the same. When one side is connected to the pressure to be measured, the heights are different. The pressures at are the same, gd C Usually, the manometer is open to the atmosphere. It will measure pressures relative to atmospheric. The gauge pressure is the pressure above an atmosphere. gauge abs atm

4 lood pressure is measured using a sphygmomanometer. The pressure in the cuff is higher than the systolic pressure the maximum pressure in the brachial artery that occurs when the heart contracts. The cuff pressure squeezes the artery closed and no blood flows into the forearm. valve on the cuff is then opened to allow air to escape slowly. When the cuff pressure decreases to just below the systolic pressure, a little squirt of blood flows past the constriction in the artery with each heartbeat. The sound of turbulent blood flow past the constriction can be heard through a stethoscope. s air continues to escape from the cuff, the sound of blood flowing through the constriction in the artery continues to be heard. When the pressure in the cuff reaches the diastolic pressure in the artery the minimum pressure that occurs when the heart muscle is relaxed there is no longer a constriction in the artery, so the pulsing sounds cease. uoyant Force When an object is submerged in a fluid, the fluid pushes up on the object. The buoyant force is given by F gd gv rchimedes principle fluid exerts an upward buoyant force on a submerged object equal in magnitude to the weight of the volume of fluid displaced by the object. We still need to use free body diagrams! The force F is the force of the fluid above the block pushing down and he force F is the force of the fluid below the block pushing up. The buoyant force is F F F The specific gravity is defined as the ratio of the density of the material to the density of water. S.G. water

5 If S.G <, the object will float. If S.G. >, the object sinks. rchimedes and the golden crown: The story: We have completed our study of fluids at rest. Now we consider fluids in motion. Fluid Flow fluid moving past a surface can exert a viscous force against the surface. This is similar to the frictional force of an object sliding over a surface. We will start by assuming the viscous force to be small. When flow is steady, the velocity at any point is constant in time. The flow may not be the same everywhere. Steady flow is laminar. The streamlines are clearly defined. s we have done many times this semester, we assume the ideal case first. n ideal fluid is incompressible, undergoes laminar flow, and has no viscosity. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe. The mass flow rate is defined as m v t The volume flow rate is

6 V v t The continuity equation for an incompressible fluid equates the volume flow rates past two different points, v v The continuity equation is a consequence of conservation of mass. ernoulli s Equation Using energy ideas, the pressure of the fluid in a constriction cannot be the same as the pressure before or after the constriction. For horizontal flow the speed is higher where the pressure is lower. This is called the ernoulli effect. For a more general situation where the pipe is not horizontal, we can use energy considerations to derive ernoulli s equation. (The derivation is given on page 335. I will only quote the result.) gy v gy v or gy v Hopefully, this reminds you of constant W nc mgy mv mgy mv ernoulli s equation relates the pressure, flow speed, and height at two points in an ideal fluid.

7 roblem 50. Suppose air, with a density of.9 kg/m 3 is flowing into a Venturi meter. The narrow section of the pipe at point has a diameter that is /3 of the diameter of the larger section of the pipe at point. The U-shaped tube is filled with water and the difference in height between the two sections of pipe is.75 cm. How fast is the air moving at point? Strategy Use the continuity equation to relate the speeds at points and. Then, use ernoulli s equation to find the speed of the air at point. Solution Relate the air speeds at points and. d v v, so v v v 9. v ( d 3) Find the speed of the air at point. Note that y y. v gy v v 40v v v 8 gy (9v v ) The pressure difference is related to the height difference in the manometer gh W Subsituting 40v gh W v W gh 40 3 (000kg/m )(9.8 m/s )( (.9 kg/m ) cm).8 m/s roblem 46. In a tornado or hurricane, a roof may tear away from the house because of a difference in pressure between the air inside and the air outside. Suppose that air is blowing across the top of a 000 ft roof at 50 mph. What is the magnitude of the force on the roof?

8 Strategy Use ernoulli s equation to find the pressure difference at the roof. Solution Let the region above the roof be labeled. ssume the air under the roof is still. v v gy v gy gy gy Now y is almost equal to y and we can assume that the difference in height has negligible effect on the pressure. v v Which side is at the higher pressure, the inside or outside? The magnitude of the force on the roof is F airv 3 50 mi h 609 m m 5 (.0 kg m ) (000 ft ) 5.00 N. h 3600 s mi 3.8 ft which is equal to 56 tons! Viscosity ernoulli s equation ignores viscosity. When real fluids flow, the different layers of fluid drag against each other. pressure difference is needed to maintain the flow. This is similar to needed a constant force to overcome kinetic friction. Fluid layers further away from the wall flow faster than those close to the wall.

