Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:


 Ronald Harris
 1 years ago
 Views:
Transcription
1 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus dye dye filament water outlet Laminar flow at low velocity Dye injection dye filament remained intact throughout the length of the tube Dye filament fluid particles move in a straight line considered as moving in layers P.71
2 Turbulent flow at high velocity Dye injection dye diffused over the whole crosssection fluid particles do not move in a straight line velocity in average sense Dye filament The transition of flow is due to change of velocity, size of pipe and properties of fluid. Reynolds explained the phenomena by considering the forces acting on the fluid particle. When the motion of a fluid particle in a stream is disturbed, its inertia will tend to carry it on in the new direction, but the viscous forces due to the surrounding fluid will tend to make it conform to the motion of the rest of the stream. The criterion that determines whether flow will be viscous or turbulent is therefore the ratio of the inertial force to the viscous force acting on the particle. Hence, for a particular flow, i.e. inertial force viscous force = constant (7.1) By using dimensional analysis, Reynolds derived a criterion to distinguish between laminar and turbulent flow. Reynolds Number, Re = inertial force viscous force = ρvd µ (7.) where ρ = density of the fluid, kg/m 3 v = velocity of the flow, m/s d = diameter of the pipe, m µ = dynamic viscosity, Ns/m P.7
3 Since ν = ρ µ (7.3) where ν = kinematic viscosity, m /s Hence Reynolds Number, Re = ν vd (7.4) Reynolds Number is a dimensionless number In general, the flow is laminar when Re  small transitional when Re  intermediate turbulent when Re  large The flow in pipe can be treated as laminar when Re < 000 transitional when 000 < Re < 4000 turbulent when Re > 4000 P.73
4 Worked example: What is the critical velocity of a water flow through a circular pipe of diameter cm so that the flow is laminar? (dynamic viscosity of water is 0.89*103 Ns/m, density of water = 1000 kg/m 3 ) Answer As the Reynolds number is ρvd Re = µ 1000* v*0.0 = *10 < 000 i.e. v 3 000*089*10 = 1000*0.0 = 8.9 cm/s Hence the critical velocity is 8.9 cm/s. P.74
5 7. Laminar Flow in Pipes 7..1 Hagen  Poiseuille Equation It was discovered independently by: G.H.L. Hagen  a German engineer in 1893 J.L.M. Poiseuille  a French physician in 1840 It states that the head loss experienced by the water when it flows through a pipe is directly proportional to the rate of flow, (Q), and inversely proportional to the fourth power of the diameter of the pipe (d 4 ). Q i.e. h f = k 4 d where k is a constant (7.5) For a laminar flow, the shear stress on the cylindrical surface is given by r dp τ = dx For Newtonian fluid, dv τ = µ dr Equating the two equations, dv r dp µ = dr dx When integrating the above equation with respect to r with the boundary condition v = 0 when r = R (i.e. no slip condition), the result is 1 dp v =  (R r ) (7.6) 4µ dx From (7.10), we can see that the velocity distribution is in parabolic form with maximum velocity at r = 0. P.75
6 umax The maximum velocity at centre (r = 0) 1 dp v max = R 4µ dx dp by putting dx =  p L v max = R p 4µ L The corresponding discharge, Q is R Q = πrvdr 0 R 1 dp = πr[ ( 0 4µ dx R r )] dr =  π 4 R dp 8µ dx (7.7) by putting dp dx =  p L Q = π 4 d p 18µ L & R = d/ (7.8)  known as HagenPoiseuille equation flow rate, Q The mean velocity, v = x sec tional area, A = d p 3µ L (7.9) When compare with v max, 1 v = vmax (7.10) From HagenPoiseuille law, P.76
