CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION


 Wesley Allen
 1 years ago
 Views:
Transcription
1 CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots. Use the bode plots to find a suitable gain to meet the stability specifications. Design the gain adjustment compensator to meet the frequency response specifications. 6.1 INTRODUCTION Frequency response methods, discovered by Nyquist and Bode in the 1930s. Frequency response yields a new vantage point from which to view feedback control system. This technique has distinct advantage in the following situations: 1. When modeling transfer function from physical data. 2. When finding the stability of nonlinear systems. 3. In settling ambiguities when sketching a root locus. 1
2 6.2 PLOTTING FREQUENCY RESPONSE In this section, we learn a method to draw the frequency response using the bode plot technique. G j M G j G can be plotted in several ways; two of them are 1. as a function of frequency, with separate magnitude and phase plots. The magnitude can be plotted in decibels (db) vs log, where db = 20 log M. The phase curve is plotted as phase angle vs log. The motivation for these plots is shown in next section. 2. as a polar plot, where the phasor length is the magnitude and the phasor angle is the phase. Based on the splane concept Magnitude response at particular freq is the product of the vector length from the zeroes of G(s) divided by the product of vector lengths from the poles of G(s) drawn to points on the imaginary axis. Phase response is the sum of angles from the zeroes of G(s) minus the sum of the angles from the poles of G(s) drawn to points on the imaginary axis. 2
3 Ex 1: Demonstrates how to obtain analytical expression for frequency response and make a plot of the result. Problem: Find the analytical expression for the magnitude freq response and the phase freq response for a system G(s) = 1/(s+2). Also, plot both the separate magnitude and phase diagrams. Solution: Substitute s=j in the system and obtaining G(j )=1/(j +2) G(j )=1/(j +2) = (2 j )/( 2+4) The magnitude of this complex number, G j M 1 / 2 4 The phase angle, G(j )= tan 1 / 2 Refer to Figure 1 for the plot (actual Plot): Figure 13
4 7.3 Asymptotic Approximations: Bode Plots The logmagnitude and phase freq response curves as functions of log are called Bode plots or Bode diagrams. Sketching the bode plots can be simplified because they can be approximated as sequence of straight lines. Consider the following transfer function: G s K s z1 s z 2... s z n s m s p1 s p 2... s p n Then, the magnitude frequency response is the product of the magnitude freq response of each term, or G ( j ) K ( s z1 ) s z 2... s z k s m (s p1 ) ( s p 2 )... ( s p n ) s j Thus, if we know the magnitude response of each pole and zero term, we can find the total magnitude response. The process can be simplified by working with the logarithm of the magnitude since the zero terms magnitude responses would be added and the pole terms magnitude responses subtracted, rather than, respectively, multiplied or divided, to yield the logarithm of the total magnitude response. Converting the magnitude response into db, we obtain 20 log G ( j ) 20 log K 20 log ( s z1 ) 20 log s z log s m 20 log s p1... s j Thus, if we knew the response of each term, the algebraic sum would yield the total response in db. Further, if we could make an approximation of each term that would consist only of straight lines, graphic addition of terms would be greatly simplified. 4
5 Bode Plots for G(s) = (s+a) Consider a function, G(s) = (s+a), for which we want to sketch separate logarithmic magnitude and phase response plots. Letting s = jω, we have G ( j ) j a a j 1 a At low frequencies when ω approaches zero, G j a The magnitude response in db is 20 log M 20 log a where and is a constant. Equation above is shown plotted in M G j Figure 2 (a) from ω = 0.01a to a. At high frequencies where ω >>a, ω = 0.01a to a becomes j 0 0 G j a a a a The magnitude response in db is 20 log M 20 log a 20 log where a. 20 log a Notice from the middle term that the highfrequency approximation is equal to the low frequency approximation when a, and increases for If we plot db, 20 log M 20 log M 20 log a 20 log a., against log ω, equation 20 log a becomes a straight line: y 20 x where y 20 log M, and x log. The line has a slope of 20 when plotted as db vs. log ω. 5
6 Figure 2 (a) & (b) Bode Plots for G(s) = 1/(s+a) Let us find the Bode plots for the transfer function G s 1 1 s a a s 1 a This function has a lowfrequency asymptote of 20log(1/a), which is found by letting the frequency, s, approach zero. The Bode plot is constant until the break frequency, a rad/s, is reached. The plot is then approximated by the highfrequency asymptote found by letting s approach. Thus, at high frequencies G j 1 s a a s j a j a a a 6
7 or, in db, 20 log M 20 log 1 20 log 20 log a a Figure 37
