Q1 Give answers to all of the following questions (5 marks each):


 Bruno Armstrong
 2 years ago
 Views:
Transcription
1 FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored in fresh water by one end and the water level is m above the middle of the cylinder. Find the tension of the mooring cable. When the cylinder is submerged to the middle, the tension is zero (σ = 0.5). Additional buoyancy due to further submerging is compensated by the cable tension: T = ρ g π d 4 l = 000 kg/m3 9.8 m/s π m m 7700 N 4 (b) A Pitotstatic tube is place in an air flow (ρ =.3kg/m 3 ). A connected manometer shows pressure difference 0mm of water. Whats is velocity of the flow? Using Bernoulli s equation for a stagnation point we can write: P + ρ a U = P 0 U = P/ρ a. The pressure reading is in mm of water, that is P = ρ w g h. Then U = ρ w g h ρ a and U = (000/.3) 9.8 m/s m = 7.4 m/s (c) A mm space between two parallel plates is filled with viscous fluid. One plate is moving with velocity m/s. Find the mean velocity of the flow between the plates and the flow rate if plates width is 0cm. The velocity profile is linear, and the mean velocity is the average between velocities on the walls: U = 0.5 m/s. The flow rate is Q = a b U = 0 3 m 0. m 0.5 m/s = 0 4 m 3 /s (d) Water (µ = 0 3 Pa s) flows through a pipe of 5mm in diameter with mean velocity 0.m/s. Can the formula f = 6/Re be applied to calculate the friction factor for this flow?
2 Reynolds number of the flow: Re = ρ V d µ = 000 kg/m3 0. m/s m 0 3 P a s = 000. Re < 000 flow is laminar and we can use formula f = 6/Re for calculating the friction coefficient. (e) A lock gate is m high and 3m wide. It can rotate around a vertical hinge at one side. Calculate the maximal force applied to the gate by water, and maximal moment about the hinge. Maximal possible depth is h = m, the maximal pressure is P = ρ g h, for the triangular distribution the total load is F = P A = ρ g h b = 000 kg/m3 9.8 m/s m 3 m = N. The load is applied in the middle of the width, therefore the moment about the vertical axis is: M = F b/ = N.5 m = 8890 N m (f) Calculate the minimal head of the pump required to pump m 3 of water per second to the height 0m trough a pipe with cross section area 0.m. Assume constant friction coefficient f = 0.0 and neglect all losses in fittings. The pump head is the gravity head plus losses, which can be found by Darcy s equation and are minimal when the pipe is vertical: H = 0 m H = Z + h = Z + 4 f L d Q g A 0 m ( m 3 /s) 9.8 m/s (0. m ) = m Q A tank 900mm square in plain is filled with water and is drained via a 60mm diameter pipe, 6m in length. The pipe has two bends along its length with head loss coefficients k = 0.6 each, and for the entry of the pipe k = 0.5. The outlet of the pipe is 30mm below the level of the base of the tank (Fig. ). The value of a friction factor f = can be assumed constant.. What is the depth h of water in the tank when the rate of flow through the pipe is 7 liters per second? [7 marks]
3 . How fast the pressure at the bottom of the tank changes for this value of h? [6 marks] 3. What is the value of the flow rate when the tank is half empty? [5 marks] 4. Justify application of steadyflow equations to this problem. [ marks] A. Z 30 mm h K = 0.5 K = 0.6 a K = 0.6 Fig.. Steady flow energy equation along : Z Q a g = ( 4 f L d + K Σ ) Q a g, where a is the pipe cross section area, K Σ = i K i is the sum of all loss coefficients, and Z(t) is the the height of the water surface in the tank above the outlet at time t. For Z(t) we have ( Z = + K Σ + 4 f L ) Q d a g, and when Q = 7 l/s the value of Z is: Z = ( m 0.06m ) 7 6 m6 0 s m π s m =.843m, 4 and the corresponding depth h = =.63m.. The flow rate can be expressed via the rate of change of water level as: Q = A dh dt, 3
4 where A is the area of the water surface in the tank. Bottom pressure is P = ρ g h and it changes with the rate dp dt = ρ g dh dt = ρ g Q A m3 kg = 000 m 9.8m s = 84.8 P a 3 s 0.9 m s 3. Z Q Z = Q Z Q = Q Z Q Z 4. a A Z Z =.63/ = 0.56; Q = 7 l/s 0.56 = 5.4 l/s Q3 A liquid with σ =.5 flows from a 50mm diameter pipe A through an abrupt enlargement into a 00mm diameter pipe B, the two pipes being coaxial and horizontal. At some distance downstream of the enlargement in pipe B is a Pitot tube which is facing upstream and connected to one limb of a vertical Utube manometer containing mercury of relative density The other limb of the manometer is connected to a static pressure hole in the wall of pipe A. Neglecting frictional effects at the pipe walls, calculate the mass flow rate of the liquid when the difference in manometer levels h = 46mm. A head loss coefficient at an abrupt enlargement from area A to area A can be calculated by the formula k = ( A /A ). [0 marks] A B h Fig. 4
5 Manometer shows difference between static pressure at A and stagnation pressure at B. Condition of fluid equilibrium in the manometer gives: P A + σ ρ g h = P B + ρ U B + ρ g h, where ρ is the density of the liquid, and σ is mercury density relative to the density of the liquid: σ = σ Hg /σ = 3.56/.5. The pressure difference is: Head loss in a sudden expansion: where the heads are: P A P B = ρ U B H A H B = U A g + ( σ ) ρ g h. ( A ) A = ( U A U B ), A B g H A = P A ρ g + U A g and H B = P B ρ g + U B g. Therefore P A P B ρ g + U A U B g = ( U A U B ) g and substituting the value of the pressure difference we have:, ( σ ) h = ( U A U B ) g U A g. After rearrangement and substitution of U A = Q/A A and U B = Q/A B we obtain: ( Q ) = ( σ A ) g h, B A B A A and finally Q = (σ ) g h A A A B A A A B ; Q = ( ) 9.8m s 0.046m π 0. 4 m 4 4 = m3 s. Mass flow rate: ṁ = ρ Q = kg m m3 s = 0.65kg s. 5
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationExperiment (4): Flow measurement
Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationEXPERIMENT NO: F5. Losses in Piping Systems
SJSU ME115  THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More information10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
More informationSignature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationAER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes
AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Nonprogrammable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationChapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil  016 Chapter 4 DYNAMICS OF FLUID FLOW 41 Types of Energy 4 Euler s Equation 43 Bernoulli s Equation 44 Total Energy Line (TEL) and Hydraulic Grade Line
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationAtmospheric pressure. 9 ft. 6 ft
Name CEE 4 Final Exam, Aut 00; Answer all questions; 145 points total. Some information that might be helpful is provided below. A Moody diagram is printed on the last page. For water at 0 o C (68 o F):
More information1.060 Engineering Mechanics II Spring Problem Set 4
1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members
More informationExam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118
CVEN 311501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space
More informationMULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationDARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS ( )
DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS (2141906) Sr. No. Experiment Start Date End Date Sign Remark 1. To understand pressure measurement procedure and related instruments/devices.