7 Q h f = k * 4 d By substituting the expression of Q in (7.8) and consider the change of pressure head as head loss, i.e. p = ρgh f 18µ L then k = ρgπ Therefore, k depends on the properties of fluid, ρ and µ and pipe length, L. HagenPoiseuille equation can be expressed in terms of head loss, h f and average velocity, µ L v h f = 64* * * ρvd d g ρvd Since Re = µ Therefore head loss in HagenPoiseuille equation 64 L v h f = * * Re d g (7.11) L v If h f can be expressed as h f = f * * d g (7.1) where f  friction factor Then the friction factor in laminar flow is 64 f = Re (7.13) Noted that in UK publication, h f is often written as L v h f = 4f * * d g 16 and hence f = Re P.77
8 Worked examples: 1. For a laminar flow, d = 50 mm, P 1  P = 0 kn/m L = 00 m, µ = 103 Ns/m Determine the flow rate, Q in m 3 /s. Answer From HagenPoiseuille equation, 4 πd (P1 P ) Q = 18µ L 4 3 π*(0.5) *(0*10 ) = 3 18*10 *00 = 9.59 m 3 /s m 3 /s P.78
9 . Oil of viscosity Ns/m and specific gravity of 0.85 flows through 3000 m of 300 mmdia. pipe at the rate of m 3 /s. What is the lost in head in the pipe? Answer Since 4 πd (P1 P ) Q = 18µ L Now, Q = m 3 /s, µ = Ns/m, L = 3000 m, d = 0.3 m then 4 π(0.3) (P1 P ) = 18*0.101*3000 Hence P 1  P *18* 0.101*3000 = 4 π*(0.3) = kn/m = lost in pressure P1 P Lost in head = ρg = m of oil 850*9.81 = 8.1 m of oil P.79
10 7.3 Turbulent Flow in Pipes Darcy  Weisbach Formula Darcy, Weisbach and others found that a formula for pipe friction loss could be expressed as L v h f = f d g where f is friction factor (7.14) The above equation can be applied in both laminar (refer 7..) and turbulent flows and is known as Darcy  Weisbach formula. It is found that friction factor depends on density of the fluid, ρ velocity of the flow, v diameter of the pipe, d viscosity of the fluid, µ wall roughness, ε ε wall roughness i.e. f = f(ρ, v, d, µ, ε) By dimensional analysis, f = f ρ vd ε, µ d = f ( Reynolds number, relative roughness) ρvd where Reynolds number = and µ relative roughness = ε d (7.15) P.710
11 Once the Reynolds number and relative roughness have been determined, the corresponding value of the friction factor can be obtained from a graphical relationship known as the Moody diagram. Typical values of surface roughness New pipe surface Roughness, ε (m) Glass, brass, copper and lead smooth Wrought iron, steel 0.46*104 Cast iron.6*104 Concrete 3*104 to 30* Moody Diagram Moody diagram has been used extensively in solving pipe flow problems. Two equations are related to the Moody diagram for laminar flow, the friction factor is 64 f = Re This is the straight portion of the diagram when Re < 000. for a turbulent flow, friction factor is 1 = ε d.51.0 * log + f 3.7 Re f (7.16) This is known as ColebrookWhite formula. P.711
12
13 P.713
14 Worked examples: 1. Determine the head loss for flow of 140 L/s of oil, ν = m /s, through 400 m of a 00 mm diameter cast iron pipe. Answer Given Q = 140 L/s = 0.14 m 3 /s d = 00 mm = 0. m ν = m /s = 105 m /s L = 400 m ε = 0.6 mm (cast iron) v = Q πd 4 = 014. π * 0. 4 m/s = m/s vd Re = = 0. * = 8.91*10 4 ν ε.6*10 = = d 0. From the Moody diagram, f(8910, ) = f = i.e. h f = 0.038* * 0. *9. 81 = m of oil m of oil P.714
15 . Solving the previous example by using ColebrookWhite formula. Answer As 1 f ε d = 0. log Re 51 f where i.e. or ε = ; Re = 8910 d = 0. log + f f log(1 + 1f. ) = 0 f Since this is a nonlinear equation, it has to be solved by trial & error or iterations. f = Hence h f = * 400 * * 981. = 47.9 m of oil m of oil P.715
