Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year


 Holly Shepherd
 1 years ago
 Views:
Transcription
1 Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
2 Feedback control problem Feedback control problem measurement noise n model uncertainty G(s) d process disturbance r reference! " e!! tracking error C(s) u input G(s)!! y output Objective: make the tracking error e(t) = r(t) y(t), despite the dynamics of the openloop system G(s) (slow, unstable, etc.) disturbance d(t) affecting the process model uncertainty G(s) (the system is not exactly as we modeled it) measurement noise n(t) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
3 Feedback control problem Feedback control problem r reference! " measurement noise e!! tracking error n C(s) model uncertainty G(s) u input G(s) d!! process disturbance y output To achieve the objective, we want to design a feedback control law satisfying a number of requirements: stability in nominal conditions ( G(s) =, d(t) =, n(t) = ) stability in perturbed conditions static performances (tracking error for constant r(t)) dynamic performances (transients and frequency response) noise attenuation (be insensitive to measurement noise n(t)) Tuesday, May 4, 21 feasibility of the controller (strictly proper transfer function C(s)) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
4 Feedback control problem Closedloop function n G(s) d r! " e!! C(s) u G(s)!! y The closedloop function is the transfer function from r to y W(s) = H yr (s) = C(s)G(s) 1 + C(s)G(s) We call loop function the transfer function Tuesday, May 4, 21 L(s) = C(s)G(s) For L(jω) 1 we get W(jω) 1, W(jω) For L(jω) 1 we get W(jω) Given G(s), we will choose C(s) to shape the loop function response L(jω) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
5 Feedback control problem Sensitivity functions n G(s) d r! " e!! C(s) u G(s)!! y The sensitivity function S(s) is the function Tuesday, May 4, 21 S(s) = W(s)/W(s) G(s)/G(s) = W(s) G(s) G(s) W(s) = L(s) The sensitivity function S(s) is also the transfer function from d to y Y(s) D(s) = L(s) = S(s) The complementary sensitivity function T(s) is the transfer function from n to y T(s) = Y(s) N(s) = L(s) 1 + L(s) = W(s) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
6 Performance specifications Performance specifications: frequency domain sensitivity transfer function from d to y 1 S(s) = 1 + C(s)G(s) complementary sensitivity transfer function from n to y T(s) = C(s)G(s) 1 + C(s)G(s) = W(s) We want to be immune (=small tracking errors) to both process disturbances and measurement noise both S and T small Problem: S(s) + T(s) = 1! How to make both them small? Solution: keep S small at low frequencies, and hence W 1 (=good tracking) keep T small at high frequencies (=good noise rejection) Magnitude (db) db good tracking C(jω)G(jω) 1 frequency (rad/s) Constraint on performance: tracking cannot be too good at high frequencies! C(jω)G(jω) 1 good noise rejection Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
7 Performance specifications Performance specifications: frequency domain We usually refer to regular closedloop responses (i.e., similar to 2ndorder underdamped systems) 1 W(s) = W (jω) resonant M r 1 + 2ζ s + 1 peak ω n ω 2 s 2 n B 3 closedloop bandwidth 3 db the resonant peak M r is the max value of W(jω) the bandwidth of the closed loop system is the range of frequencies at which W(jω) 2 ( W(jω) 2, in general) W() 1 note that = 2 log db 1 2 3dB For 2nd order systems W(s): Mr W 1 = 2ζ 1, ζ 2 BW 3 = ω n 1 2ζ ζ 2 + 4ζ 4 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
8 Performance specifications Performance specifications: steadystate tracking We look at tracking of constant setpoints, ramps, etc., R(s) = 1 s k Write the loop function in Bode form L(s) = K s h L 1(s), with L 1 () = 1 Compute lim t + e(t) using final value theorem for h k 1: lim t + e(t) = lim s = lim s se(s) = lim s(r(s) W(s)R(s)) = lim s s s h k+1 s h + KL 1 (s) = L(s) if h k K if h =, k = 1 1 K if h = k 1, k > 1 1 s k 1 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
9 Performance specifications Performance specifications: steadystate tracking lim e(t) = t + if h k K if h =, k = 1 1 K if h = k 1, k > 1 Constraint on type h of L(s) = C(s)G(s) = KL 1(s) s h : need h k 1 to track r(t) = t k 1 need h k to track t k 1 with zero asymptotic error special case: need h 1 to track constant setpoints with zero offset in steadystate (integral action!) Constraint on Bode gain K of L(s): need K sufficiently large to bound steadystate tracking error when h = k 1 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