9 oiseuille s Law The volume flow rate of viscous fluid through a horizontal cylindrical pipe depends on ressure gradient L Viscosity. The higher the viscosity, the lower the flow rate Radius of the pipe. The French physician oiseuille (pwahzoy) formulated his law after studying blood flow V t / L r 8 4 Viscosity is (Greek letter eta), measured in as. Other units are poise (pwaz) and c. roblem. Water flows through a pipe of radius 8.50 mm. The viscosity of water is.005 c. If the flow speed at the center is 0.00 m/s and the flow is laminar, find the pressure drop due to viscosity along a 3.00 m section of pipe. Strategy Use oiseuille s Law to find the pressure drop. Solution oiseuille s law is V t / L r 8 4 Solving for V t / L r 8 V 8 L 4 t r The volume flow rate is related to the area of the tube and the speed of the flow (see the continuity equation) 4 V t v r v (8.500 m) (0.00 m/s) m /s Viscosity is not in the correct units. = as. The pressure difference is

10 V t 3 8 L (.0050 as)(3 m) (4.540 m /s) 67 a r (8.500 m) Turbulence Turbulence is unsteady fluid flow, not laminar flow. In turbulent flow, swirling vortices appear. The vortices are not stationary and they move with the fluid. The velocity of the fluid flow can change direction and magnitude in an uncontrolled way. Why do golf balls have dimples? From HowStuffWorks.com: The reason why golf balls have dimples is a story of natural selection. Originally, golf balls were smooth; but golfers noticed that older balls that were beat up with nicks, bumps and slices in the cover seemed to fly farther. Golfers, being golfers, naturally gravitate toward anything that gives them an advantage on the golf course, so old, beat-up balls became standard issue. t some point, an aerodynamicist must have looked at this problem and realized that the nicks and cuts were acting as turbulators they induce turbulence in the layer of air next to the ball (the boundary layer ). In some situations, a turbulent boundary layer reduces drag. If you want to get deeper into the aerodynamics, there are two types of flow around an object: laminar and turbulent. Laminar flow has less drag, but it is also prone to a phenomenon called separation. Once separation of a laminar boundary layer occurs, drag rises dramatically because of eddies that form in the gap. Turbulent flow has more drag initially but also better adhesion, and therefore is less prone to separation. Therefore, if the shape of an object is such that separation occurs easily, it is better to turbulate the boundary layer (at the slight cost of increased drag) in order to increase adhesion and reduce eddies (which means a significant reduction in drag). Dimples on golf balls turbulate the boundary layer. The dimples on a golf ball are simply a formal, symmetrical way of creating the same turbulence in the boundary layer that nicks and cuts do. aseball: Magnus effect. Tennis: top spin, slice, side spin; aseball: curveballs; Golf: slice, hook Viscous Drag n object moving through a fluid experiences drag. Clearly the drag depends on the viscosity of the fluid, the speed of the object, and its size. Viscous drag is very complicated, but there is a well understood example. For a sphere of radius r traveling at appropriate speed v (so there is no turbulence), Stoke s Law holds

11 F D 6rv When the viscous drag is equal to a falling object s weight, the object reaches terminal velocity. This is how parachutes work. Surface Tension The surface of a liquid has special properties not associated with the interior of the liquid. The surface acts like a stretched membrane under tension. The surface tension () of a liquid is the force per unit length with which the surface pulls on its edge. Soaps break up the surface tension so that water can reach into small places and clean them. ubbles gas bubble inside a fluid is in equilibrium between the surface tension trying to shrink the bubble and the pressure inside trying to expand it. The pressure inside the bubble must be greater than the fluid pressure outside. It can be shown that the pressure difference,, is in out r s the bubbles rise to the surface from the bottom, they expand. in reduces with the expansion and r increases as well. The difference, in out, becomes smaller.

Announcements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe.