8 Notice from the middle term that the highfrequency approximation equals the lowfrequency approximation when a, and decreases for a. This result is similar to equation 20 log M 20 log a 20 log 20 log, a except the slope is negative rather than positive. The Bode logmagnitude diagram will decrease at a rate of 20 db/decade rather than increase at a rate of 20 db/decade after the break frequency. The phase plot is the negative of the previous example sine the function is the inverse. The phase begins at 00 and reaches 900 at high frequencies, going through 450 at the break frequency. Both the Bode normalized and scaled logmagnitude and phase plot are shown in Figure 4 (d). Bode Plots for G(s) =s Our next function, G(s) = s, has only a highfrequency asymptote. Letting s=jω, the magnitude is 20 log ω, which is the same as equation 20 log M 20 log a 20 log 20 log. a Hence, the Bode magnitude lot is a straight line drawn with a +20 db/decade slope passing through zero db when ω = 1. The phase plot, which is a constant +900, is shown with the magnitude plot in Figure 4(a). Bode Plots for G(s) = 1/s The frequency response of the inverse of the preceding function, G(s) = 1/s, is shown in Figure 3(b) and is a straight line with a
9 db/decade slope passing through the zero db at ω = 1. The Bode phase plot is equal to a constant Figure 49
10 Ex 2: Bode plots for ratio of firstorder factors. Problem: Draw the Bode plots for the system shown in figure below, where G s K s 3 / s s 1 s 2 Solution: Bode plot for open loop system The bode plot is the sum of each first order system Use the normalized plot in order to determine the cutoff frequency easier. The normalized TF is: 3 s K G s s s s So, the cutoff frequencies are at 1, 2, and 3. The magnitude plot should begin a decade below ( 0.1 ) the lowest freq break and extend a decade above the highest break freq ( 100 ). K is chosen at 1 easy to denormalized later for any value of K The plot is shown in Figure
11 Figure 5 (magnitude)
12 Figure 5 (Phase)
13 7.4 Bode Plots For Second Order For G s s 2 2 n s n 2 General equation of second order is given by; G s s 2 2 n s n 2 = s2 s n n n At low frequency: 2 2 G s n n 0 0 At high frequency: G s s The logmagnitude: 20 log 2 40 log Magnitudephase plots; Figure
14 7.4.2 For G s 1 / s 2 2 n s n 2 Magnitudephase plots: Reverse of the plots in section Ex 3: (Bode plots for second order and first order system) Draw the Bode logmagnitude and phase plots of G s s 3 s 2 s 2 2s 25 Solution: Convert G(s) to normalized value, getting, s G s s 2 s s Then, Bode logmagnitude shown in Figure 7. Figure
15 7.5 Stability, Gain Margin, and Phase Margin via Bode Plots Determining Stability The specification below should be get in order to ensure the stability of the system using Bode Plots The closed loop system will be stable if the frequency response has a gain less than unity when phase is Ex 4: Use Bode Plots to determine the range of K within which the unity feedback system is stable. Let G s K s 2 s 4 s 5 Solution: Convert G(s) to normalized value, yields, G s K 1 40 s s s Choose K = 40 in order to start the plots at 0db Break frequency at 2, 4, and 5 Lowest frequency, 0.01 ; Highest frequency, 100 Plots,
16 Figure 8 (Ex 4) From the graph, at freq = 7rad/sec, phase is At this point magnitude plot is at 20db. Then the system is stable. The magnitude can move until +20db in order ensure the stability of the system. 20db means gain equal to 10. Then, at this point the gain K = 40*10=400 So, range of K that make the system stable is K 400 Evaluating Gain Margin And Phase Margin
17 Refer Figure 9 for gain margin and phase margin concept; Figure 9: Gain Margin and Phase Margin EX 5: If K=200 in Ex 4, find gain margin and phase margin. Solution: Plots the Bode plots for magnitude and phase using the same procedure as Ex 4 K = 200, means fives times greater than 40 (chosen k value previously) Then, 20 log 5=13.98db. Means bode plots in Figure 8 should increase 13.98db in magnitude
18 Therefore, to find gain margin look at phase plot and the freq when phase is 180o. At this freq, determine from the magnitude plot how much the gain can be increased before reaching 0dB. From Figure 8, the phase angle is 180o at approximately 7 rad/s. On the magnitude plot, the gain is 20 db db = db. Thus, the gain margin is 6.02 db. For phase margin, refer freq at magnitude plot where the gain is 0 db. At this freq, look on the phase plot to find the difference between the phase and 180o. The difference is phase margin. From Figure 8, remember that the magnitude plot is db lower than actual plot, the 0 db crossing ( db for the normalized plot shown in Figure 8) occurs at 5.5 rad/s. At this freq, the phase angle is 165o. Thus, the phase margin is 165(180) = 15o Relation Between Closedloop Transient and ClosedLoop Frequency Responses. A relationship exists between the peak value of the closedloop magnitude response and the damping ratio is given by equation below, Mp This condition happens at a frequency p n 1 2 p, of 2 Representive logmagnitude plots,
19 7.5.4 Relation Between Closedloop Transient and Openloop Frequency Responses Relation between phase margin and damping ratio is given by, 2 M tan Design Via Frequency Response: Transient Response Via Gain Adjustment Introduction Frequency response design methods, unlike root locus methods, can be implemented conveniently without a computer or other tool except for testing the design