10 Performance specifications Performance specifications: time response ŝ y(t) r(t) rise time t r peak overshoot settling time t s r(t) = 1 for t Tuesday,, May 4, 21 r(t) = for t < time t We look at the shape of the transient closedloop response due to a unit step the rise time t r is the time required to rise from to 1% of steadystate (1 9% for nonoscillating systems) the settling time t s is the time to reach and stay within a specified tolerance band (usually 2% or 5%) the peak overshoot ŝ is the max relative deviation from steadystate, ŝ = max t y(t) 1 y(+ ) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
11 Performance specifications Relations between frequency and time response Usually we refer to the step response of a secondorder closedloop system peak overshoot r(t) ŝ y(t) rise time tr settling time ts W(s) = ζ s + 1 ω n ω 2 s 2 n Tuesday, May 4, 21 time t In this case we have ŝ = e πζ 1 ζ 2, t r = 1 1 π tan 1 ω n 1 ζ 2 1 ζ 2 Good average formulas for closedloop systems W(s) are ζ, t s[5%] 3 ζω n t s[2%] 4 ζω n t r B W 3 3 ŝ.85 MW r 1 where t r [s], B W 3 [rad/s], ŝ [no unit], MW r [not in db] Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
12 Performance specifications Relations between frequency and time response Relations between frequency and time response for secondorder closedloop systems as a function of the damping factor ζ B 3 ω n M r ω n t r ζ ζ ζ B 3 t r ζ 1 + ŝ M r ζ ŝ ζ Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
13 Synthesis via loop shaping Controller synthesis via loop shaping Typical closedloop specifications include static specs system type h tracking error e(+ ) in steadystate for r(t) = t k Bode gain K and dynamic specs peak overshoot ŝ resonant peak M r rise time t r bandwidth B 3 Designing a regulator that meets all specs in one shot can be a hard task In loopshaping synthesis the controller C(s) is designed in a series of steps C(s) r! y " C 1 (s) C 2 (s) G(s) where C 1 (s) satisfies static specs, while C 2 (s) dynamic specs Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
14 Synthesis via loop shaping Synthesis of C 1 (s) (static performance) The general form of C 1 (s) is C 1 (s) = K c s h c where K c is the controller gain and h c is the type of the controller If the type of G(s) is h g and the desired type is h d, then h c = max{, h d h g } The gain K c is chosen by imposing the desired steadystate tracking error K c G() e d if r d = 1 K c G() e d if r d > Example: G(s) = 1 (s + 1) Track a step reference with zero steadystate error r d = 1 since the type of G(s) is h g =, h c = max{, 1} = 1, and C 1 (s) = 1 s steadystate error e d to unit ramp reference is not required, so K c is free Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
15 Synthesis via loop shaping Mapping closedloop specs to openloop specs Closedloop specifications must be translated into specifications on the loop transfer function L(jω) = C(jω)G(jω) In particular closedloop specs should be translated into a desired phase margin M L p and desired crossover frequency ωl c of L(jω) We have some approximate formulas to do that: M L p 2.3 MW r 1.25 where M r is in not expressed in db, and M p is expressed in rad, and ω L c [.5,.8]BW 3 The next step of loop shaping is to synthesize C 2 (s) so that L(jω) has the right phase margin M L p M pd and crossover frequency ω L c = ω cd Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
16 Synthesis via loop shaping Synthesis of C 2 (s) (dynamic performance) The general form of C 2 (s) is C 2 (s) = i (1 + τ is) i (1 + 2ζ i s ω ni j (1 + T js) j (1 + 2ζ js ω nj + s2 ω 2 ) ni + s2 ) ω 2 nj C 2 (s) must be designed to guarantee closedloop asymptotic stability C 2 (s) must be designed to satisfy the dynamic specifications We focus here on controllers containing only real poles/zeros Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
17 Leadlag networks magnitude [db] phase [rad] Lead network A lead network has transfer function C Lead (s) = 1 + τs 1 + ατs where τ >, < α < 1 C Lead (s) provides phase lead in the frequency range [ 1 τ, α τ ] The maximum phase lead is at ω max = 1 logarithmic scale) 1/τ 1/(ατ) φmax ωmax frequency [rad/s] 2 log 1 ( 1 α π/2 π/4 Tuesday, May 4, 21 τ (midpoint between 1 and 1 α τ ατ in ) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
18 phase [rad] magnitude [db] Lecture: Loop shaping Leadlag networks Lead network G(jω) G(jω)C Lead (jω) 1 ατ 1 ω c ω! τ G(jω) (G(jω)C Lead (jω)) M p M p The main goal of the lead network is to increase the phase margin As a side effect, the loop gain is increased at high frequencies (=reduced complementary sensitivity) Tuesday, May 4, 21 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
19 Leadlag networks Lead network Bode Diagram 3 25 Magnitude (db) Phase (deg) alpha=.5 alpha=.1 alpha=.15 6 alpha=.2 alpha=.3 alpha=.4 alpha=.5 3 alpha=.6 alpha=.7 alpha=.8 alpha= Frequency (rad/sec) C Lead (s) = 1 + s 1 + αs τ = 1 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