16 7.4 Minor Losses In section 7.3, the head loss in long, straight sections of pipe can be calculated by use of the friction factor obtained from Moody diagram or the Colebrook White equation. This is called friction loss or major loss. Most pipe systems consist of considerably more than straight pipes. These pipe fittings add to the overall head loss of the system. These losses are called minor losses. In some cases, the minor losses may be greater than the friction loss. Since the flow pattern in fittings and valves is quite complex, the theory is very week. The losses are commonly measured experimentally and correlated with the pipe flow patterns Different Types of Minor Losses Minor losses are losses due to the inclusion of a pipe fittings in a pipeline. Some examples are entrances or exit of a pipe expansions or contractions of a pipe bends, elbow and tees valves of open or partially closed gradual expansions or contractions Minor losses is given by h L = K* v g where K is a constant (7.17) P.716
17 Component K a. Elbows Regular 90, flanged 0.3 Regular 90, threaded 1.5 Long radius 90, flanged 0. Long radius 90, threaded 0.7 Long radius 45, flanged 0. Regular 45, threaded 0.4 b. 180 return bends 180 return bends, flanged return bends, threaded 1.5 c. Tees Line flow, flanged 0. Line flow, threaded 0.9 Branch flow, flanged 1.0 Branch flow, threaded.0 d. Valves Globe, fully open 10 Gate, fully open 0.15 Ball valve, fully open 0.05 e. Others Entrance loss 0.5 Exit loss Modified Bernoulli s Equation The original Bernoulli s equation should be extended to include the friction loss and minor losses. i.e. total energy at 1 = total energy at + energy loss on the way p γ 1 v1 p v + + z1 = + + z g γ g + Σ fl i d i i v g + ΣK v i g (7.18) P.717
18 Worked examples: 1. Find the discharge through the pipe in the figure below. The minor loss coefficient for entrance is 0.5. The pipe diameter is 15 mm and the pipe roughness produces a friction factor of Answer 15m 150m Applying Bernoulli s equation between pt.1 and p γ 1 v1 p v + + z1 = + + z g γ g + fl d v g + K v g or v 15 = (1 + K + fl d )* v g = ( *150/0.015) * v g = 51.5 v g = 1.08 m/s Hence Q = A *v = 1.08*π*0.015 /4 m 3 /s = L/s P.718
19 . Find the discharge through the pipe in the figure below for H = 0 m. The minor loss coefficients for entrance, elbows and globe valve are 0.5, 0.8 (each) and 10 respectively. The kinematic viscosity of water is 1.0*106 m /s. 1 globe valve 40m elbows dia. = 150mm ε = m 30m 40m Answer p1 v1 p v Using + + z1 = + + z + Σ fl i γ g γ g d i i v g + ΣK v i g Σ fl i d i i v g = f v L i d g Σ f v = ( ) 015. * 981. = f v ΣK v i g = v g Σ v K i = (. 05+ * ) * 981. = v As P 1 P = 0, v 1 = 0, z 1 z = 0 m, i.e. 0 = v g + Σ fl i d i v i g + ΣK v i g = ( f )v = ( f) v P.719
20 or v = f Since Re = 1.47*10 5 v ; ε/d = 0.00 f v (m/s) Re f cal * * * (ok) v = m/s Since Q = A *v = π*0.15 /4 * m 3 /s = m 3 /s P.70
21 7.5 Pipe Systems In many pipe systems, there is more than one pipe involved. The governing mechanisms for the flow in multiple pipe systems are the same as for the single pipe system discussed previously Resistance Coefficients for Pipelines in Series and Parallel In general, the equation of head loss can be expressed as h f = k*q (7.19) Pipes are in series if they are connected end to end so the fluid flow in a continuous line is a constant. Q h1 h h3 Q Q Q hn Q By continuity of flow, Q is same for each pipe. The total loss of the system is given as h f = h 1 + h + h h n = k 1 *Q + k *Q + k 3 *Q + + k n *Q = (k 1 + k + k k n )*Q (7.0) The effective resistance coefficient is k eff = k 1 + k + k k n (7.1) i.e. the total head loss is the summation of the individual pipe. P.71
