Control Systems. University Questions

Save this PDF as:

Size: px
Start display at page: Transcription

1 University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec Write the differential equations for the mechanical system shown in fig. 1(b) and obtain F-V and F-I analogous electrical circuits. ( 10 Marks), Jan Mention merits and demerits of open loop and closed loop control systems and give an example for each. ( 6 Marks), July For the mechanical system shown in fig. 1(b) obtain the F-V analogous network. (8 Marks), July Obtain the transfer function of an armature controlled DC servomotor. (6 Marks), July 2009, Dec For the system shown in fig. Find the transfer function G(S) =. Consider J1= 1Kgm 2, K 1 = 1 Nm/rad, K 2 = 1 Nm/rad. B 1 = 1 Nm/rad/ Sec, B 2 = 1 Nm/ rad / sec. ( 6 Marks), Dec 2011 Dept. of ECE/SJBIT Page 1

2 7. Draw the mechanical network for the system shown in fig. write equations of performance and draw its analogous circuit based on F-V analogy. ( 10 Marks), Dec Write the differential equations of performance for the mechanical system shown in fig. Q1 (b). Draw its F-V analogous circuit. ( 08 Marks, June 2012) Dept. of ECE/SJBIT Page 2

3 UNIT-2 1. Obtain the C/R ratio for the block diagram shown using block diagram reduction technique ( 06 Marks, July 2009) 2. Find C(S)/ R(S) by Mason s gain formula ( 06 Marks, July 2009) 3. Explain briefly the following terms i) Forward path ii) path gain iii) loop gain iv) canonical form (08 Marks, July 2009) 4. Define the transfer function. Explain Mason s gain formula for determining the transfer function from signal flow graphs. ( 06 marks, Dec 2010) 5. For the block diagram shown in fig.q2 (b), determine the transfer function Q 2 (s)/q(s) using block diagram reduction algebra. (8 Marks, Dec 2010) Dept. of ECE/SJBIT Page 3

4 6. For the system described by the signal flow graph shown in fig. Q2(c), obtain the closed loop transfer function C(s) / R(s), using Mason s gain formula. ( 6 Marks, Dec 2010) 7. For the system represented by the following equation, find the transfer function X(s)/U(s) by signal flow graph. (8 Marks, Jan 2009) 8. Obtain the transfer function for the block diagram shown in fig. Q2(b) using block diagram reduction technique. ( 10 Marks, June 2012) 9. Obtain the closed loop transfer function C(s)/ R(s) for the signal flow graph of a system shown in fig. Q2(b) using Mason s gain formula. ( 10 Marks, June 2012) Dept. of ECE/SJBIT Page 4

5 10. Derive an expression for the closed loop transfer function of a negative feedback system. ( 4 Marks, Dec 2011) UNIT-3 1. Derive expressions for peak response time t p and maximum overshoot M p of an under damped second order control system subjected to step input. ( 6 Marks, June 2012) 2. A second order control system is represented by a transfer function given below. Where the proportional output and T is is is the input torque. A step unit of 10 N-m is applied to the system and test results are given below. i) Maximum overshoot is 6% ii) Peak time is 1 Sec iii) The steady state value of the output is 0.5 radian. Determine the value of J, F and K. ( 8 Marks, June 2012) 3. For a unity feedback control system with G(s) = 10(S+2) / S 2 (S+1). Find i) The static error coefficients ii) Steady state error when the input transform is ( 6 Marks, June 2012) 4. Define the following for an underdamped second order system i) Rise time ii) peak overshoot iii) settling time ( 6 Marks, Dec 2010,11) 5. Define the steady state error coefficients. Consider a unity feedback control system whose open loop transfer function is. Determine the steady state error when the input is r(t) = 1 + t + at 2 ; a 0. ( 6 Marks, Dec 2010) 6. The forward path transfer function of a certain unity negative feedback control system is G(s). The system is subjected to unit step input. From the transient response curves, it is observed that the system peak overshoot is 15% and the time at which it occurs is 1.8 secs. Determine the closed loop transfer function of the system. ( 8 Marks, Dec 2010) 7. For the negative feedback control system with G(s) = 50/ s(s+5) ; find i) Percentage overshoot for the unit step input ii) Settling time for a unit step input Dept. of ECE/SJBIT Page 5