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationCHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.
More informationWilliam В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.
William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationThe Bernoulli Equation
The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider
More informationStudy fluid dynamics. Understanding Bernoulli s Equation.
Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that
More informationRate of Flow Quantity of fluid passing through any section (area) per unit time
Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section
More informationThe online of midtermtests of Fluid Mechanics 1
The online of midtermtests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More informationBERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More informationMULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
Test Midterm 1 F2013 MULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function
More informationHOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION
AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional sprayguns operate by achieving a low pressure
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationLOSSES DUE TO PIPE FITTINGS
LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall
More informationCE MECHANICS OF FLUIDS
CE60  MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationB.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I
Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationCHAPTER 2 Fluid Statics
Chapter / Fluid Statics CHPTER Fluid Statics FEtype Eam Review Problems: Problems  to 9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=
More informationSYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS)
SYSTEMS VS. CONTROL VOLUMES System (closed system): Predefined mass m, surrounded by a system boundary Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) Many
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationFLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics  The Bernoulli Equation
FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics  The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS  THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3
More informationFLOW MEASUREMENT IN PIPES EXPERIMENT
University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationSignature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
More informationREE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology
REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationChapter 7 The Energy Equation
Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,
More informationPART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics
ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm , kgm  s  The same unit is also known as a ascal, a, i.e. a = Nm  ) English units:
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [2] Fluid Statics 1 Fluid Mechanics2nd Semester 2010 [2] Fluid Statics Fluid Statics Problems Fluid statics refers to
More informationstorage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.
Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest.  A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,
More informationFlow rate and mass flow rate
EENE1040 Measurement and control of energy systems Flow measurements / 14 Sep 2017 WELCOME! v. 01 / T. Paloposki Flow rate and mass flow rate Consider the system shown here 1 Volume flow rate through
More information(Refer Slide Time 1:25)
Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module  2 Lecture  24 Transient Response of Pressure Transducers
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationExperiment No.4: Flow through Venturi meter. Background and Theory
Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationGATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,
For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and nonnewtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationChapter (4) Motion of Fluid Particles and Streams
Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.
More informationMeasurements using Bernoulli s equation
An Internet Book on Fluid Dynamics Measurements using Bernoulli s equation Many fluid measurement devices and techniques are based on Bernoulli s equation and we list them here with analysis and discussion.
More informationStatic Forces on SurfacesBuoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface:
Force on a Curved Surface due to Hydrostatic Pressure If the surface is curved, the forces on each element of the surface will not be parallel (normal to the surface at each point) and must be combined
More informationUniversity of Engineering and Technology, Taxila. Department of Civil Engineering
University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE201 Fluid Mechanics  I Prerequisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK III SEMESTER CE 8302 FLUID MECHANICS Regulation 2017 Academic Year 2018 19 Prepared by Mrs.
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationCE Final Exam. December 12, Name. Student I.D.
CE 100  December 12, 2009 Name Student I.D. This exam is closed book. You are allowed three sheets of paper (8.5 x 11, both sides) of your own notes. You will be given three hours to complete four problems.
More informationIran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics
1. Consider a sphere of radius R immersed in a uniform stream U0, as shown in 3 R Fig.1. The fluid velocity along streamline AB is given by V ui U i x 1. 0 3 Find (a) the position of maximum fluid acceleration
More informationAerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)
Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More informationFluid Mechanics Testbank By David Admiraal
Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on
More informationChapter 2 Density, Specific Gravity, Specific Weight
Chapter Density, Specific Gravity, Specific Weight 1. What is the specific gravity of 38 API oil? 38 API oil sp.gr. sp. gr. 11.5 169.5 0.835 11.5 131.5+ API 11.5 131.5 + 38. The specific gravity of manometer
More informationCHEN 3200 Fluid Mechanics Spring Homework 3 solutions
Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More information4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass
iv 2.3.2 Bourdon Gage................................... 92 2.3.3 Pressure Transducer................................ 93 2.3.4 Manometer..................................... 95 2.3.4.1 Piezometer................................
More information