22 For pipes connected in parallel, the fluid can flow from one to the other by a number of alternative routines. Q Q1 Q Q3 Q Qn hf The head loss for individual pipe is the same as the total head loss. The total flow rate is the summation of the individual pipe. Since h f = k i *Q i or Q i = h k f i Hence Total Q = Q 1 + Q + Q Q n (7.) = hf + h f + h + + k1 k kf f 3 k n = ( 1 k k + 1 k ) 3 k n h f = hf keff 1 1 = k eff k k + 1 k k n (7.3) P.7
23 Worked examples: 1. Two reservoirs are connected by a pipeline which is 150 mm in diameter for the first 6 m and 5 mm in diameter for the remaining 15 m. The water surface in the upper reservoir is 6 m above that in the lower. By neglecting any minor losses, calculate the rate of flow in m3/s. Friction coefficient f is 0.04 for both pipes. Answer The velocities v 1 and v are related by the continuity equation. i.e. A 1 v 1 = A v v 1 A = v d = v A d 1 5 = v =.5 v 150 Friction in the 150 mm pipe h f1 = f1 L1 v1 = 004. * 6 v d g 015. g 1 = 1.6 v 1 = 1.6*.5 * v g g Similarly, friction in the 5 mm pipe h f = = f L d v g * 15v 0. 5 g = 8.1 v g =.67 v g Hence, total head loss = h f1 + h f = v g Applying Bernoulli s equation between the two top water surfaces, p 1 = p = 0 (P atm ) v 1 = v = 0 (water surfaces) z 1 = 6 m; z = 0 p1 v1 p v + + z1 = + + z +h L γ g γ g P.73
24 or z 1 z = h L 6 = v g or v = 6* * = 3.31 m/s Hence Q = A v = π *. 0 5 * 331. m 3 /s 4 = 0.13 m 3 /s P.74
25 . Two reservoirs have a difference of level of 6 m and are connected by two pipes laid in parallel. The first pipe is 600 mm diameter of 3000 m long and the second one is 300 mm diameter of 000 m long. By neglecting all the minor losses, calculate the total discharge if f = 0.04 for both pipes. Answer For parallel pipes, h f = 1 1 = f L d 1 v1 g f L d v g Apply Bernoulli s equation to the points on the free surfaces and from the result of the previous worked example, level difference = head loss f1 L1 v1 f L H = = d g d 6 = * 3000 v 06. * v g = * 000 v 03. * 981. Therefore, v 1 = m/s v = m/s Hence Q 1 = A 1 v 1 = π * 06. * Q = A v = π *. 03 * = 0.17 m 3 /s = m 3 /s Total discharge, Q = Q 1 + Q = m 3 /s = 0.64 m 3 /s P.75
26 7.5. Branchedpipe Problem h1 reservoir 1 pipe1, k1 h3 Q1 Q3 reservoir 3 pipe 3, k3 J Q pipe, k reservoir h Assume h 1 > h > h 3 and the 3 pipes intersect at junction J. As h 1 is the highest head, the flow in pipe 1 must be toward J. As h 3 is the lowest head, Q 3 is flowing from J to the reservoir 3. The flow Q s direction is unknown because it depends on the head at junction J. If h J be the head at junction J. There are two possible cases (i) h 1 > h J > h, or (ii) h > h J > h 3 For case (i), h 1 > h J > h, Q is from J to reservoir. Q 1  Q  Q 3 = 0 h 1 h J = k 1 *Q 1 h J  h = k *Q h J  h 3 = k 3 *Q 3 (7.4) For case (ii), h > h J > h 3, Q is from reservoir to J. Q 1 + Q  Q 3 = 0 h 1 h J = k 1 *Q 1 h h J = k *Q h J  h 3 = k 3 *Q 3 (7.5) P.76
27 Both sets of equations have 4 unknowns Q 1, Q, Q 3 and h J. We have to determine which case controls the problem. It is determined by assuming h J = h, i.e. no flow from J to reservoir. Therefore Q 1 = Q 3 = h h h k 1 1 h k 3 3 (7.6) (7.7) If Q 1 > Q 3, Q is from J to reservoir  case (i). If Q 1 < Q 3, Q is from reservoir to J  case (ii). P.77