20 Leadlag networks magnitude [db] phase [rad] Lag network A lag network has transfer function C Lag (s) = 1 + ατs 1 + τs where τ >, < α < 1 C Lag (s) provides phase lag in the frequency range [ 1 τ, α τ ] The maximum phase lag is at ω min = 1 logarithmic scale) 1/τ 1/(ατ) φmin ωmin frequency [rad/s] Tuesday, May 4, 21 τ (midpoint between 1 and 1 α τ 2 log 1 (α) π/4 π/2 ατ in Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
21 phase [rad] magnitude [db] Lecture: Loop shaping Leadlag networks Lag network G(jω) 1 τ 1 ατ G(j!)C Lag (j!) ω c ω c M p The main goal of the lag network is to decrease the loop gain at high frequencies (=reduce complementary sensitivity) To avoid decreasing the phase margin, set ω min at low frequencies, where the loop gain Tuesday, May L(jω) 4, 21 is still high, therefore avoiding ω c ω min Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
22 Leadlag networks Lag network Bode Diagram Magnitude (db) Phase (deg) alpha=.5 alpha=.1 alpha=.15 3 alpha=.2 alpha=.3 alpha=.4 alpha=.5 6 alpha=.6 alpha=.7 alpha=.8 alpha= Frequency (rad/sec) Note that C Lag (s) = 1 + αs 1 + s τ = ατjω 1 + τjω 1 + τjω = db 1 + ατjω db and that 1 + ατjω 1 + τjω = 1 + τjω 1 + ατjω Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
23 Leadlag networks magnitude [db] phase [rad] Leadlag network A leadlag network has transfer function C Lead Lag (s) = (1 + α 1τ 1 s) (1 + τ 1 s) where τ 1, τ 2 >, < α 1, α 2 < 1 (1 + τ 2 s) (1 + α 2 τ 2 s) The leadlag network C Lead Lag (s) provides the coupled effect of a lead and a lag network: increase the phase margin without increasing the closedloop bandwidth ω γ 1/τ1 1/(ατ1) 1/(ατ2) 1/τ2 φmax ωmin ωmax φmin frequency [rad/s] 2 log 1 (α) π/2 π/2 Tuesday, May 4, 21 A special form of leadlag networks most used in industrial practice are proportional integral derivative (PID) controllers (see more later...) PID temperature controller Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
24 Loopshaping example Example of loop shaping Bode Diagram 5 Openloop transfer function of the process Magnitude (db) 5 System: G Gain Margin (db): 13.6 At frequency (rad/sec): 2.83 Closed Loop Stable? Yes 1 G(s) = s(s + 2)(s + 4) = s (1 +.5s)(1 +.25s) Phase (deg) System: G Phase Margin (deg): 47 Delay Margin (sec):.77 At frequency (rad/sec): 1.7 Closed Loop Stable? Yes Frequency (rad/sec) Closedloop specifications 1 Track a ramp reference r(t) = t with finite steadystate error e d.2 2 Risetime of unit step response t r.4 s 3 Overshoot of unit step reference ŝ 25% Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
25 Loopshaping example Example of loop shaping Static performance 1 Track a ramp reference r(t) = t with finite steadystate error e d.2 Since G(s) is of type r g = 1, no need to add integrators C 1 (s) = K c = K c s h c s = K c Choose K c by looking at steadystate tracking error of unit ramp 1 K c 1.25 e d =.2 K c 4 Finally, set C 1 (s) = 4 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
26 Loopshaping example Example of loop shaping Dynamic performance 2 Risetime of unit step response t r.4 Since B 3 3/t r, we get a closedloop bandwidth constraint B 3 3 = 3 = 7.5 rad/s t r.4 As the desired ω c [.5,.8]B 3, we get a target for the crossover frequency of the loop function L(jω) ω c 4.7 rad/s 2 Overshoot of unit step reference ŝ 25% As ŝ.85 M r 1 and M p 2.3 M r we get M r 1 or 1.25 M r = The resulting specification on the phase margin of L(jω) is M p.664 rad 38 deg Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
27 Loopshaping example Example of loop shaping Dynamic performance Let s examine the current loop gain L 1 (s) = C 1 (s)g(s) = s = jω c = j4.7 Bode diagram of L 1 (s) 4 s(s + 2)(s + 4) for 1 Phase (deg) Magnitude (db) System: GC1 Frequency (rad/sec): 4.7 Magnitude (db): 11.3 System: GC1 Frequency (rad/sec): 4.7 Phase (deg): 26 L 1 (j4.7) = 11.4 db L 1 (j4.7) 26 deg at ω = 4.7 rad/s we need to increase the gain by M = = 11.4 db and the phase by φ = 26 (18 38) = 64 deg Frequency (rad/sec) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
28 Loopshaping example Example of loop shaping Lead network A suitable network is a lead network. As we need to gain φ = 64 deg, we choose a cascade of two identical lead networks C Lead (s) = 1 + τs 1 + ατs to gain 32 deg at ω c = 4.7 rad/s, we set α =.3 and 4.7 = 1 τ α, or τ =.39 s 25 Bode Diagram s C 2Lead (s) = s Magnitude (db) 15 9 System: CLead Frequency (rad/sec): 4.7 Magnitude (db): 1.4 Phase (deg) 6 3 System: CLead Frequency (rad/sec): 4.7 Phase (deg): Frequency (rad/sec) Note that at the desired crossover frequency ω c = 4.7 rad/s, C 2Lead (j4.7) = 1.4 db Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
