Lecture 3 The energy equation


 Nigel Nichols
 1 years ago
 Views:
Transcription
1 Lecture 3 The energy equation Dr Tim Gough:
2 General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5 Week 6 Tuesday October October October October 2013 Friday October October October October 2013 Dr Tim Gough ENG 2038 M 2 J1 2 J2 Fluid Mechanics 2 Chesham Building C Can anyone not see Blackboard yet? Please see me at interval and I ll sort this out.
3 Lecture 2 recap Streamlines etc Flow classifications Viscous and inviscid flows Discharge and mean velocity Flow continuity Flow continuity problems
4 Lecture 2 recap Flow Classifications Conditions in a body of fluid can vary from point to point and, at any given point, can vary from one moment of time to the next. Flow is described as uniform if the velocity at a given instant is the same in magnitude and direction at every point in the fluid. If, at a given instant, the velocity changes from point to point, the flow is described as non uniform. A steady flow is one in which the velocity, pressure and cross section of the stream may vary from point to point but do not vary with time. If, at any given point, conditions do change with time, the flow is described as unsteady.
5 Lecture 2 recap Inviscid and viscous flows Velocity profiles for inviscid flow Velocity profiles for viscous flow
6 Lecture 2 recap Discharge and mean velocity V r r R r V a) Laminar flow b) Turbulent flow In many problems we simply assume a constant velocity equal to the mean velocity to give: /
7 Lecture 2 recap Mass continuity For a streamtube (no fluid crosses boundary): 1 2 Area = A 1 Velocity = V 1 Density = 1 Area = A 2 Velocity = V 2 Density = 2 Or for an incompressible fluid where 1 = 2 this reduces to:
8 Lecture 2 recap Examples Example 1 Branched pipes Example 2 Porous walls
9 Lecture 2 recap Examples Example 3 Surge tank Example 4 Turbojet engine
10 The energy equation
11 Mechanical energy of a flowing fluid B B Element of fluid will possess Potential Energy (PE) due to its height, z, above the datum. It possesses Kinetic Energy (KE) due to its velocity, v. Datum level z A mg A For an element of weight, mg. Potential energy = mgz Cross sectional area A Potential energy per unit weight = z Kinetic energy = Kinetic energy per unit weight =
12 Mechanical energy of a flowing fluid B B A steadily flowing stream of fluid can also do work because of its pressure. Datum level z A mg A Cross sectional area A At any given cross section the pressure generates a force and, as this cross section moves forward work will be done. If the pressure at a cross section AB is p and the area of the crosssection is A then: Force exerted on AB = pa After a weight mg of fluid has flowed along the streamtube, section AB will have moved to A B : Volume passing AB = mg/g= m/
13 Mechanical energy of a flowing fluid Therefore: B B Distance AA = m/a Datum level z A mg A Cross sectional area A And work done = force x distance AA = pa x m/a Work done per unit weight = p/g The term p/g is known as the flow work or the pressure energy. This can be viewed as a potential energy in transit. Bernoulli
14 Mechanical energy of a flowing fluid Each of these terms has the unit of a length, or head and are often referred to as the pressure head p/g, the velocity head v 2 /2g, the potential head, z and the total head, H. Between any two points, on a streamline, we can write these as: That is: Total energy per unit weight at 1 = Total energy per unit weight at 2
15 Mechanical energy of a flowing fluid For the flow of a single fluid undergoing no density changes (i.e. no compressibility and no chemical reaction) we can simplify further to: Bernoulli The term metres. The term metres. is known as the pressure head and has dimensions of is known as the velocity head and also has dimensions of
16 Bernoulli's theorem So looking at points 1 and 2 for this water flow (known as a Venturi meter). Q If fluid height at point 1 is 100mm and at point 2 it is 20mm and the velocity at point 1 is 2.5 m/s. What is the velocity at point 2???