6 UNIT-4 iii) Steady state error for the input defined by the polynomial r(t) = 2 + 4t + 6t 2, t 0 ( 10 Marks, Dec 2011) 1. Explain Routh-Hurwitz s criterion for determining the stability of a system and mention any three limitations of R-H criterion. ( 10 Marks, June 2012) 2. A unity feedback control system is characterized by the open loop transfer function 3. Define: i) Marginally stable systems; ii) absolutely stable system; iii) conditionally stable systems. ( 06 Marks, June 2012) 4. Define the term stability applied to control system sand what is the difference between absolute stability and relative stability. ( 4 Marks, Dec 2012) 5. Using Routh s stability criterion determine the stability of the following systems: i) Its open loop transfer function has poles at s = 0, s= -1, s = -3 and s = -5. Gain K = 10. ii) It s a type 1 system with an error constant of 10/sec and poles at s = -3 and s = -6 ( 8 Marks, Dec 2012) 6. Using R-H Criterion determine the stability of the system having the characteristic equation, S S S S + 75 = 0 has roots more negative than S = -2. ( 8 Marks, Dec 2012) Dept. of ECE/SJBIT Page 6

7 UNIT 5 1. Sketch the root locus for a unity feedback control system with open loop transfer function: ( 12 Marks, june 2012) 2. Show that root locus for a unity feedback control system with are the arcs of circle of radius and centered at the origin. ( 8 Marks, June 2012) 3. The open loop transfer function of a feedback control system in Check whether the following points are on the root locus. If so, find the value of K at these points, i) S = -1.5 ii) S = j2 ( 6 Marks, Dec 2012) 4. Sketch the root locus plot for a negative feedback control system characterized by an open loop transfer function, Comment on stability. (14 Marks, Dec 2012) 5. Sketch the root locus diagram for a unit feedback control system with G(s) = k / S( S+8S+17) using the rules of construction and by determining the break away/ break in points and the angle of departure. Find the value of K for which the system just oscillates. From the root locus, determine the value of K for a damping ratio of 0.5. ( 20 Marks, June 2010) 6. Define and explain the significance of angle and magnitude condition, as applied to the root locus method of stability analysis of linear system. ( 6 Marks, Dec 2010) 7. Define brake away / in point on a root locus. Explain any one method of determining the same. (6 Marks, Dec 2010) 8. For the following characteristic polynomial s + 2s +2 + K ( S+1) = 0, draw the root locus for 0 K. (8 Marks, Dec 2010) Dept. of ECE/SJBIT Page 7

8 UNIT 6 1. State the advantages and limitations of frequency domain approach. ( 6 Marks, Dec 2012) 2. Determine the transfer function, of a system whose asyptotic gain plot is shown in fig. ( 10 Marks, Dec 2012) 3. Explain Nyquist s stability criterion. ( 4 Marks, Dec 2010, June 2010) 4. The open loop transfer function of a unity negative feedback is given by: Using the Nyquist criteria, find the values of K for which the closed loop system is just stable. ( 8 Marks, Dec 2010) 5. Derive an expression for the resonant frequency and resonant peak for a closed loop system having a second order transfer function. ( 8 Marks, Dec 2010) 6. Discuss the stability of the unity feedback control system with G (s) = 1/ S 2 ( S+1) by using Nyquist criteria. If H(s) = 1+ 2s, test the stability of the system. ( 14 Marks, June 2010) 7. Dept. of ECE/SJBIT Page 8

9 UNIT June Dec June 2010 Dept. of ECE/SJBIT Page 9

10 Dec 2010 UNIT Dec May 2010 Dept. of ECE/SJBIT Page 10

11 4. June 2012 Dec 2012 Dept. of ECE/SJBIT Page 11

12 Dept. of ECE/SJBIT Page 12

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A 10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