Announcements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe. nnouncements Exam reakdown on Lectures link Exam Wednesday July 8. Last name -K McCC 00, L-Z CSE 0 Reviews Sunday 7:00-9:00, Monday 5:30-7:30, Tuesday 5:30-7:00 N 00 Finish Chapter 9 today Last time we

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Fluids II (Fluids in motion)

Fluids II (Fluids in motion) hys0 Lectures 6-7 Fluids II (Fluids in motion) Key points: Bernoulli s Equation oiseuille s Law Ref: 0-8,9,0,,. age 0-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the flow of a fluid

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

More information

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

More information

Pressure in a fluid P P P P

Pressure in a fluid P P P P Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

More information

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE 9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE

10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE 1/9/17 AP PHYSICS LET S PERFORM 4 EXPERIMENTS: 1. Cans on a string. UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION. Blowing a piece of paper. 3. Index card & straw. 4. Ping Pong ball and

More information

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

More information

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN Physics 6B - MWF - Midterm 1 Test #: A Name: Perm #: Section (10-11 or 12-1): You MUST put the TEST # in the first answer bubble. The TA will explain. YOU MUST do this or the test will not be graded. WRITE

More information

10 - FLUID MECHANICS Page 1

10 - FLUID MECHANICS Page 1 0 - FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics

More information

Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics. The atmosphere is a fluid! Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

More information

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure

More information

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a

More information

Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.

Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m

More information

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area:

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area: Recap There are 4 aggregates states of matter: - Solid: Strong interatomic bonds, particles cannot move freely. - Liquid: Weaker bonds, particles move more freely - Gas: No interatomic bonds, particles

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =! Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9. Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009 Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

Chapter 11. Fluids. continued

Chapter 11. Fluids. continued Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009 Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

More information

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter Physics 131: Lecture 3 Today s Agenda Description of Fluids at Rest Pressure vs Depth Pascal s Principle: hydraulic forces Archimedes Principle: objects in a fluid Bernoulli s equation Physics 01: Lecture

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í MECHNICS O LUIDS luids are both liquids and gases. The common property of fluids is that the particles can be separated easily (liquids do not have their own shape etc.). Real fluids have something like

More information

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

PHYSICS 220 Lecture 16 Fluids Textbook Sections

PHYSICS 220 Lecture 16 Fluids Textbook Sections PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.1-10.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density

More information

ANSWERS 403 INDEX. Bulk modulus 238 Buoyant force 251

ANSWERS 403 INDEX. Bulk modulus 238 Buoyant force 251 ANSWERS 403 INDEX A Absolute scale temperature 276 Absolute zero 276 Acceleration (linear) 45 Acceleration due to gravity 49,189 Accuracy 22 Action-reaction 97 Addition of vectors 67 Adiabatic process

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS MOTIVATION Introductory Video Giancoli Lesson 0-8 to 0-0 0-8: Fluids In Motion; Flow Rate And Equation Of Continuity 0-9: Bernoulli s equation 0-0:

More information

Fluid dynamics - viscosity and. turbulent flow

Fluid dynamics - viscosity and. turbulent flow Fluid dynamics - viscosity and Fluid statics turbulent flow What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle Fluid dynamics Reynolds number Equation

More information

Chapter -5(Section-1) Friction in Solids and Liquids

Chapter -5(Section-1) Friction in Solids and Liquids Chapter -5(Section-1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction:- When two bodies are in contact with each other and if one body is made to move then the

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)

More information

In steady flow the velocity of the fluid particles at any point is constant as time passes.

In steady flow the velocity of the fluid particles at any point is constant as time passes. Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

Physics 207 Lecture 20. Chapter 15, Fluids

Physics 207 Lecture 20. Chapter 15, Fluids Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.

More information

b) (5) Find the tension T B in the cord connected to the wall.

b) (5) Find the tension T B in the cord connected to the wall. General Physics I Quiz 6 - Ch. 9 - Static Equilibrium July 15, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is available

More information

Chapter: States of Matter

Chapter: States of Matter Table of Contents Chapter: States of Matter Section 1: Matter Section 2: Changes of State Section 3: Behavior of Fluids 1 What is matter? Matter is anything that takes up space and has mass. Matter Matter

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2 PHY 302 K. Solutions for Problem set # 12. Textbook problem 10.55: Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L 8η v R 2 8ηF πr 4 (1) where η is viscosity

More information

Chapter 8 Part 1 - Gases

Chapter 8 Part 1 - Gases Chapter 8 Part 1 - Gases 8.1 States of Matter and Their Changes Matter can exist in 3 primary states or phases:. Review the overall Kinetic Molecular Theory of Matter. Solid particles are in fixed positions

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

Tridib s Physics Tutorials visit

Tridib s Physics Tutorials visit Pressure - If F is the magnitude of this normal force on the piston of area A then the average pressure P av is defined as the normal force acting per unit area. P= F/A, Its dimensions are [ML 1 T 2 ].