17 Bernoulli's theorem p 1 = gh 1 p 2 = gh
18 Bernoulli's theorem V 1 = 2.5m/s h 1 = 0.1m h 2 = 0.02m g = 9.81m/s /
19 Benoulli s principle High pressure, low speed Accelerating flow Low pressure, high speed Decelerating flow
20 Bernoulli's theorem Fluids 1 lab revision Bernoulli can be used to take flowrate measurements in the field. In the Fluids 1 laboratory you performed measurements of flowrate using two techniques: a) Thin plate weir and b) Venturi meter. Both of these techniques use Bernoulli s principle to measure volumetric flowrate (or discharge). Both have no moving parts so are pretty much failsafe. Thin plate weir Venturi meter
21 Bernoulli's theorem Venturi meter So we use Bernoulli s principle which is simply another method of stating that energy is conserved. A Venturi meter is simply a pipe with a gradually converging section, with a narrow throat followed by a gradually diverging section. Venturi meter The energy per unit weight of a fluid is called the specific energy and has units of Joules / Newtons.!
22 Bernoulli's theorem Venturi meter Assuming conservation of energy and no density changes: Bernoulli Looking at a horizontal Venturi, z 1 = z 2 so:
23 Bernoulli's theorem Venturi meter Now we know that piezometers (the tubes!) measure static pressure difference through a head of fluid, h, at each location so: Where H is difference between heads at 1 and 2 And by mass continuity we can say:
24 Bernoulli's theorem Venturi meter 1 2 Substituting 2 into 1: 3 And then 3 into this: Gives:
25 Bernoulli's theorem Venturi meter Rearranging for v 2 : Since :
26 Bernoulli's theorem Venturi meter Now this assumes no energy losses, and we discovered that this was not truly accurate. We had to introduce the coefficient of discharge Cd (which you calculated).
27 Bernoulli's theorem Venturi meter So why did we have to introduce Cd? Where did the other energy go? Dissipated into heat and sound due to friction at the walls and the viscosity of the fluid. Thus we always get energy loss through flows, either due to friction or other head losses due to fittings, enlargements, contractions, bends, valves etc etc.
28 Energy equation In formulating this we assume that no energy has been supplied to, or taken away, from the fluid between points 1 and 2. However, energy could be supplied by introducing a pump, or energy could be lost by doing work against friction or in a machine such as a turbine. This we can expand Bernoulli s equation further: This is a form of the steady flow energy equation.
29 Energy equation Initial energy Energy supplied A Pump Final energy Energy loss Energy loss B So we accept that we lose energy to heat, sound etc as we flow through a system. We will be analysing this and quantifying these losses over the next few weeks. Clearly we can also put energy into the system (if necessary) through the use of, for example, a pump or a fan.
30 Energy equation example
31 Energy equation example A fire engine pump develops a head of 50 m, i.e. it increases the energy per unit weight of water passing through it by 50 N m N 1. The pump draws water from a sump at A (atmospheric pressure) through a 150 mm diameter pipe in which there is a loss of energy per unit weight due to friction of varying with the mean velocity u 1 in the pipe. The water is discharged through a 75 mm nozzle at C, 30 m above the pump, at the end of a 100 mm diameter delivery pipe in which there is a loss of energy per unit weight of. Calculate a) the velocity of the jet issuing from the nozzle at C and b) the pressure in the suction pipe at the inlet to the pump at B.
32 Energy equation example All energies are per unit weight If sump is large, v A = 0 and p A = 0 (atmospheric) p C = 0 (atmospheric), z 3 = = 32 m Loss in inlet pipe Loss in discharge pipe Energy supplied by pump = 50 m
33 Energy equation example Loss in inlet pipe Energy supplied by pump = 50 m Loss in discharge pipe Rearranging: Eqn. 1 From continuity of flow equation:
34 Energy equation example Substituting into equation 1: Eqn /
35 Energy equation example b) the pressure in the suction pipe at the inlet to the pump at B. Apply Bernoulli between A and B: Where z 2 = 2 m, / Thus: N/m 2 below atmospheric pressure
Lecture 2 Flow classifications and continuity
Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationChapter (6) Energy Equation and Its Applications
Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationChapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil  016 Chapter 4 DYNAMICS OF FLUID FLOW 41 Types of Energy 4 Euler s Equation 43 Bernoulli s Equation 44 Total Energy Line (TEL) and Hydraulic Grade Line
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More informationCHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.
More informationChapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationFLOW MEASUREMENT IN PIPES EXPERIMENT
University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner
More informationExperiment (4): Flow measurement
Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time
More information2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.
CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationFor example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:
Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing
More informationCEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.
CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines
More informationChapter Four fluid flow mass, energy, Bernoulli and momentum
41Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (41). Figure (41): the differential control volume and differential control volume (Total mass entering
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationChapter 7 The Energy Equation
Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationFundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationFLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics  The Bernoulli Equation
FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics  The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS  THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3
More informationCEE 3310 Control Volume Analysis, Oct. 10, = dt. sys
CEE 3310 Control Volume Analysis, Oct. 10, 2018 77 3.16 Review First Law of Thermodynamics ( ) de = dt Q Ẇ sys Sign convention: Work done by the surroundings on the system < 0, example, a pump! Work done
More informationWilliam В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.
William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory
More informationRate of Flow Quantity of fluid passing through any section (area) per unit time
Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationCOURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow
More informationLecture23. Flowmeter Design.
Lecture23 Flowmeter Design. Contents of lecture Design of flowmeter Principles of flow measurement; i) Venturi and ii) Orifice meter and nozzle Relationship between flow rate and pressure drop Relation
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationChapter 15B  Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 15B  Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National
More informationHOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION
AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional sprayguns operate by achieving a low pressure
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics
COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid
More informationMASS, MOMENTUM, AND ENERGY EQUATIONS
MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationLecture 30 (Walker: ) Fluid Dynamics April 15, 2009
Physics 111 Lecture 30 (Walker: 15.67) Fluid Dynamics April 15, 2009 Midterm #2  Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68)
More information2 NavierStokes Equations
1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1
More informationBERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 5: Application of Bernoulli Equation 4/16/2018 C5: Application of Bernoulli Equation 1 5.1 Introduction In this chapter we will show that the equation of motion of a particle
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More informationFlow Measurement in Pipes and Ducts COURSE CONTENT
Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.
More informationThe most common methods to identify velocity of flow are pathlines, streaklines and streamlines.
4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,
More informationSignature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationCH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.
Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil
More informationPhysics 123 Unit #1 Review
Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics
More informationChapter 11  Fluids in Motion. Sections 79
Chapter  Fluids in Motion Sections 79 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that
More informationExperiment No.4: Flow through Venturi meter. Background and Theory
Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationAngular momentum equation
Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:
More informationLecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationB.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I
Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00
More informationEXPERIMENT NO: F5. Losses in Piping Systems
SJSU ME115  THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationIn which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.
bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationCALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018
CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis
More informationHYDRAULICS 1 (HYDRODYNAMICS) SPRING 2005
HYDRAULICS (HYDRODYNAMICS) SPRING 005 Part. FluidFlow Principles. Introduction. Definitions. Notation and fluid properties.3 Hydrostatics.4 Fluid dynamics.5 Control volumes.6 Visualising fluid flow.7
More informationAnNajah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 AnNajah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
More informationRecap: Static Fluids
Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid
More informationThe Bernoulli Equation
The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider
More information3.8 The First Law of Thermodynamics and the Energy Equation
CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and
More informationIntroduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  09 Introduction to Reaction Type of Hydraulic
More informationEXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH
EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED
More informationBRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet
Exp. Title FLUID MECHANICS I LAB Syllabus FMI Semester4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More information1Reynold s Experiment
Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure
More informationChemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017
Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES
ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for
More informationMAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.)
MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS I LAB MANUAL Prepared By Prof. L. K. Kokate Lab Incharge Approved By Dr.
More informationMAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL
MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS LABORATORY MANUAL Prepared By Mr. L. K. Kokate Lab Incharge Approved By
More information3.25 Pressure form of Bernoulli Equation
CEE 3310 Control Volume Analysis, Oct 3, 2012 83 3.24 Review The Energy Equation Q Ẇshaft = d dt CV ) (û + v2 2 + gz ρ d + (û + v2 CS 2 + gz + ) ρ( v n) da ρ where Q is the heat energy transfer rate, Ẇ
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationPressure in a fluid P P P P
Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all oddball states of matter We
More informationPredictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume3, Issue5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical
More informationequation 4.1 INTRODUCTION
4 The momentum equation 4.1 INTRODUCTION It is often important to determine the force produced on a solid body by fluid flowing steadily over or through it. For example, there is the force exerted on a
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More information10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More informationFLUID MECHANICS AND HEAT TRANSFER
AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN
More informationIn steady flow the velocity of the fluid particles at any point is constant as time passes.
Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More information