Exercises for lectures 13 Design using frequency methods


 Leslie Cori Pitts
 1 years ago
 Views:
Transcription
1 Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control
2 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition) Value is L( jc ) T( jc ) 1 L( j ) c but it also depends on the phase L( j c ), thus on PM (Phase Margin) For PM = 90 is L( j ) j and small phase  90, so c j 1 T( jc ) j 2 L( j ) 1 In this case the closed loop bandwidth equals to the transition frequency of open loop exactly! BW c For small PM, the value T( j c ) rises and appears a resonance peak. This bandwidth BW moves to the right, but usually does not exceed 2 c. It is usually c BW 2c. Therefore, we set (OL!!!) in order to ensure the required (CL!!!) c BW Michael Šebek ARI c
3 Relationship of ω c and ω BW Bode plot T( j) with marked and values c BW for various PM It is usually 2 c BW c For a 2 nd order system without zeros, the dependency on is show in the figure c BW C , BW (1 2 ) Michael Šebek ARI
4 Repetition: steady behavior of the Bode plot >> L=(1+s)/(2+s)/(3+s), M 15dB v=value(l,0),l=l/v*10^(15/20),k=value(l,0),bode(l) L = s / 6 + 5s + s^2 K = >> KpdB=20*log10(abs(value(L,j*.01))), Kp=10^(15/20) KpdB = , Kp = >> einfty = 1/(1+Kp) einfty = Initial slope is 0 so the system is of type 0 initial value (without a pole at 0) asymptote is 15 db and thus K 15d B p steadystate error to a step is estep,ss 1 1 K p L=(1+s)/(2+s)/(3+s)/s,v=value(coprime(s*L),0);L=L/v*10, L = s / 6s + 5s^2 + s^3 Kv=value(coprime(s*L),0),bode(L) Kv = Initial slope is 20 db/dek and so the system is of type 1 (with one pole at 0) stretched "initial asymptote" intersects the zero line for frequency 10 and thus K 10 Steadystate error to a ramp v e ( ) ramp K v Michael Šebek PrARI
5 Comparison of time and frequency responses Michael Šebek PrARI
6 Example: Setting K p by a P regulator System is 5 Gs () s 2 32dB K e p ss 2.5, K 20 log 2.5 8dB 1 1 K p p,db 0.29 We want K e ss,2 ss, Kp,2 99 ess,2 p,2,db We use K 1 e 20 log 99 40dB K p,2 K p db p,2, p,db 39.6 K K K dB (Beware  the result is very fast, with a large action peak) 6
7 58390 System Gs () has s s 36 s 100 Example: Setting K v by a P regulator eramp ( ) K If we want to reduce the steadystate error to ramp 10x, we must set Kv We increase the gain 10x, what leads to Ls () We obtain s s 36 s 100 K v v but beware, the result is unstable! Here, P controller will not solve the task! 7
8 Example: Setting of gain for required PM For the position control system in the figure set the preamp gain so that the resulting system reaches 9.5% overshoot by a step of reference. From the required overshoot we calculate the damping (of dominant poles) ln(%os 100) ln(0, 095) , ln (%OS 100) ln (0,095) and from that we obtain PM PM arctan arctan (0.6) 1 4 (0.6) The open loop transfer function has an indefinite K To draw the Bode plot and perform a design on the plot we have to choose some K. Let choose K = 3.6 and obtain Ls () s s L K K 36s 100 () s s s s 100 8
9 Example: Setting of gain for required PM We draw a Bode plot LK 3.6 ( s) 360 s s 36s 100 and find a frequency, for which L( j) From the graph we subtract 14.8rad s For this frequency the amplitude is L( ) M( ) dB and therefore we must increase gain by 44.2 db, so cca 162.2x. Then we obtain Ls () s s s 100 Simulation verifying the correct design is necessary. We continue later with this example and for this purpose we measure Kv e ( ) ramp 44.2dB rad s 9