20 The bode plots can be designed easily using asymptotic approximations and gain can be read from there Gain Adjustment From previous discussion the phase margin is relates to the damping ratio (equivalently percent overshoot). Thus, any varying in phase margin will result on varying the percent overshoot. From Figure 10, if we desire a phase margin, M, represented by CD, we would have to raise the magnitude curve by AB. Therefore, a simple gain adjustment can be used to design phase margin and, hence, percent overshoot. Procedure involve in designing the gain adjustment compensator: a) Draw the bode magnitude and phase plots for a convenient value of gain. b) Using equations below to determine the required phase margin from the percent overshoot. %OS ln 100 %OS 2 ln c) Find the frequency, M tan M, on the bode phase diagram that yields the desired phase margin, as shown in Figure 10. d) Change the gain by the amount of AB to force the magnitude curve to go through 0 db at M. The amount of gain
21 adjustment is the additional gain needed to produce the required phase margin. Figure 10 EX 6: (Transient response design via gain adjustment) For the position control system shown in Figure 11, find the value of preamplifier gain, K, to yield a 9.5% overshoot in the transient response for a step input. Use only frequency response methods. Figure
22 Solution: Follow the procedure stated previously, Choose K=3.6 to start the magnitude plot at 0 db at 0.1 in Figure 12. Using equation above, a 9.5% overshoot implies 0.6 for the closedloop dominant poles. From equation for phase margin yields a 59.2o phase margin for a damping ratio of 0.6. Locate on the phase plot the frequency that yields a 59.2o phase margin. This frequency is found where the phase angle is the difference between 180o and 59.2o, or o. The value of the phase margin frequency is 14.8 rad/s. At a freq of 14.8 rad/s on the magnitude plot, the gain is found to be db. This magnitude has to be raised to 0 db to yield the required phase margin. Since the logmagnitude plot was drawn for K=3.6, a 44.2 db increase, or K=3.6*162.2=583.9, would yield the required phase margin for a 9.48% overshoot. The gainadjusted openloop transfer function is G s s s 36 s
23 Figure
Frequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationFrequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationRoot Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More information8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Secondorder denominator, of the form 1+a 1 s + a s v 1 (s) + C R Twopole lowpass filter example v (s) with
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationProcedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20)
Procedure for sketching bode plots (mentioned on Oct 5 th notes, Pg. 20) 1. Rewrite the transfer function in proper p form. 2. Separate the transfer function into its constituent parts. 3. Draw the Bode
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationR. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationControl Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho kwangho@hansung.ac.kr Tel: 027604253 Fax:027604435 Introduction In this lesson, you will learn the following : The
More information(Refer Slide Time: 2:11)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian institute of Technology, Delhi Lecture  40 Feedback System Performance based on the Frequency Response (Contd.) The summary
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationResponse to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215  INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
More informationFrequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ
27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: smallsignal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationCourse Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim
Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response
More informationAsymptotic Bode Plot & LeadLag Compensator
Asymptotic Bode Plot & LeadLag Compensator. Introduction Consider a general transfer function Ang Man Shun 20225 G(s = n k=0 a ks k m k=0 b ks k = A n k=0 (s z k m k=0 (s p k m > n When s =, transfer
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
More informationAsymptote. 2 Problems 2 Methods
Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem
More informationH(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
More informationEECE 301 Signals & Systems Prof. Mark Fowler
EECE 301 Signals & Systems Prof. Mark Fowler CT Systems: Bode Plots Note Set #36 1/14 What are Bode Plots? Bode Plot = Freq. Resp. plotted with H() in db on a log frequency axis. Its easy to use computers
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationFrequency response. Pavel Máša  XE31EO2. XE31EO2 Lecture11. Pavel Máša  XE31EO2  Frequency response
Frequency response XE3EO2 Lecture Pavel Máša  Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationCHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closedloop system is closely related to the location of the closedloop poles. If the system
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationThe FrequencyResponse
