# Robust Performance Example #1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants modeled by a multiplicative perturbation to the nominal system. The extreme plant is as far away from the nominal plant in terms of the frequency domain magnitude of the perturbation at each frequency as any system that must be considered. The goal is to design a compensator that provides both robust stability and robust performance for that family of systems. Robust stability of the family means that the compensator provides internal closed-loop stability for each member of the family, and robust performance in this example means that each closed-loop system in the family satisfies a given frequency domain constraint on the sensitivity function S (jω) []. The nominal and extreme plants are given in () by G(s) and G (s), respectively. 9 G(s) s(s +2), 5 G (s) () s(s +) A lag-lead compensator is designed for the nominal system to place the dominant closed-loop poles at s 4 ± j2 and to make the steady-state error for a ramp input equal to e ss.5. Details on the root locus design procedures for transient response [2] and steady-state error [3] are available on the ECE 42 web site and in most introductory texts on automatic control, for example [4] [6]. A compensator that achieves these objectives is (s +.4) (s ) K(s) (s (2) )(s ) This compensator is placed in series with the system to be controlled. If the different plant models represent physically different systems, instead of perturbations to a single nominal system, each system would be controlled by its own compensator, using the same compensator model given in (2). The nominal and extreme loop gains are L(s) K(s)G(s) (s +.4) (s ) s (s )(s +2)(s ) (3) L (s) K(s)G (s +.4) (s ) (s) s (s (4) )(s +)(s ) Performance will be defined byspecifications imposed on the frequency domain magnitude of the sensitivity function, that is, on S(jω) +L (jω). Nominal performance (NP) is defined by NP : S(jω) < w P (jω), ω w P (jω) S(jω) <, ω (5) where w P (s) is a specified weighting function. The assumption here is that time domain specifications, such as overshoot and settling time, or frequency domain specifications, such as phase margin and bandwidth, can be achieved by proper choice of w P (s). The peak magnitude of S(jω), the closed-loop bandwidth defined in terms of S(jω), and the low-frequency slope of S(jω) can be chosen through w P (s). The performance weighting function in this example is w P (s) s/m + ω B s + ω B A.5s +.8 s which implies that S(jω) should have at least a 2 db/decade slope at low frequencies (since A ), a maximum value of M 2, and pass through 3 db at ω ω B.8 rad/sec. For robust performance (RP), each member of the plant family must satisfy an expression like (5), that is, RP : S i (jω) < w P (jω), ω, S i S p (7) where S p represents the sensitivities for the family of plants under consideration. Figure shows the sensitivity magnitudes for the nominal and extreme systems and the magnitude of / w P (jω). Since the sensitivity magnitudes are both below / w P (jω) for all frequencies, each of those two systems satisfy the performance requirements. However, this does not imply RP, unless those are the only two plants in the family. These notes are lecture notes prepared by Prof. Guy Beale for presentation in ECE 72, Multivariable and Robust Control, in the Electrical and Computer Engineering Department, George Mason University, Fairfax, VA. Additional notes can be found at: See (6)

2 2 Nominal and Extreme Sensitivities and Performance Weighting Function S / w P S Magnitude (db) 3 4 w P (s) (.5s+.8)/s G(s) 9/[s(s+2)] G (s) 5/[s(s+)] 5 K(s) (s+.4)(s )/[(s+.64)(s )] Frequency (r/s) Fig.. Sensitivity magnitudes for the nominal and extreme plants, and the performance weighting function. Before RP can be determined, stability must be investigated. Nominal stability (NS) is defined by the nominal closed-loop system being stable, that is, all the closed-loop poles of the compensator-nominal plant combination must be in the open left-half of the complex s-plane. Under the assumption of an unstructured multiplicative uncertainty model, robust stability (RS) is defined by the following constraint on the magnitude of the nominal complementary sensitivity function T (jω). RS : T (jω) < w I (jω), ω w I (jω) T (jω) <, ω (8) The nominal complementary sensitivity function is given by T (s) L(s)[+L(s)],andw I (s) is the uncertainty weighting function that overbounds the magnitude of the maximum relative uncertainty l I (ω), given by l I (ω) max L i L p L (jω) G (s) G (s) l I (s) G (s) Li (jω) L (jω) L (jω) L (jω) G (jω) G (jω) L (jω) G (jω) " # l I (s).4444s2 (s +2)(s.25) s 2 (s +)(s +2) 5 s(s+) 9 s(s+2) 9 s(s+2).4444 (s.25) (s +) L p represents the loop gains for all the members of the family of plants being considered. Since G (s) is an extreme plant and the only perturbed model given, the relative uncertainty can be computed based on that transfer function. Since only the frequency response magnitude w I (jω) is needed for overbounding l I (ω), w I (s) can always be chosen to be a stable and minimum-phase transfer function. For this example, w I (s) is given by w I (s).4444 (s +.25) (s +) (.4444s +.) (s +) which provides an exact overbounding for l I (ω). Since T (jω) < / w I (jω) is required for robust stability, the low frequency magnitude restriction on T (jω) is /. 9 (9. db), and the high frequency restriction on T (jω) is / (7.4 db). Figure 2 shows the nominal complementary sensitivity T (jω) along with / w I (jω). Since T (jω) < / w I (jω) for all frequencies, the family is robustly stable []. This means that any plant-compensator combination (9) () () (2)

