When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).


 Scott O’Connor’
 10 months ago
 Views:
Transcription
1 PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation: PA A PB B + + za + + zb + h ρg g ρg g I pipe diameter is the same, the velocity remain constant along the pipe. A B I the height is the same, the potential energy can be neglected. za zb z
2 Pressure drop could be determine as: + g g D h g P P B A ρ where is a riction actor, and need to be determine.for laminar low, Re 64 For turbulent low, need to be determined using Moody chart The relative pipe roughness, D ε need to be measured.
3 COEBROOWHITE EUATION This is an equation to ind the value o riction actor,, or turbulent low. log 0 ε D Re D ε Re Darcy riction actor, dimensionless Inside diameter o pipe in meter Pipe surace roughness in meter Reynolds number, dimensionless From this equation, Moody chart was developed. Moody chart consist three (3) major parts;. aminar region. Transition region 3. Turbulent region
4
5 aminar region The value o riction actor is proportional with Reynolds number. 64 Re A straight line could be plotted on the Moody chart. Transition region Friction will be aected with Reynolds number and internal pipe roughness. Complete turbulent region log 0 ε D Re From equation above, high Reynolds number could lead to a very small value. It is means that only internal pipe surace roughness would inluence the riction value. In Moody chart, the graph line would become a horizontal straight line.
6 Example Water lows through mm pipeline. It has 4.55 mm wall thickness. Flowrate is.36 m 3 /min. Assuming a pipe roughness o mm, calculate the riction actor and head loss due to riction in 305 m o pipe length. Flowrate,.36 m 3 /min 0.89 m 3 /s Inner diameter (9.55) mm mm ρd 5 Re μ ε D From Moody chart, 0.05 PA PB ρg D g.54 (m) P A P B 5. kpa
7 Example A concrete pipe, m inside diameter, is used to transport water rom a pumping acility to a storage tank 5km away. Neglecting any dierence in elevations, calculate the riction actor and pressure loss due to riction at a low rate o 34,000m 3 /h. Assume a pipe roughness o 0.05mm. I a delivery pressure o 4kPa must be maintained at the delivery point and the storage tank is at an elevation o 00m above that o the pumping acility, calculate the pressure required at the pumping acility at the given low rate, using the Moody chart.
8 HAZENWIIAMS EUATION A more popular approach to the calculation o head loss in water piping systems is the use o the HazenWilliams equation. In this method a coeicient C known as the HazenWilliams C actor is used to account or the internal pipe roughness o eiciency. Unlike the Moody chart or the ColebrookWhite equation, the HazenWilliams equation does not require use o the Reynolds number or viscosity o water to calculate the head loss due to riction. The HazenWilliams equation or head loss is expressed as ollows: For SI unit: h D C.85 h Frictional head loss in m ength o pipe in m D Inside diameter o pipe in m Flow rate in m 3 /s C HazenWilliams C actor or roughness coeicient, dimensionless.
9 For British unit: h D C.85 h Frictional head loss in t ength o pipe in t D Inside diameter o pipe in t Flow rate in t 3 /s C HazenWilliams C actor or roughness coeicient, dimensionless. Note: Above equation can be rearrange a ollows: S h where S is the hydraulic slope
10 Commonly used values o the HazenWilliams C actor or various applications. Pipe material C actor Smooth pipes (all metal) Cast iron (old) 00 Iron (worn/pitted) Polyvinyl chloride (PC) 50 Brick 00 Smooth wood 0 Smooth masonry 0 itriied clay 0
11 MANNING EUATION The Manning equation was originally developed or use in open channel low o water. It is also sometimes used in pipe low. The Manning equation uses the Manning index, n or roughness coeicient. For SI unit: AR n 3 h Flow rate, m 3 /s A cross sectional area o pipe, m R hydraulic radius (D/4 or circular pipes lowing ull) n Manning index, or roughness coeicient, dimensionless D Inside diameter o pipe, m h Friction loss, m ength o pipe, m
12 For British unit:.486 AR n 3 h Flow rate, t 3 /s A cross sectional area o pipe, t R hydraulic radius (D/4 or circular pipes lowing ull) n Manning index, or roughness coeicient, dimensionless D Inside diameter o pipe, t h Friction loss, t ength o pipe, t Example o Manning index Pipe material Resistance actor PC ery smooth 0.00 Cementlined ductile iron 0.0 New cast iron, welded steel 0.04 Old cast iron, brick 0.00 Badly corroded cast iron Wood, concrete 0.06 Clay, new riveted steel 0.07 Canals cut through rock Earth canals average condition 0.03 Rivers in good conditions 0.030
13 MINOR OSSES Minor losses in a water pipeline are classiied as those pressure drops that are associated with piping components such as valves and itting. There are included: Elbow and tees Pipe diameter enlargement / reduction Nozzle Entrance / exit losses They are relatively small compared to riction loss in a straight length o pipe. Minor loss g Where is a resistance actor. It must be noted that this way calculating the minor losses is valid only in turbulent low. No data are available or laminar low. Some engineers use the equivalent length to determine minor losses.
