Root Locus Design Example #4


 Emma Powell
 1 years ago
 Views:
Transcription
1 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is the desired heading angle for the ship ψ ref (s), and the output signal Y (s) is the actual heading (yaw) angle ψ(s). In this example, angles will be expressed in degrees. The input to the plant, U(s), is the commanded rudder angle δ r com (s) that is used to control the heading of the ship. The transfer function for the system is G p (s) = Y (s) U(s) = (s ) s (s ) (s )(s ) = ψ(s) δ r com (s) The gain , the poles at s = and s = ,andthezeroat s = describe the dynamics of the system between the actual rudder angle and the rate of change in heading angle. The pole at s =provides the integration from the rate of change in heading angle to the heading angle itself. The pole at s =.3333 models the hydraulic actuator dynamics between the commanded rudder angle δ r com (s) and the actual rudder angle δ r (s). The negative sign associated with the gain indicates that a negative rudder angle produces a positive rate of change in heading angle. This is from the usual convention of how a coordinate system is fixed to the ship, a step that is analogous to assigning directions of positive current flow within an electrical circuit. Because of this sign convention used in ship steering, the sign of the compensator gain must also be negative, meaning that a positive heading angle error produces a negative rudder angle. The performance specifications that are imposed on the system are: Percent overshoot to a step input must satisfy PO 2%; Settling time for a step input must satisfy T s 2 seconds; Steadystate error in the closedloop ramp response must not exceed 2 degrees. B. Evaluating G p (s) Relative to the Specifications The first step in determining what type of compensation is needed is to evaluate the plant model relative to the specifications. Since the specifications are given in terms of percent overshoot and settling time, root locus will be the design method. Therefore, the desired location of the dominant closedloop pole s = s must be determined. Since the plant is not secondorder, it is not reasonable to assume that the secondorder system equations will be valid, so a conservative approach will be used. The values used for percent overshoot and settling time will be PO design = PO spec =4%, T s design =.75 T s spec =5sec (2) 5 Using these design values and the equations for secondorder systems, the dominant closedloop pole is calculated to be ζ = s = h POdesign Ln i r ³ h =.756 (3) i 2 π 2 POdesign + Ln µ 4 +jtan cos (ζ) = j (4) T s design ()
2 2 Figure shows the root locus and step response plots for the uncompensated system K c G p (s) with K c =. This gain of is included with the plant at this point so that the positive root locus methods (K >) can be used. The actual gains of the final compensator and the plant will be negative. K c is only used in the evaluation of the uncompensated system. Unity feedback is assumed, so H(s) =. The upper right plot in Fig. clearly shows that the root locus does not go through the point s, and the step response plot clearly shows that the overshoot and settling time specifications are not satisfied. Therefore, some form of compensation is needed. The angle of the plant and compensator at s must be computed. K c G p (s ) = tan tan 2 (5) tan tan tan = = G c (s )=8 K c G p (s )=39.62 (6) Since the required phase shift of the compensator at s is positive, the compensator will be phase lead. C. Compensator Designs ) Overview: The compensator design technique discussed in the text which calculates both the pole and zero angles at s will be used. This requires computing the phase angle of the point s, which is s =tan 2 =35.7 (7) The lead compensator will be designed using this method. Once that design is completed which hopefully will result in the transient performance specifications being satisfied the steadystate error of the plant/compensator combination will be checked. If the error is too large, then a special lag compensator will be designed to satisfy that specification. If the transient performance specifications are not satisfied by the lead compensator, several options exist to try and correct the problem. Some of these are shown below. Choose another value for s, using either more conservative or less conservative choices for percent overshoot and settling time. Choose different locations for the compensator zero and pole. Reconfigure the original design into the Proportional+Derivative with Derivative on Output Only (PDDOO) version. Only the last option, the PDDOO configuration, will be used in this example. In general, any or all of these options can be used together to try and obtain a compensator design that satisfies all specifications. K. Ogata, Modern Control Engineering, 4th Edition, Prentice Hall, Upper Saddle River, NJ, 22.
3 3.6 Uncompensated Root Locus. Zoomed View s Imag Axis Imag Axis Real Axis Real Axis.5 Uncompensated Step Response.5 PO = 43.8%, T s = 45.8 sec Fig.. Root locus and step response for the uncompensated system.