10 Example: Setting PD System transfer function (aircraft attitude) Requirements e K 1 e 2257 ramp, ss v ramp, ss PM 80 First set K p = , to increase K v,1 = 12.5 to K v =2258 and to ensure the required regulation error. Then search for the part 1 KDs Obtained PD regulator for the system is K G() s P ss Gs () K p 45dB Kv, ss Kv,
11 Example: Setting PD We draw the Bode plot for system L( s) KP 1 KDs G( s) s s for K d = 0. We find ω D, at which PM = required (regulator phase at ω D ) = = 35 where the phase is = = It is D 516. We calculate 1 1 KD Resulting L has a Bode plot. The requirement is fulfilled: PM = K Ds D 145 Phase of PD regulator D K P K D D KP KD 10K P K D 11
12 One more example: Setting PD For a transfer function Gs () s s Consider, we already designed K P = 1 and now we set K D in PD regulator for good PM We draw Bode plot for following values KD 0, 0.002, 0.005, 0.02 Uncompensated system (K d = 0) has PM = 7.78 To reach PM 58.5 PM = 80, regulator should PM add 72,22 to the new ω c From figure it follows, that it is impossible. High regulator gain PM 7.78 shifts ω c to higher frequencies, where phase of the uncompensated system declining faster than it is increased by the compensator s D K s PM 25.9
13 For a transfer function Gs () Find a PI regulator, that increases PM = 22.6 to PM new = 65 Draw a Bode graph Ls () K s K K 2 s s First for K p = 1 and K I = 0 From requirement PM new =65 find ω c,new = 170 rad/s and calculate K P G j K I choose so that the corner freq. is less than a decade ω c,new K K P I P ( c, new ) db K I P c, new I P c, new 10 K ss Example: Setting PI PM new 65 c, new c PM 22.6
14 Example: Setting PI For this K 1.42 calculate the transfer function and draw the Bode plot Ls () We obtain PM new =59, what does not satisfy the requirement. Lets try to use a smaller K I (= move the corner frequency to left). For example K I = 0.07 leads to the transfer function L () s 2 2 with PM new = 64.3 I KP s KI KP 68489s s s s s s s s
15 PID See the attached document. 15
16 Example: Lag regulator design Task: For a plat give by a transfer function Fs () 1 2s 30 s s design a Lag regulator satisfying these requirements: e, 0.05, PM 45 ss ramp Solution: 1. Find the value of the gain providing the desired deviation: ( ) ( ) K L1 s KF s s s 2 30 e ss, ramp s K 1200 Kv lim sl1 ( s) K K 0.05 s0 230 This OL transfer function gives incorrect PM and GM >> K=1200;F=1/s/(s+2)/(s+30);L1=K*F L1 = 1200 / 60s + 32s^2 + s^3 >> [GM,PM,om_cp,om_cg]=margin(tf(L1)) GM = PM = om_cp = om_cg = >> GM_dB = 20*log10(GM) GM_dB = Michael Šebek ARI
17 Phase (deg) Magnitude (db) Example: Lag regulator design 2. Draw a Bode plot L L1 () s s s s 30 From the required PM we calculate necessary phase and we find new ω c,new = 1.28 rad/s At this frequency, we find the necessary attenuation c, new Bode Diagram C( j ) 22.1dB db System: untitled1 Frequency (rad/s): 1.31 Magnitude (db): 22.1 System: untitled1 Frequency (rad/s): 1.28 Phase (deg): Frequency (rad/s) 3. We calculate the parameter a from the measurements or from a transfer fcn. a C( j ) 22.1dB c, new db C( j ) c, new = C( j ) 10 db c, new >> aa=1/abs(value(l1,j*1.28)) aa = Michael Šebek ARI
18 4. We calculate zero and pole 5. The final regulator is p c z c 10 c, new Example: Lag regulator design az c C lag () s as pc s s p s c 6. Finally, we verify if the regulator satisfies the requirements. Michael Šebek ARI
19 Phase (deg) Magnitude (db) Example: Lag regulator design Bode Diagram rad/s rad/s System: untitled3 Phase Margin (deg): 49 Delay Margin (sec): 0.65 At frequency (rad/s): 1.32 Closed loop stable? Yes Frequency (rad/s) >> Kv=value(coprime(s*L2),0), e_ss_ramp=1/kv Kv = , e_ss_ramp = Michael Šebek ARI