14
15
16
17 SIMPIFICATION OF MAJOR OSS CACUATION Head loss due to riction; g D h From continuity equation, D A 4 π 4 D π 4 6 D π Head loss equation can be written as: 5 6 g D g D h π h Usually, or turbulent low, h
18 Major losses in series pipe Flow rate is constant A B C Major losses keep increasing h h A + h B + h C ( + + ) A B c
19 Major losses in parallel pipe Flow rate is constant at inlet and outlet (only) A B However, low rate or pipe, and 3 are dierent. A B Major losses are constant or pipe, and 3. h h h h3
20 h h 3 B A h h h h
HEADLOSS ESTIMATION. Mekanika Fluida 1 HST
HEADLOSS ESTIMATION Mekanika Fluida HST Friction Factor : Major losses Laminar low HagenPoiseuille Turbulent (Smoot, Transition, Roug) Colebrook Formula Moody diagram SwameeJain 3 Laminar Flow Friction
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationUsed to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn StateHarrisburg
Module b: Flow in Pipes DarcyWeisbac Robert Pitt University o Alabama and Sirley Clark Penn StateHarrisburg DarcyWeisbac can be written or low (substitute V Q/A, were A (π/4)d in te above equation):
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationSTEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY
STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationBernoulli and Pipe Flow
Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems
More informationF L U I D S Y S T E M D Y N A M I C S
F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More information12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer.
1d Model Civil and Surveying Sotware Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 04 June 007 Revised: 3 August 007 (V8C1i) 04 February 008 (V8C1p)
More informationImproved Method for Converting Equivalent Sandgrain Roughness to HazenWilliams Coefficient
Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 119 OI: 10.11159/htff16.119 Improved Method for Converting
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationFLUID FLOW. Note that the balance is per unit mass. In differential form:
Mechanical Energy Balance FLUI FLOW gδz ρ V Δ Wo F potential expansion ketic work added/ sum o energy work energy change subtracted by riction change pumps or losses compressors Note that the balance is
More informationSizing of Gas Pipelines
Sizing of Gas Pipelines Mavis Nyarko MSc. Gas Engineering and Management, BSc. Civil Engineering Kumasi  Ghana mariiooh@yahoo.com AbstractIn this study, an effective approach for calculating the size
More informationAn overview of the Hydraulics of Water Distribution Networks
An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationUniform Channel Flow Basic Concepts. Definition of Uniform Flow
Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationHYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS  Vol. I Fluid Mechanics in Pipelines  D. Stephenson
FLUID MECHANICS IN PIPELINES D. Stephenson Water Utilisation Division, University of Pretoria, Pretoria, South Africa Keywords: Flow, turbulence, pipelines, water hammer, headloss, friction, waterworks,
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationBasic Hydraulics. Rabi H. Mohtar ABE 325
Basic Hydraulics Rabi H. Mohtar ABE 35 The river continues on its way to the sea, broken the wheel of the mill or not. Khalil Gibran The forces on moving body of fluid mass are:. Inertial due to mass (ρ
More informationPipe Flow/Friction Factor Calculations using Excel Spreadsheets
Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction
More informationOpen Channel Hydraulics I  Uniform Flow
PDHonline Course H138 (2 PDH) Open Channel Hydraulics I  Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax:
More informationFluid Mechanics II 3 credit hour. Fluid flow through pipesminor losses
COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipesminor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular
More informationIntroduction to Fluid Flow
Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow
More informationTopic 8: Flow in Packed Beds
Topic 8: Flow in Packed Beds Class Notes  Chapter 6.4 (Transport Phenomena) Friction factor correlations are available for a variety of systems. One complex system of considerable interest in chemical
More information(British) (SI) British Metric L T [V] = L T. [a] = 2 [F] = F = 2 T
Hydraulics ecture # CWR 40 age () ecture # Outline: Review of terminology in fluid mechanics: Energy or work Hydraulic head Bernoulli s aw, Conductivity (examle) ransient & turbulent Friction head loss
More informationPressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.