4 4 2) Design of the Lead Compensator: Using the method in the text, the phase angles from the compensator zero and pole to the point s are computed first, then the distances from the projection of s on the real axis to the zero and pole locations are computed. The angles are (s + z cd )= s + G c (s ) 2 = =87.66 (8) (s + p cd )= s G c (s ) = =48.4 (9) 2 2 Note that (s + z cd ) (s + p cd )=39.62 = G c (s ) as required. The distances from s to the zero and pole are d zcd = d pcd = Im [s ] tan ( (s + z cd )) = Im [s ] tan ( (s + p cd )) = tan (87.66 π/8) = () tan (48.4 π/8) = () Since both of these distances are positive, both the pole and zero of the lead compensator are to the left of s. The zero is located at s = , and the pole is located at s = At this point in the design, the lead compensator is G c Lead (s) = K c (s ) (2) (s ) Now that the lead compensator s pole and zero have been placed to satisfy the root locus phase angle criterion, the gain must be computed to satisfy the magnitude criterion at s. The gain is K c = s s s s s s s K c = K c = (3) Note that the sign on the gain is negative. The forward path transfer function is now G c Lead (s)g p (s) = (s )(s ) s (s ) (s )(s )(s ) (4) D. Evaluation of the Design The design will be evaluated by examining the step response of the leadcompensated system. The total forward transfer function is given in (4). The root locus and step response plots are shown in Fig. 2. The root locus plot shows that the point s is on the root locus as it should be. The closedloop poles are located at s = ± j ,s= ± j , and s = The step response plot shows that neither of the transient performance specifications has been satisfied. The overshoot of approximately 3% is not acceptable, and the settling time of 23 seconds is too long. The various options that may be used to try and correct this problem were mentioned earlier. The only option that will be described in this example is the Proportional+Derivative (PD) form of the compensator with the Derivative on Output Only (PDDOO) configuration. The steadystate error of this system for a ramp input is e ss = K v = lim s [s G c Lead (s)g p (s)] =.98 (5)
5 5 so a special lag compensator would be needed in order to satisfy that specification. However, before that is done, the transient response specifications need to be satisfied. There is no point in designing the special lag compensator until the transient performance is satisfactory. E. PD Compensator with Derivative on Output Only The gains and time constant of the Proportional+Derivative (PD) controller are τ = p cd, K p = K c zcd p cd, K d =( K c K p ) τ (6) and the values are τ =9.97 sec, K p =.2239, and K d =9.693, so if the PD compensator was to be placed in series with the plant it would be G c PD (s) = s (7) 9.97s + where the negative sign in G c PD (s) is required since the controller gain is negative. The PDDOO configuration is [ G p (s)] G DOO (s) = K p K d s +[ G p (s)] τs+ = (8) (s )(s ) s (s )(s )(s ± j ) where the negative sign of the compensator is now included with the plant transfer function. The step response of the system with the PDDOO configuration is shown in Fig. 3. Both the percent overshoot and the settling time satisfy the transient response specifications. The steadystate error specification does have to be checked to see if a special lag compensator is needed. F. Design of the Special Lag Compensator The steadystate error for a ramp input with the PDDOO configuration / lim s [sg DOO (s)] = 28.7 (increased from.98 by the change in configurations), and the specified value is 2. Therefore, the error must be reduced by a factor of α g = e ss actual = 28.7 =4.35 = z cg (9) e ss spec 2 p cg This value for α g reduces the steadystate error to the correct value by separating the special lag s pole and zero by the same factor. Using the rule of thumb discussed in class, the compensator zero is placed to the right of s by a factor of, and as always p cg = z cg /α g, so the special lag compensator is G c Spec Lag (s) = (s ) (2) (s ) The step response is shown in Fig. 4. The overshoot and settling time are both very close to the values in Fig. 3, and they still satisfy the specifications. Therefore, the special lag compensator did not disturb the transient response very much. The ramp response of the final version of the compensated system is shown in Fig. 5. The graph illustrates the very long time that it might take for the ramp response to settle to essentially a constant slope. At t = seconds, the error is still larger than 3. Even though it taking a long time to reach steadystate with the ramp response, the steadystate error does have the correct value after the special lag compensator is included.