28 Worked example: Three reservoirs are connected as the figure below. Determine the flow, Q 1, Q and Q 3 with k 1 = 3.058, k = and k 3 = s /m 5 and h f = k i *Q i. reservoir 1 00m Q1 J Q reservoir 140m reservoir 3 Q3 180m Answer Step 1 Pipe h i (m) k i (s /m 5 ) Step  calculate Q 1 and Q 3 Q 1 = h 1 h k 1 = =.557 m 3 /s Q 3 = h h k 3 3 = = m 3 /s Q 1 < Q 3 case (ii) i.e. h > h > h 3 P.78
29 Step 3  set up the equations For case (ii), we have 00  h = 3.058Q 1 00 h or Q 1 = m 3 /s h = 8.860Q 180 h or Q = m 3 /s h = 0.403Q 3 h 140 or Q 3 = m 3 /s Since Q 1 + Q  Q 3 = 0 therefore 00 h 180 h h = 0 Step 4  solve for h (180 < h < 140) by iterations h (m) Q 1 + Q + Q 3 (m 3 /s) Error Therefore, the head h at the junction is m and Q 1 = 3.9 m 3 /s (towards J) Q = m 3 /s (towards J) Q 3 = m 3 /s (towards reservoir C) P.79
30 7.5.3 HardyCross Method (Reference only) water in loop 1 loop loop 3 water out loop 4 loop 5 loop 6 The supply of water system to a city is a complicated network of pipelines. The commonly used technique is the HardyCross method. The two assumptions made by HardyCross method are: The algebraic sum of head loss around each loop must be zero ve 3 h 14 + h 43  h 3  h 1 = 0 (7.8) The net flow out of each junction must be equal to zero Q 17 + Q 47  Q 76  Q 75  Q 7  Q 73 = 0 (7.9) P.730
31 Method of Analysis Assume h i = k i *Q i The sign convention is clockwise positive for the discharge and head loss. Initially a flow rate, Q is assumed. A correction for discharge, Q is then evaluated and the new flow rate is Q + Q. the head loss for each member can be approximated as h i = k i *(Q i + Q) = k i *[Q i + Q i Q + ( Q) ] k i *Q i + k i *Q i * Q Summation around the loop Σ h i = Σ[k i *Q i + k i *Q i * Q] = 0 (by assumption 1) i.e. Σh i + Q*Σ(h i / Q i ) = 0 hence Q = 1 Σhi h Σ( i Q ) i (7.30) Σh i is the sum of head loss around a loop which can be +ve or ve. Σ(h i / Q i ) is the sum of the ratio (head loss/flow) for each member of the loop. The ratio is a magnitude and therefore is +ve only. Q is the correction flow for a loop. Each pipe within the loop will have this correction. Any pipe belonging to or more loops, the correction for that particular pipe will contribute from every loop. P.731
32 Worked examples: 1. Determine the flow in each branch of the loop as shown below by using (i) equivalent pipe method, and (ii) HardyCross method. 3 m /s pipe 1, k 3 m /s Q1 Q pipe, k Answer (i) As a parallel system h f1 = h f k*q 1 = k*q or Q 1 = Q As Q = m 3 /s, = Q 1 + Q = Q + Q (1+ )Q = Q = m 3 /s Q 1 = Q = *0.884 = m 3 /s P.73
33 (ii) Assume Q 1 = 1.5 m 3 /s Q = 0.5 m 3 /s 3 m /s 1.5m 3 /s +ve 3 m /s 0.5m 3 /s 1 st iteration Pipe k i Q i ±h i abs(h i /Q i ) Σ = nd iteration Q = 1 Σhi h Σ( i Q ) i 175. =  m 3 /s * 5. = m 3 /s Pipe k i Q i ±h i abs(h i /Q i ) Σ = Q = m 3 /s * 85. = m 3 /s P.733
34 3 rd iteration Pipe k i Q i ±h i abs(h i /Q i ) Σ = Q =  m 3 /s *. 865 = m 3 /s Q 1 = m 3 /s Q = m 3 /s (after 3 iterations) P.734
35 . Find the flow in the pipeline using Hardy Cross Method. K for vertical members are 3 and horizontals are 5. Answer 3 0.5m /s 300m 00mm Assume the flow rates are A 500m 00mm B 500m 00mm 300m C 00mm 300m 00mm D 500m E 500m F 00mm 00mm 0.1m 3 /s 0. m 3 /s 3 0.m /s 3 0.5m /s m /s 0.05m /s A B C 0.3 m 3 /s m /s 3 3 D 0. m /s E 0.15m /s F m /s 1 st Iteration 0.1m 3 /s 0. m 3 /s 3 0.m /s Pipe k i Q i ±h i Abs(h i /Q i ) AB BE DE AD BC CF EF BE Q 1 = * 335. Q = 016. *. 16 = 0.03 m 3 /s = 0.05 m 3 /s P.735