Design Manual Chapter  Stormwater D  Storm Sewer Design D Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm
More informationPressure and Flow Characteristics
Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to
More informationTRANSIENT SIMULATION OF LIQUID ROCKET ENGINES: A STEP TOWARDS A MORE EDUCATED PROPELLANT CHOICE BETWEEN KEROSENE AND METHANE.
TRANSIENT SIMULATION OF LIQUID ROCKET ENGINES: A STEP TOWARDS A MORE EDUCATED PROPELLANT CHOICE BETWEEN KEROSENE AND METHANE Chiara Manletti Space Launcher Systems Analysis (SART), DLR, Cologne, Germany,
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationFrictional Losses in Straight Pipe
2/2/206 CM325 Fundamentals of Chemical Engineering Laboratory Prelab Preparation for Frictional Losses in Straight Pipe Professor Faith Morrison Department of Chemical Engineering Michigan Technological
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationUniversität DuisburgEssen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi
1 Universität DuisburgEssen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement
More informationHydraulic (Piezometric) Grade Lines (HGL) and
Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationHomework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet
Problem 1 Water enters the rotating sprinkler along the axis of rotation and leaves through three nozzles. How large is the resisting torque required to hold the rotor stationary for the angle that produces
More informationChapter 3 NATURAL CONVECTION
Fundamentals of ThermalFluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGrawHill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGrawHill Companies,
More informationThe Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz
Solid State Phenomena Vol. 113 (2006) pp 603608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics
More informationLecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationExperimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers
Proceedings of Fifth International Conference on Enhanced, Compact and UltraCompact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering
More informationGas Pipeline Hydraulics: Pressure Drop
COURSE NUMBER: ME 423 Fluids Engineering Gas Pipeline Hydraulics: Pressure Drop Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 FLOW EQUATIONS Several equations
More informationLecture 30 (Walker: ) Fluid Dynamics April 15, 2009
Physics 111 Lecture 30 (Walker: 15.67) Fluid Dynamics April 15, 2009 Midterm #2  Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68)
More informationFluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food
Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature
More informationUnderstand How Valves & Fittings Affect Head Loss
Understand How Valves & Fittings Affect Head Loss by Ray Hardee (Engineered Software, Inc.) This column discusses valves and fittings and evaluates how these devices affect the operation of piping systems.