6 The FrequencyResponse Design Method A Perspective on the FrequencyResponse Design Method The design of feedback control systems in industry is probably accomplished using frequencyresponse methods
More informationProportional plus Integral (PI) Controller
Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on
More informationSKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot
SKEE 3143 CONTROL SYSTEM DESIGN CHAPTER 3 Compenator Deign Uing the Bode Plot 1 Chapter Outline 3.1 Introduc4on Re viit to Frequency Repone, ploang frequency repone, bode plot tability analyi. 3.2 Gain
More informationBoise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain
Boise State University Department of Electrical Engineering ECE6 Control Systems Control System Design in the Frequency Domain Situation: Consider the following block diagram of a type servomechanism:
More informationCompensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S
S 0 L U T I 0 N S Compensation 8 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. As suggested in Lecture 8, to perform a Nyquist analysis, we
More informationME 475/591 Control Systems Final Exam Fall '99
ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does
More informationFrequency (rad/s)
. The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationPart IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 4. The Frequency ResponseG(jω)
Part IB Paper 6: Information Engineering LINEAR SYSEMS AND CONROL Glenn Vinnicombe HANDOU 4 he Frequency ResponseG(jω) x(t) 2π ω y(t) G(jω) argg(jω) ω t t Asymptotically stable LI systemg(s) x(t)=cos(ωt)
More informationIntroduction to Root Locus. What is root locus?
Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response
More informationLecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationUNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationDefinitions. Decade: A tentoone range of frequency. On a log scale, each 10X change in frequency requires the same distance on the scale.
Circuits II EECS 3220 Lecture notes on making Bode plots Definitions Network Transfer Function: The function H s Xout s X in s where X out represents the voltage or current response of the network to X
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationNyquist Stability Criteria
Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc  Funded by MHRD This Lecture Contains Introduction to
More informationProblems XO («) splane. splane *~8 X 5. id) X splane. splane. * Xtg) FIGURE P8.1. jplane. JO) k JO)
Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 XO
More informationCHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS
CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationApago PDF Enhancer. Bibliography
Experiment 9.2 Objective To design a PID controller via LabVIEW Minimum Required Software Packages LabVIEW with the Control Design and Simulation Module Prelab. Perform Cyber Exploration Laboratory Experiment
More informationPM diagram of the Transfer Function and its use in the Design of Controllers
PM diagram of the Transfer Function and its use in the Design of Controllers Santiago Garrido, Luis Moreno Abstract This paper presents the graphical chromatic representation of the phase and the magnitude
More informationK(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationFREQUENCY RESPONSE ANALYSIS Closed Loop Frequency Response
Closed Loop Frequency Response The Bode plot is generally constructed for an open loop transfer function of a system. In order to draw the Bode plot for a closed loop system, the transfer function has
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTRONICS ENGINEERING
More informationEKT 119 ELECTRIC CIRCUIT II. Chapter 3: Frequency Response of AC Circuit Sem2 2015/2016 Dr. Mohd Rashidi Che Beson
EKT 9 ELECTRIC CIRCUIT II Chapter 3: Frequency Response of AC Circuit Sem 05/06 Dr. Mohd Rashidi Che Beson TRANSFER FUNCTION (TF Frequency response can be obtained by using transfer function. DEFINITION:
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More information2.010 Fall 2000 Solution of Homework Assignment 1
2. Fall 2 Solution of Homework Assignment. Compact Disk Player. This is essentially a reprise of Problems and 2 from the Fall 999 2.3 Homework Assignment 7. t is included here to encourage you to review
More informationExercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31317 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
More informationSECTION 5: ROOT LOCUS ANALYSIS
SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path
More informationStability & Compensation
Advanced Analog Building Blocks Stability & Compensation Wei SHEN (KIP) 1 Bode Plot real zeros zeros with complex conjugates real poles poles with complex conjugates http://lpsa.swarthmore.edu/bode/bode.html
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationChapter 8: Converter Transfer Functions
Chapter 8. Converter Transer Functions 8.1. Review o Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right halplane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.
More informationECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =
ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More information