20 Other Example: Lag compensation In the positioning control system, Ls () the gain was by previous method adjusted so ss 36s 100 that the system has overshoot 9.5% and 1 Kv eramp ( ) Kv Add Lag compensation so that the steady state value to the ramp is 10x smaller and the overshoot does not increase The steady state leads to Kv 162.2, so we have to increase the gain 10 and then we obtain Ls () The overshot requirement 9.5% leads to ss 36s PM 59.2 Because Lag decreases PM only little, but still (we expect a deteriorateon PM 5 12 ), we consider rather PM Lets find a frequency, for which the phase is L( j)
21 Lag compensation From required phase we determine frequency 9.8rad s 24dB Ls () 36s 100 s s and then the value 20log M( ) 24dB rad s From the definition, PM for should be 20log M( ) 0dB 9.8rad s Lag should have at the frequency attenuation 24dB 21
22 Lag compensation Draw the asymptote for higher frequencies in 20log M( ) 24dB 1 T 0.062rad s 20dB dek 24dB 1 T 0.98rad s The upper corner frequency is chosen by a decade left from 9.8rad s, it is 1 T 0.98rad s From there we continue with the slope 20dB dek to 0dB, what we reach for 1 T 0.062rad s After substitution we obtain s 1 T s 0.98 Cs () s 1 T s It has correct shape, but not the gain, so we set up the DC gain of the compensator s 0.98 K DC( s) KCC( s) C 1 p z DC(0) 1 0dB s
23 Lag compensation The result is s 100 s s 0.063( s 0.98) s ( s 0.98) s s 36s100 s Compensated system Lag compensator Amplified uncompensated system Step response Ramp response 23
24 Lets get back to the positioning control system and design a regulator according to specifications: OS 20%, K v = 40, T p = 0,1s First set up gain so, that K 40 K lim sl( s) K 40 K 1440 v s0 Lets substitute it and continue From the given specification we calculate PM a ω BW : v Example: Lead compensation Ls () s s Ls () s s 100K 36s s 100 ln(%os 100) PM arctan ln (%OS 100) BW 2 1 T p rad s 24
25 Lead compensation Draw a Bode plot for This uncompensated system has PM = 34,1 By Lead compensation we increase PM to required value Since Lead also increases ω C, we add also some compensation factor. To compensate the smaller phase for larger frequencies ω C we choose the factor as 10º. Ls () s 100 s s We require the regulator phase increase of
26 Lead compensation We require the regulator phase increase of 48, = 24,1 Generally the compensated system should have PM 48.1 a BW 46.6rad s It should not produce satisfactory results, we have to repeat the design with other correction factor. From the phase growth requirement we have max 24.1 and from it It follows that 1 sin 1 sin max max D( max ) 3.76dB If we choose C, new max, then at this frequency the amplitude of the uncompensated system should be 3,76 db According to that we find ω max Michael Šebek PrARI
27 Lead compensation On the Bode plot Ls () s s s 100 We measure max 39rad s. Then from and 0.42 we calculate max 3.76dB max 39rad s max T , 60.2 T T and in the end, we obtain the search factor 1 s ( ) T s Ds s s 60.2 T 27
28 Lead compensation The result is: Compensated system Uncompensated system Lead compensator Simulation: OS% 22.6, PM 45.5, 39 rad s 68.8rad s, T 0.075s, K 40 BW p v C 28
EE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationModule 5: Design of Sampled Data Control Systems Lecture Note 8
Module 5: Design of Sampled Data Control Systems Lecture Note 8 Laglead Compensator When a single lead or lag compensator cannot guarantee the specified design criteria, a laglead compensator is used.