More informationFRICTION LOSS ALONG A PIPE
FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates
More informationADVANCED WATER DISTRIBUTION MODELING AND MANAGEMENT
ADVANCED WATER DISTRIBUTION MODELING AND MANAGEMENT Authors Thomas M. Walski Donald V. Chase Dragan A. Savic Walter Grayman Stephen Beckwith Edmundo Koelle Contributing Authors Scott Cattran, Rick Hammond,
More informationRelationship between HazenWilliam coefficient and ColebrookWhite friction factor: Application in water network analysis
European Water 58: 513520, 2017. 2017 E.W. Publications Relationship between HazenWilliam coefficient and ColebrookWhite friction factor: Application in water network analysis M. Niazkar 1, N. Talebbeydokhti
More informationExperiment No.4: Flow through Venturi meter. Background and Theory
Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters
More informationForced Convection: Inside Pipe HANNA ILYANI ZULHAIMI
+ Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent
More informationUse of a smoothed model for pipe friction loss
Use of a smoothed model for pipe friction loss Bradley J. Eck, M.ASCE Please cite this as: Eck, B. (2016). Use of a Smoothed Model for Pipe Friction Loss. J. Hydraul. Eng., 10.1061/(ASCE)HY.19437900.0001239,
More informationwhere = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system
The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationChapter 8 Laminar Flows with Dependence on One Dimension
Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low HeleShaw low Poiseuille low Friction actor and Reynolds number
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationPDHengineer.com Course O5001
Hengineer.com Course O500 Gas ipeline Hydraulics To receive credit for this course This document is the course text. You may review this material at your leisure either before or after you purchase the
More informationStage Discharge Tabulation for Only Orifice Flow
Stage Discharge Tabulation for Only Orifice Flow DEPTH STAGE DISCHARGE (meters) (feet) (meters) (feet) (m 3 /s) (ft 3 /s) 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.7 1.3 2.0 2.6 3.3 3.9 4.6
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationReference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical
1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,
More informationK n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )
III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions  turbulent : R > 2200
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationTest bench of head losses in incompressible flow
Test bench of head losses in incompressible flow João Paulo da Silva Pelaio Coelho de Moura* *Department of Mechanical Engineering, Instituto Superior Técnico Av. Rovisco Pais, 1049001 Lisbon, Portugal
More informationDarcy's Law. Laboratory 2 HWR 531/431
Darcy's Law Laboratory HWR 531/4311 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify
More informationAPPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
More informationTransport Properties: Momentum Transport, Viscosity
Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,
More informationReview for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa
Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHRHydroscience & Engineering, University
More informationFiltration. Praktikum Mechanical Engineering. Spring semester 2016
Praktikum Mechanical Engineering Spring semester 2016 Filtration Supervisor: Anastasia Spyrogianni ML F24 spyrogianni@ptl.mavt.ethz.ch Tel.: 044 632 39 52 1 1 Table of Contents 1 TABLE OF CONTENTS... 2
More informationCOMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATEFIN AND PINFIN HEAT SINKS IN NATURAL CONVECTION
HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATEFIN AND PINFIN HEAT SINKS
More informationPrinciples of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer
Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature
More informationChapter 7 Permeability and Seepage
Permeability and Seepage  N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow
More informationCdesign must consider (1) space availability, (2) space air diffusion,
Related Commercial Resources CHAPTER 35 DUCT DESIGN BERNOULLI EQUATION... 35.1 Head and Pressure... 35.2 SYSTEM ANALYSIS... 35.2 Pressure Changes in System... 35.5 FLUID RESISTANCE... 35.6 Friction Losses...
More informationLaboratory work No 2: Calibration of Orifice Flow Meter
Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring
More informationCONCEPTS Conservational Channel Evolution and Pollutant Transport System
CONCEPTS Conservational Channel Evolution and Pollutant Transport System Eddy J. Langendoen Watershed Physical Processes Research Unit National Sedimentation Laboratory USDA Agricultural Research Service
More informationNPTEL Course Developer for Fluid Mechanics DYMAMICS OF FLUID FLOW
Module 04; Lecture DYMAMICS OF FLUID FLOW Energy Equation (Conservation of Energy) In words, the conservation of energy can be stated as, Time rate of increase in stored energy of the system = Net time
More informationCHAPTER EIGHT P U M P I N G O F L I Q U I D S
CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid
More informationCalculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.
Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 201013th Conference on Process Integration, Modelling
More information1.060 Engineering Mechanics II Spring Problem Set 8
1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members
More information7/9/2013 TOPIC 2: FLOW IN PIPES AND CHANNELS OBJECTIVES FLOW REGIMES. laminar. turbulent
7/9/03 TOPIC : FOW IN PIPES N CHNNES OBJECTIVES. Calculate te friction factor for a pipe using te ColebrookWite equation.. Undertake ead loss, discarge and sizing calculations for single pipelines. 3.
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More information4 Mechanics of Fluids (I)
1. The x and y components of velocity for a twodimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in
More informationPredictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume3, Issue5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical
More information