More information

4. Find the average velocities and average accelerations of a particle moving in 1-D given its position at various times.

4. Find the average velocities and average accelerations of a particle moving in 1-D given its position at various times. PHYSICS 201: TEST 1 STUDY SHEET 1. Convert a quantity from one set of units to another set of units. 2. Convert a 2-D vector from rectangular form (components) to polar form (magnitude and angle), or from

More information

Fluid flow Pressure Bernoulli Principle Surface Tension

Fluid flow Pressure Bernoulli Principle Surface Tension Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Depends on the radius of the pipe. example: Low speed Large flow

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

What we know about Fluid Mechanics. What we know about Fluid Mechanics

What we know about Fluid Mechanics. What we know about Fluid Mechanics What we know about Fluid Mechanics 1. Survey says. 3. Image from: www.axs.com 4. 5. 6. 1 What we know about Fluid Mechanics 1. MEB (single input, single output, steady, incompressible, no rxn, no phase

More information

Fluid flow Pressure Bernoulli Principle Surface Tension

Fluid flow Pressure Bernoulli Principle Surface Tension Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed

More information

Fluid dynamics - Equation of. continuity and Bernoulli s principle.

Fluid dynamics - Equation of. continuity and Bernoulli s principle. Fluid statics Fluid dynamics - Equation of What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle continuity and Bernoulli s principle. Lecture 4 Dr

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

PROPERTIES OF BULK MATTER

PROPERTIES OF BULK MATTER PROPERTIES OF BULK MATTER CONCEPTUAL PROBLEMS Q-01 What flows faster than honey. Why? Ans According to poiseuille s formula, the volume V of a liquid flowing per second through a horizontal narrow tube

More information

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s) Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of

More information

PHYS 185 Practice Final Exam Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper.

PHYS 185 Practice Final Exam Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. PHYS 185 Practice Final Exam Fall 2013 Name: You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. Short answers 1. 2 points When an object is immersed

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Physics 101: Lecture 17 Fluids

Physics 101: Lecture 17 Fluids Exam III Physics 101: Lecture 17 Fluids Exam 2 is Mon Nov. 4, 7pm Extra office hours on Fri. (see webpage!) Physics 101: Lecture 17, Pg 1 Homework 9 Help A block of mass M 1 = 3 kg rests on a table with

More information

Chapter 9. Solids and Fluids (c)

Chapter 9. Solids and Fluids (c) Chapter 9 Solids and Fluids (c) EXAMPLE A small swimming pool has an area of 0 square meters. A wooden 4000-kg statue of density 500 kg/m 3 is then floated on top of the pool. How far does the water rise?

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Chapter 18 Fluids Pearson Education, Inc. Slide 18-1

Chapter 18 Fluids Pearson Education, Inc. Slide 18-1 Chapter 18 Fluids Slide 18-1 Section 18.1: Forces in a fluid We dealt with solid objects in the previous chapters. We now turn our attention to liquids and gasses. Liquids and gasses are collectively called

More information

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises) FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)

More information

Physics. Assignment-1(UNITS AND MEASUREMENT)

Physics. Assignment-1(UNITS AND MEASUREMENT) Assignment-1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical

More information

States of matter. Density high > high >> low (pressure dependent)

States of matter. Density high > high >> low (pressure dependent) Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Inter-atomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material

More information

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 610-348-6495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily

More information

Suggested Solutions for 2011 J1 H2 Physics Paper Which of the following is a unit of pressure?

Suggested Solutions for 2011 J1 H2 Physics Paper Which of the following is a unit of pressure? Suggested s for 2011 J1 H2 Physics Paper 1 1. Which of the following is a unit of pressure? kg m s -1 kg m -1 s -2 kg m 2 s -2 kg m -2 s -1 [] P = Force/area Units of pressure, P = (kg m s -2 ) / m 2 =

More information

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density

More information