29 Loopshaping example Example of loop shaping Resulting controller The gain difference = 1 db at ω c = 4.7 rad/s is tolerable If the gain difference was too large, we should also have designed and cascaded a lag network The resulting feedback controller is s C(s) = C 1 (s)c 2Lead (s) = s Bode Diagram Phase (deg) Magnitude (db) System: L Frequency (rad/sec): 5.54 Magnitude (db): 3 System: L Phase Margin (deg): 41.5 Delay Margin (sec):.168 At frequency (rad/sec): 4.32 Closed Loop Stable? Yes Bode plot of loop transfer function L(jω) = C(jω)G(jω) B 3 = 5.54 rad/s M p = 41.5 deg Frequency (rad/sec) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
30 Loopshaping example Example of loop shaping Validation of the controller 1 Track a ramp reference r(t) = t with finite steadystate error e d closed loop ramp response Amplitude Input: In(1) Time (sec): 2 Amplitude: 2 System: W Time (sec): 2 Amplitude: 1.8 tracking error e(2) = =.2 MATLAB»W = L/(1+L);»t = :.1:2.5;»ramp=t;»lsim(W,ramp,t); Time (sec) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
31 Loopshaping example Example of loop shaping Validation of the controller 2 Risetime of unit step response t r.4 3 Overshoot of unit step reference ŝ 25% 1.4 closed loop step response 1.2 System: W Time (sec):.674 Amplitude: 1.28 Amplitude System: W Time (sec):.449 Amplitude: 1 MATLAB»step = ones(1,length(t));»lsim(w,step,t); Time (sec) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
32 PID controllers Proportional integral derivative (PID) controllers PID (proportional integrative derivative) controllers are the most used controllers in industrial automation since the 3s u(t) = K p e(t) + 1 t de(t) e(τ)dτ + T d T i dt where e(t) = r(t) y(t) is the tracking error Initially constructed by analog electronic components, today they are implemented digitally ad hoc digital devices just few lines of C code included in the control unit Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
33 PID controllers PID parameters r e 1 st i u y K p G(s) st d C(s) u(t) = K p e(t) + 1 t de(t) e(τ)dτ + T d T i dt K p is the controller gain, determining the aggressiveness (=closedloop bandwidth) of the controller T i is the reset time, determining the weight of the integral action T d is the derivative time, determining the phase lead of the controller Wednesday, May 5, 21 we call the controller P, PD, PI, or PID depending on the feedback terms included in the control law Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
34 PID controllers Derivative term The derivative term has transfer function st d, a high pass filter To avoid amplifying highfrequency noise (and to make the PID transfer function proper) st d gets replaced by st d st d 1 + s T d N No effect of the new pole s = N at low frequencies, but the highfrequency T d gain is limited to N (typically N = 3 2) The derivative term has the effect of predicting the future tracking error de(t) ê(t + T d ) = e(t) + T d (linear extrapolation) dt e(t) de(t) e(t)+td dt e(t+td) There are more advanced controllers that use a more refined prediction, based on the mathematical model of the process (model predictive control, MPC See more later...) t t+td Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
35 PID controllers Frequency response of PD controller {}} { N + 1 G PD (s) = K p 1 + st 1 + T d s d N 1 + s T = Kp d N N + 1 T d s } N {{ + 1 } N }{{} PD regulator α = 1 τ N+1 25 τ 2 Magnitude (db) Phase (deg) K p = 1 K d = 1 N = Frequency (rad/sec) The PD controller is equivalent to a lead network Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
36 PID controllers Frequency response of PI controller G PI (s) = K p st i = K p/t i (1 + T i s) s PI regulator 5 4 Magnitude (db) K p = 1 T i = 1 Phase (deg) Frequency (rad/sec) The PI controller introduces integral action The zero 1 T i compensates the decrease of phase margin of the integrator Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
37 PID controllers Implementation of PID controller r b! "! " e 1 st i C(s)!! u K p G(s) y " std 1+s Td N u(t) = K p br(t) y(t) + 1 st i (r(t) y(t)) Wednesday, May 5, 21 The proportional action only uses a fraction b 1 of the reference signal r. st d 1 + s T d N y(t) The reference signal r is not included in the derivative term (r(t) may have abrupt changes) Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