Question paper solution. 1. Compare linear and nonlinear control system. ( 4 marks, Dec 2012) Question paper solution UNIT-. Compare linear and nonlinear control system. ( 4 marks, Dec 0) Linearcontrol system: obey super position theorem, stability depends only on root location, do not exhibit

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

CONTROL * ~ SYSTEMS ENGINEERING CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO) Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 -X-O

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

CHAPTER # 9 ROOT LOCUS ANALYSES F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

Lecture 1 Root Locus Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

Software Engineering 3DX3. Slides 8: Root Locus Techniques Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots. EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

EEE 184 Project: Option 1 EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

Root Locus Methods. The root locus procedure Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

Control Systems. EC / EE / IN. For Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

IC6501 CONTROL SYSTEMS DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK Set No. 1 1 a) Explain about the shifting and scaling operator. b) Discuss briefly about the linear time invariant and causal systems. 2 a) Write the mapping points between S-Plane and Z-plane. b) Find

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph: Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONICS ENGINEERING

EC 8391-CONTROL SYSTEMS ENGINEERING. Questions and Answers PART-A. Unit - I Systems Components And Their Representation EC 8391-CONTROL SYSTEMS ENGINEERING Questions and Answers PART-A Unit - I Systems Components And Their Representation 1. What is control system? A system consists of a number of components connected together

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

Frequency Response Techniques 4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10 Department of Electronics and Instrumentation Engineering M. E- CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I- BASICS AND ROOT-LOCUS DESIGN PART-A (2 marks) 1. What are the

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

Introduction to Root Locus. What is root locus? Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 First-Order Specs: Step : Pole Real inputs contain

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output

CO Statement. Book No [Page No] C C C C IC6501 CONTROL SYSTEMS L T P C 3 1 0 4 OBJECTIVES: To understand the use of transfer function models for analysis physical systems and introduce the control system components. To provide adequate knowledge

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature... Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

Automatic Control Systems (FCS) Lecture- 8 Steady State Error Automatic Control Systems (FCS) Lecture- 8 Steady State Error Introduction Any physical control system inherently suffers steady-state error in response to certain types of inputs. A system may have no

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

2otl. Ar\' F^\ A.t*l. (1+ne)(l +er-.b) D.rirJ. AStecFas)(-cu)(\rcn) ol( lf co/,lbtn > EECE 360 Quiz #l. Inglnecflns. J /-0marks) Kct bely Instrucdons:. You have 45 minutes to complete this quiz. Namg :. You MAY use your formula sheet.. You MUST show your work in your bookl"t SA.,l: I #l 2otl F^\ Inglnecflns 1 - (2 marks) The following two

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

FEEDBACK and CONTROL SYSTEMS SCHA UM'S OUTLINE OF THEORY AND PROBLEMS OF FEEDBACK and CONTROL SYSTEMS Second Edition CONTINUOUS (ANALOG) AND DISCRETE (DIGITAL) JOSEPH J. DiSTEFANO, III, PhD. Departments of Computer Science and Mediane

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

Root Locus Design Example #4 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

CONTROL SYSTEMS LECTURE NOTES B.TECH (II YEAR II SEM) ( ) Prepared by: Mrs.P.ANITHA, Associate Professor Mr.V.KIRAN KUMAR, Assistant Professor LECTURE NOTES B.TECH (II YEAR II SEM) (2017-18) Prepared by: Mrs.P.ANITHA, Associate Professor Mr.V.KIRAN KUMAR, Assistant Professor Department of Electronics and Communication Engineering MALLA REDDY

If you need more room, use the backs of the pages and indicate that you have done so. EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

Chapter 7 : Root Locus Technique Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total analyses of the step response, ramp response, and impulse response of the second-order systems are presented. Section 5 4 discusses the transient-response analysis of higherorder systems. Section 5 5 gives