6 6.6 Compensated Root Locus. Zoomed View s Imag Axis Imag Axis Real Axis Real Axis.5 Compensated Step Response.5 PO = 29.6%, T s = 23. sec Fig. 2. Root locus and step response for the leadcompensated system in the normal configuration.
7 7.4 Compensated Step Response with PD DOO Configuration PO = 7.6%, T s = 86.5 sec Fig. 3. Step response for the compensated system in the PDDOO configuration.
8 8.4 Compensated Step Response with PD DOO Configuration and Special Lag Compensator PO = 8.7%, T s = 92.3 sec Fig. 4. Step response for the compensated system in PDDOO configuration with special lag compensator included.
9 9 Compensated Ramp Response Zoomed View Fig. 5. Ramp response for the compensated system in PDDOO configuration with special lag compensator.
Robust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More information1 Chapter 9: Design via Root Locus
1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationFundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.
Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationPitch Rate CAS Design Project
Pitch Rate CAS Design Project Washington University in St. Louis MAE 433 Control Systems Bob Rowe 4.4.7 Design Project Part 2 This is the second part of an ongoing project to design a control and stability
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationGoals for today 2.004
Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationSimulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach
Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationChapter 6 SteadyState Analysis of ContinuousTime Systems
Chapter 6 SteadyState Analysis of ContinuousTime Systems 6.1 INTRODUCTION One of the objectives of a control systems engineer is to minimize the steadystate error of the closedloop system response
More informationStudy Material. CONTROL SYSTEM ENGINEERING (As per SCTE&VT,Odisha new syllabus) 4th Semester Electronics & Telecom Engineering
Study Material CONTROL SYSTEM ENGINEERING (As per SCTE&VT,Odisha new syllabus) 4th Semester Electronics & Telecom Engineering By Sri Asit Kumar Acharya, Lecturer ETC, Govt. Polytechnic Dhenkanal & Sri
More informationECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =
ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More informationResearch Article On PID Controller Design by Combining Pole Placement Technique with Symmetrical Optimum Criterion
Mathematical Problems in Engineering Volume 23, Article ID 36827, 8 pages http://dx.doi.org/.55/23/36827 Research Article On PID Controller Design by Combining Pole Placement Technique with Symmetrical
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationHomework 11 Solution  AME 30315, Spring 2015
1 Homework 11 Solution  AME 30315, Spring 2015 Problem 1 [10/10 pts] R +  K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closedloop pole locations as the parameter k is varied. Θpsq Ipsq k ωn
More informationTeaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK
Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Kathleen A.K. Ossman, Ph.D. University of Cincinnati Session 448 I. Introduction This paper describes a course and laboratory
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationCHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS
54 CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 4.1 INTRODUCTION In control theory, a controller is a device which monitors and affects the operational conditions of a given dynamic system.
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationTopic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #17 16.31 Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall
More informationFrequency (rad/s)
. The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationBasic Properties of Feedback
4 Basic Properties of Feedback A Perspective on the Properties of Feedback A major goal of control design is to use the tools available to keep the error small for any input and in the face of expected
More informationA New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive
A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More informationReglerteknik Allmän Kurs. Del 2. Lösningar till Exempelsamling. Läsår 2015/16
Reglerteknik Allmän Kurs Del Lösningar till Exempelsamling Läsår 5/6 Avdelningen för Reglerteknik, KTH, SE 44 Stockholm, SWEDEN AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET Reglerteknik
More informationLecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013
Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox
More informationTuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control
Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING
More informationEffect of adaptive telescope mirror dynamics on the residual of atmospheric turbulence correction
Effect of adaptive telescope mirror dynamics on the residual of atmospheric turbulence correction Armando Riccardi ABSTRACT In the present report we quantify the residual error of the correction of the
More informationECE 516: System Control Engineering
ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce timedomain systems dynamic control fundamentals and their design issues
More informationCompensator Design for Helicopter Stabilization
Available online at www.sciencedirect.com Procedia Technology 4 (212 ) 74 81 C3IT212 Compensator Design for Helicopter Stabilization Raghupati Goswami a,sourish Sanyal b, Amar Nath Sanyal c a Chairman,
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationDC Motor Position: System Modeling
1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System
More informationOn an internal multimodel control for nonlinear multivariable systems  A comparative study
On an internal multimodel control for nonlinear multivariable systems A comparative study Nahla Touati Karmani Dhaou Soudani Mongi Naceur Mohamed Benrejeb Abstract An internal multimodel control designed
More information= A x (t) + B utt), by d{ _==
M.Tech. [ 24 103 ] Degree Examination ndustrial Process nstrumentation First Semester COMPUTER CONTROL OF PROCESSES (Effective from the Admitted Batch of20032004) Time: 3 Hours Maximum marks: 100 Answer
More informationPID control of FOPDT plants with dominant dead time based on the modulus optimum criterion
Archives of Control Sciences Volume 6LXII, 016 No. 1, pages 5 17 PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion JAN CVEJN The modulus optimum MO criterion can
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationA unified doubleloop multiscale control strategy for NMP integratingunstable systems
Home Search Collections Journals About Contact us My IOPscience A unified doubleloop multiscale control strategy for NMP integratingunstable systems This content has been downloaded from IOPscience.