38 PID controllers Final remarks on loop shaping Loopshaping techniques are most adequate for SISO (singleinput singleoutput) systems They provide good insight in frequency domain properties of the closed loop (bandwidth, noise filtering, robustness to uncertainty, etc.) Most traditional singleloop industrial controllers are PID, and over 9% of PIDs are PI Curiosity: PID Temperature Control Retrofit KIT for Gaggia This PID controller kit is designed for retrofitting into the Gaggia Classic, Gaggia Coffee, and Gaggia Coffee Deluxe espresso machine. By adding a PID controller to the heater control circuit, brewing water temperature can be controlled to ±1 F accuracy. Thus, it will significantly improve the taste of your espresso. Users can also easily adjust the brew water temperature to suit their own tastes. Auber Instruments Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
39 PID controllers EnglishItalian Vocabulary loop shaping peak overshoot rise time settling time lead network lag network sintesi per tentativi sovraelongazione massima tempo di salita tempo di assestamento rete anticipatrice rete attenuatrice Translation is obvious otherwise. Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year / 39
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationExercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31317 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationFrequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
More informationThe loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationIntroduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationStability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationIntro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
More informationRobust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationPlan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequencyresponse design method Goal: wrap up lead and
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationDesign and Tuning of Fractionalorder PID Controllers for Timedelayed Processes
Design and Tuning of Fractionalorder PID Controllers for Timedelayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationChapter 15  Solved Problems
Chapter 5  Solved Problems Solved Problem 5.. Contributed by  Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the
More informationPID controllers. Laith Batarseh. PID controllers
Next Previous 24Jan15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time
More informationEE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationAutomatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...
Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationPrüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
More informationEE 4343/ Control System Design Project LECTURE 10
Copyright S. Ikenaga 998 All rights reserved EE 4343/5329  Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phaselead and Phaselag compensators using
More informationLecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 20102011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 20102011 1 / 31 imediscretization
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationLoop shaping exercise
Loop shaping exercise Excerpt 1 from Controlli Automatici  Esercizi di Sintesi, L. Lanari, G. Oriolo, EUROMA  La Goliardica, 1997. It s a generic book with some typical problems in control, not a collection
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationAutomatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Outline 2 Feedforward
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationIntegral action in state feedback control
Automatic Control 1 in state feedback control Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 21211 1 /
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More information9. TwoDegreesofFreedom Design
9. TwoDegreesofFreedom Design In some feedback schemes we have additional degreesoffreedom outside the feedback path. For example, feed forwarding known disturbance signals or reference signals. In
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTRONICS ENGINEERING
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationIMC based automatic tuning method for PID controllers in a Smith predictor configuration
Computers and Chemical Engineering 28 (2004) 281 290 IMC based automatic tuning method for PID controllers in a Smith predictor configuration Ibrahim Kaya Department of Electrical and Electronics Engineering,
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationAn Internal Stability Example
An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several polezero cancellations between the controller and
More information6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closedloop behavior what we want it to be. To review:  G c (s) G(s) H(s) you are here! plant For
More informationDesired Bode plot shape
Desired Bode plot shape 0dB Want high gain Use PI or lag control Low freq ess, type High low freq gain for steady state tracking Low high freq gain for noise attenuation Sufficient PM near ω gc for stability
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More information