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationLINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad
LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Controller design in the frequency domain Topics to be covered include: Lag controller design 2 Dr. Ali Karimpour
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationPID controllers. Laith Batarseh. PID controllers
Next Previous 24Jan15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationBoise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain
Boise State University Department of Electrical Engineering ECE6 Control Systems Control System Design in the Frequency Domain Situation: Consider the following block diagram of a type servomechanism:
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationAnalysis and Design of Analog Integrated Circuits Lecture 12. Feedback
Analysis and Design of Analog Integrated Circuits Lecture 12 Feedback Michael H. Perrott March 11, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Open Loop Versus Closed Loop Amplifier
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationCDS 101/110 Homework #7 Solution
Amplitude Amplitude CDS / Homework #7 Solution Problem (CDS, CDS ): (5 points) From (.), k i = a = a( a)2 P (a) Note that the above equation is unbounded, so it does not make sense to talk about maximum
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationEE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More informationStability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationDesired Bode plot shape
Desired Bode plot shape 0dB Want high gain Use PI or lag control Low freq ess, type High low freq gain for steady state tracking Low high freq gain for noise attenuation Sufficient PM near ω gc for stability
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationPM diagram of the Transfer Function and its use in the Design of Controllers
PM diagram of the Transfer Function and its use in the Design of Controllers Santiago Garrido, Luis Moreno Abstract This paper presents the graphical chromatic representation of the phase and the magnitude
More informationFrequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationEE 4343/ Control System Design Project LECTURE 10
Copyright S. Ikenaga 998 All rights reserved EE 4343/5329  Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phaselead and Phaselag compensators using
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationFrequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
More informationEngraving Machine Example
Engraving Machine Example MCE44  Fall 8 Dr. Richter November 24, 28 Basic Design The Xaxis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationAsymptotic Bode Plot & LeadLag Compensator
Asymptotic Bode Plot & LeadLag Compensator. Introduction Consider a general transfer function Ang Man Shun 20225 G(s = n k=0 a ks k m k=0 b ks k = A n k=0 (s z k m k=0 (s p k m > n When s =, transfer
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More informationReglerteknik: Exercises
Reglerteknik: Exercises Exercises, Hints, Answers Liten reglerteknisk ordlista Introduktion till Control System Toolbox ver. 5 This version: January 3, 25 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More informationStep Response Analysis. Frequency Response, Relation Between Model Descriptions
Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationECE382/ME482 Spring 2005 Homework 8 Solution December 11,
ECE382/ME482 Spring 25 Homework 8 Solution December 11, 27 1 Solution to HW8 P1.21 We are given a system with open loop transfer function G(s) = K s(s/2 + 1)(s/6 + 1) and unity negative feedback. We are
More informationPrüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationControl Systems. Control Systems Design LeadLag Compensator.
Design LeadLag Compensator hibum@seoulteh.a.kr Outline Lead ompensator design in frequeny domain Lead ompensator design steps. Example on lead ompensator design. Frequeny Domain Design Frequeny response
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationPlan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequencyresponse design method Goal: wrap up lead and
More informationAutomatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...
Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................
More informationElectronics II. Final Examination
f3fs_elct7.fm  The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm
More informationAutomatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Outline 2 Feedforward
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationPositioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pickandplace robot to move the link of a robot between two positions. Usually
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationDIGITAL CONTROLLER DESIGN
ECE4540/5540: Digital Control Systems 5 DIGITAL CONTROLLER DESIGN 5.: Direct digital design: Steadystate accuracy We have spent quite a bit of time discussing digital hybrid system analysis, and some
More informationLABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA EXPERIMENT NO : CS II/ TITLE : FAMILIARIZATION
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More informationController Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationSTABILITY OF CLOSEDLOOP CONTOL SYSTEMS
CHBE320 LECTURE X STABILITY OF CLOSEDLOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 101 Road Map of the Lecture X Stability of closedloop control
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationMAE 143B  Homework 9
MAE 143B  Homework 9 7.1 a) We have stable firstorder poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straightline
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationMAE 143B  Homework 9
MAE 43B  Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationThe loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
More information