More informationPID Motion Control Tuning Rules in a Damping Injection Framework
2013 American Control Conference ACC) Washington, DC, USA, June 1719, 2013 PID Motion Control Tuning Rules in a Damping Injection Framework Tadele Shiferaw Tadele, Theo de Vries, Member, IEEE and Stefano
More informationComputation of Stabilizing PI and PID parameters for multivariable system with time delays
Computation of Stabilizing PI and PID parameters for multivariable system with time delays Nour El Houda Mansour, Sami Hafsi, Kaouther Laabidi Laboratoire d Analyse, Conception et Commande des Systèmes
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationLecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 20102011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 20102011 1 / 31 imediscretization
More informationTransient Stability Analysis with PowerWorld Simulator
Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com
More informationModel based control design
Model based control design Alf Isaksson September, 999 Supplied as supplement to course book in Automatic Control Basic course (Reglerteknik AK) Objective: To introduce some general approaches to model
More informationIntroduction. TABLE 7.1 Test waveforms for evaluating steadystate errors of position control systems. Time function. Physical interpretation
Chapter 7 SteadyState Errors Introduction In Chapter 1, we saw that control systems analysis and design focus on three specifications: (1) transient response, (2) stability, and (3) steadystate errors,
More informationA LDO Regulator with Weighted Current Feedback Technique for 0.47nF10nF Capacitive Load
A LDO Regulator with Weighted Current Feedback Technique for 0.47nF10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationCMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators
IsLab Analog Integrated ircuit Design OMP21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP1 omparators A comparator is used to detect whether a signal is greater
More informationDC & Transient Responses
ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = > = When = > = In between, depends on transistor size and current
More information1 Steady State Error (30 pts)
Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)
More informationIan G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz*
Ind. Eng. Chem. Res. 996, 35, 3437344 3437 PROCESS DESIGN AND CONTROL Improved Filter Design in Internal Model Control Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and
More informationPID controllers, part I
Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller
More informationProgrammable Valves: a Solution to Bypass Deadband Problem of ElectroHydraulic Systems
Programmable Valves: a Solution to Bypass Deadband Problem of ElectroHydraulic Systems Song Liu and Bin Yao Abstract The closedcenter PDC/servo valves have overlapped spools to prevent internal leakage
More information6 OUTPUT FEEDBACK DESIGN
6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationGTPOWER linearization and engine advanced control design applications
GTPOWER linearization and engine advanced control design applications Kenny Follen Ali Borhan Ed Hodzen Cummins Inc. North American GT Conference 2016 November 1415, 2016 Michigan, USA Outline Background
More informationDigital Control Semester Project
Digital Control Semester Project Part I: TransformBased Design 1 Introduction For this project you will be designing a digital controller for a system which consists of a DC motor driving a shaft with
More informationVibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response
Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either
More informationRELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing
RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl
More informationImplementation of a Communication Satellite Orbit Controller Design Using State Space Techniques
ASEAN J Sci Technol Dev, 29(), 29 49 Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques M T Hla *, Y M Lae 2, S L Kyaw 3 and M N Zaw 4 Department of Electronic
More informationLateral PathFollowing Control for Automated Vehicle Platoons
Lateral PathFollowing Control for Automated Vehicle Platoons Master of Science Thesis Delft Center for Systems and Control Lateral PathFollowing Control for Automated Vehicle Platoons Master of Science
More informationSystem Identification Using a Retrospective Correction Filter for Adaptive Feedback Model Updating
9 American Control Conference Hyatt Regency Riverfront, St Louis, MO, USA June 11, 9 FrA13 System Identification Using a Retrospective Correction Filter for Adaptive Feedback Model Updating M A Santillo
More informationStochastic Optimal Control!