36 nd Iteration Pipe k i Q i ±h i Abs(h i /Q i ) AB BE DE AD BC CF EF BE Q 1 = * Q = * = m 3 /s = m 3 /s 3rd Iteration Pipe k i Q i ±h i Abs(h i /Q i ) AB BE DE AD BC CF EF BE Q = * Q = * = m 3 /s = m 3 /s P.736
37 4th Iteration Pipe k i Q i ±h i Abs(h i /Q i ) AB BE DE AD BC CF EF BE Q 1 = * Q = * = m 3 /s = m 3 /s 5th Iteration Pipe k i Q i ±h i Abs(h i /Q i ) AB BE DE AD BC CF EF BE Q 1 = * Q = * =.*105 m 3 /s = 4.6*105 m 3 /s Therefore OK P.737
38 Therefore, the flow rates after five iterations will be given by 3 0.5m /s m /s m /s A B C 0.6 m 3 /s m /s 3 3 D 0.16 m /s E 0.09m /s F m /s 0.1m 3 /s 0. m 3 /s 3 0.m /s P.738
39 Class Exercise 7.1: A steady push on the piston causes a flow rate of 0.4 cm 3 /s through the needle. The fluid has S.G. = 0.9 and µ = 0.00 Ns/m. Determine the head loss at the needle and hence the force F required to maintain the flow. Neglect the head loss in the piston only. (F = 0.01 kn) D=1cm Q D=0.5mm F 1.5cm 3cm P.739
40 Class Exercise 7.: Oil, with density = 900 kg/m 3 and ν = 1*105 m /s, flows at 0. m 3 /s through a 0cm diameter pipe 500 m long castiron pipe. The roughness of iron is 0.6 mm. Determine the head loss in the pipe. (h f = 117 m) P.740
41 Class Exercise 7.3: Water flows at a velocity of 1 m/s in a 150 mm new ductile iron pipe. Estimate the head loss over 500 m using DarcyWeisbach equation. (ε = 0.6 mm and µ = 103 Ns/m ). (h f = 4.04 m) P.741
42 Class Exercise 7.4: The distance between two sections A and B of a 300 mm diameter pipe is 300 m. The elevations of A and B are 90 m and 75 m and the pressures are 80 kpa and 350 kpa respectively. Find the direction of flow of water and calculate the head loss due to friction and the value of the friction factor for the pipe if the flow is 14 L/s. (A to B, h = 7.87 m, f = ) P.74
43 Class Exercise 7.5: Three pipes A, B & C are interconnected and discharge water from a reservoir as shown below. With the provided pipe characteristics, determine the flow rate in each pipe. Neglect all the minor loss. Pipe Diameter, Length, f mm m A B C (Q A = m 3 /s, Q B = m 3 /s, Q c = m 3 /s) P.743
44 Tutorial: Steady Pipe Flow 1. Glycerine of viscosity 0.9 Ns/m and density 160 kg/m 3 is pumped along a horizontal pipe 6.5 m long of diameter d = 0.01 m at a flow rate of Q = 1.8 L/min. Determine the flow Reynolds number and verify whether the flow is laminar or turbulent. Calculate the pressure loss in the pipe due to frictional effects.. If oil (ν = 4*105 m /s, S.G. = 0.9) flows from the upper to the lower reservoir at a rate of 0.08 m 3 /s in the 15cm smooth pipe, determine the elevation of the oil surface in the upper reservoir. (K for entrance, exit and bend are 0.5, 1 and 0.19 respectively) 60m 130mPD 7m 130m 3. Two reservoirs having a difference of surface level of 4 m are connected by two parallel pipes each 1600 m long and of diameters 450 mm and 300 mm. To repair a length of 10 m of the 450 mm diameter pipe midway between the reservoirs, the total flow is diverted over this length to the 300 mm pipe. Calculate the percentage reduction in discharge resulting from the diversion. Consider only the friction losses and take f = mm 450mm 1600m 4m 300mm 450mm 10m 300mm 450mm 4m 300mm P.744
Hydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey
More informationSTEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY
STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationPIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.
PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are  Pipe and tubing standards  Effective and hydraulic
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the
More informationViscous Flow in Ducts
Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More information1Reynold s Experiment
Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationChapter 10 Flow in Conduits
Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear
More informationLECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS
LECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationWater Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:
Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationρg 998(9.81) LV 50 V. d2g 0.062(9.81)
6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm in diameter. Estimate the flow rate, in m 3 /h, if the fluid is water at 0 C. Which way is the flow? Solution: For water, take ρ = 998 kg/m
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More informationCalculation of Pipe Friction Loss
Doc.No. 6122F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationChapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh
Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar
More informationPROPERTIES OF FLUIDS
Unit  I Chapter  PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pas To find : Shear stress. Step  : Calculate the shear stress at various
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationOE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004
OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie
More informationBernoulli and Pipe Flow
Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationPIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.
PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.
Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationLAMINAR FLOW (Reynolds < 2320, parabolic velocity profile) Name symbol formula unit gravity g L L
file: Fluid Flow Calculator equations 14.pdf fro: Mark van Dijk revision: DEC 01 LAMINAR FLOW (Reynolds < 30, parabolic velocity profile) Nae sybol forula unit gravity g 9. 81 pipe length L elevation change
More informationPipe Flow/Friction Factor Calculations using Excel Spreadsheets
Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More information2, where dp is the constant, R is the radius of
Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a onedimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.
More informationEngineers Edge, LLC PDH & Professional Training
510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 2666915 fax (678) 6431758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe FlowFriction Factor
More informationτ du In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous forces compare and what changes take place.
4. Real fluids The flow of real fluids exhibits viscous effect, that is they tend to stick to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons law
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationFLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10
Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationCIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University
CIVE 401  HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationFLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE
11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate
More informationChapter (4) Motion of Fluid Particles and Streams
Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.
More informationF L U I D S Y S T E M D Y N A M I C S
F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include
More informationACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES
ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for
More informationHydraulic Design Of Polyethylene Pipes
Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationChapter 3 Water Flow in Pipes
The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics  ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More information6. Basic basic equations I ( )
6. Basic basic equations I (4.24.4) Steady and uniform flows, streamline, streamtube One, two, and threedimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationFluid Mechanics Answer Key of Objective & Conventional Questions
019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
More informationSENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS)
SENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS) ATLANTIC INTERNATIONAL UNIVERSITY INTRODUCTION Real fluids The flow of real fluids exhibits viscous effect, which are they tend
More informationIntroduction to Fluid Flow
Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow
More informationAn overview of the Hydraulics of Water Distribution Networks
An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationFRICTION LOSS ALONG A PIPE
FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationLecture 4. Lab this week: Cartridge valves Flow divider Properties of Hydraulic Fluids. Lab 8 Sequencing circuit Lab 9 Flow divider
91 Lecture 4 Lab this week: Lab 8 Sequencing circuit Lab 9 Flow divider Cartridge valves Flow divider Properties of Hydraulic Fluids Viscosity friction and leakage Bulk modulus Inertance Cartridge Valves
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationLECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:
LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More informationHydraulic (Piezometric) Grade Lines (HGL) and
Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More informationFLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL
FLUID MECHANICS Gaza Chapter CHAPTER 44 Motion of Fluid Particles and Streams Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce concepts necessary to analyze fluids in motion. Identify differences
More informationUNIT II CONVECTION HEAT TRANSFER
UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid
More informationThe Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz
Solid State Phenomena Vol. 113 (2006) pp 603608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics
More informationP & I Design Limited. 2 Reed Street, Gladstone Industrial Estate, Thornaby, TS17 7AF. Tel: +44 (0) Fax: +44 (0)
ump Sizing & Rating USER MANUAL & I Design Limited Reed Street, Gladstone Industrial Estate, Thornaby, TS7 7AF. Tel: +44 (0) 64 67444 Fax: +44 (0) 64 66447 www.pidesign.co.uk Support: sales@pidesign.co.uk
More informationA Model Answer for. Problem Set #7
A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above
More informationMicrofluidics 1 Basics, Laminar flow, shear and flow profiles
MT0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,
More informationEXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS
MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:
More informationConvective Mass Transfer
Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface
More informationLOSSES DUE TO PIPE FITTINGS
LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall
More informationReference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical
1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,
More information