Stochastic Control! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2015 Learning Objectives Overview of the LinearQuadraticGaussian (LQG) Regulator Introduction to Stochastic
More informationFast Seek Control for Flexible Disk Drive Systems
Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance Chanat Laorpacharapan and Lucy Y. Pao Department of Electrical and Computer Engineering niversity of Colorado, Boulder, CO
More informationControl of an Induction Motor Drive
Control of an Induction Motor Drive 1 Introduction This assignment deals with control of an induction motor drive. First, scalar control (or VoltsperHertz control) is studied in Section 2, where also
More informationDESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS
7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental statespace concepts and analysis tools, have now set the stage for our initial foray into statespace methods
More informationWe provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.
We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider
More informationEEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:
EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to firstorder circuit From the last lecture, we have learnt
More informationStanford University. September Abstract. We show that control system design via classical loop shaping and singular
ClosedLoop Convex Formulation of Classical and Singular Value Loop Shaping Craig Barratt Stephen Boyd Department of Electrical Engineering Stanford University Stanford CA 9435 September 99 Abstract We
More informationLaplace s Equation on a Sphere
Laplace s Equation on a Sphere Pierre Simon de Laplace Domenic Scorzetti Millersville University dascorze@marauder.millersville.edu April 5, 6 Problem Outline A spherical shell has an inner radius, and
More information10 Measurement of Acceleration, Vibration and Shock Transducers
Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti AlSharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationREDUCING PROCESS VARIABLITY BY USING FASTER RESPONDING FLOWMETERS IN FLOW CONTROL
REDUCING PROCESS VARIABLITY BY USING FASTER RESPONDING FLOWMETERS IN FLOW CONTROL David Wiklund Marcos Peluso Sr. Principal Engineer Director of Temperature and Plantweb Development Rosemount, Inc. Rosemount,
More informationSolving a RLC Circuit using Convolution with DERIVE for Windows
Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue NotreDame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca  Introduction
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationControl Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017314 4.1 Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
More informationType2 Fuzzy Logic Control of Continuous Stirred Tank Reactor
dvance in Electronic and Electric Engineering. ISSN 22311297, Volume 3, Number 2 (2013), pp. 169178 Research India Publications http://www.ripublication.com/aeee.htm Type2 Fuzzy Logic Control of Continuous
More informationAP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student
AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.
More informationCDS 101: Lecture 8.2 Tools for PID & Loop Shaping
CDS : Lecture 8. Tools for PID & Loop Shapig Richard M. Murray 7 November 4 Goals: Show how to use loop shapig to achieve a performace specificatio Itroduce ew tools for loop shapig desig: ZieglerNichols,
More informationThrust allocation system for Blue Lady training ship taking into account efficient work of main propeller
Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 013, 36(108) z. pp. 13 130 013, 36(108) z. s. 13 130 ISSN 17338670 Thrust allocation system for Blue Lady
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationreality is complex process
ISS0080 Automation and Process Control Lecture 5 1 Process models the desire to describe reality Model of the process, model simplication, identication. model reality is complex process Replaces the original;
More informationLecture 9 Timedomain properties of convolution systems
EE 12 spring 2122 Handout #18 Lecture 9 Timedomain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationJurnal Teknologi IMPLEMENTATION OF ROBUST COMPOSITE NONLINEAR FEEDBACK FOR ACTIVE FRONT STEERING BASED VEHICLE YAW STABILITY.
Jurnal Teknologi IMPLEMENTATION OF ROBUST COMPOSITE NONLINEAR FEEDBACK FOR ACTIVE FRONT STEERING BASED VEHICLE YAW STABILITY Mohd Hanif Che Hasan a*, Yahaya Md Sam b, Muhamad Khairi Aripin c, Mohamad Haniff
More information