3 3 2 Nominal Complementary Sensitivity and Uncertainty Weighting Function / w I T Magnitude (db) 3 w I (s) (.4444s+.)/(s+) Frequency (r/s) Fig. 2. Nominal complementary sensitivity and uncertainty weighting function. whose polar plot at each frequency falls within the closed disk of radius w I (jω) L (jω) centered at L (jω) will be closed-loop stable 2. Now that nominal performance and robust stability have been achieved, the issue of robust performance can be addressed. The derivation of the condition for robust performance for the family of systems is illustrated in Fig. 3. For robust performance, the condition of (7) must be satisfied. From the figure it can be seen that the specified performance is represented at each frequency by a circle of radius w P (jω) centered at +j, and the circle of uncertainty at each frequency is centered at L (jω) with radius w I (jω) L (jω). The distance from the point to the nominal loop gain is +L (jω). For robust performance the circle of uncertainty must not encircle or intersect the circle for performance at any frequency. Therefore, the distance +L (jω) must be greater than the sum of the radii of the circles representing uncertainty and performance, that is, w P (jω) + w I (jω) L (jω) < +L (jω), ω (3) w P (jω) +L (jω) + w I (jω) L (jω) +L (jω) <, ω (4) w P (jω) S (jω) + w I (jω) T (jω) <, ω (5) Since w P (jω) S (jω) < at all frequencies corresponds to NP and w I (jω) T (jω) < at all frequencies corresponds to RS, expression (5) shows that necessary conditions for RP are NP and RS. Therefore, the nominal system satisfying the performance requirements and every plant in the family being closed-loop stable are necessary conditions for every plant in the family satisfying the performance requirements. However, (5) also shows that by themselves NP and RS are not sufficient conditions for RP. The sum of those two terms must also be less than at all frequencies in order to achieve robust performance. Figure 4 shows the sum of the weighted sensitivity and weighted complementary sensitivity magnitudes for this example. Since the peak value of that sum is shown to be less than, this family of plants with the compensator given in (2) has robust performance. Therefore, the design goal for the compensator has been achieved. Figure 5 shows the closed-loop step responses and the open-loop polar plots for the nominal and extreme systems whose loop gains are given in (3) and (4), respectively. The nominal system clearly has better performance in terms of overshoot, and it also has a shorter settling time that might be considered a benefit. However, the performance of the perturbed (extreme) system also satisfies the specification on the sensitivity function, so that performance must also be considered acceptable. 2 See the example Robust Stability # at:

4 4 RP: ω 3.2 r/s.5 Circle of Perfomance w P (jω) -.5 +L(jω) L(jω) - w I (jω)l(jω) Circle of Uncertainty Fig. 3. Illustration of the robust performance requirement: w P (jω) + w I (jω) L (jω) < +L (jω), ω w P S + w I T Magnitude Frequency (r/s) Fig. 4. Sum of weighted sensitivity and weighted complementary sensitivity functions.

5 5 Although the nominal system has a larger phase margin than the perturbed system, both of those systems have phase margins that generally would be considered acceptable. Figure 6 shows the maximum and minimum magnitudes for the sensitivity and complementary sensitivity functions for any plant model allowed in the family of systems defined by w I (s). The maximum and minimum magnitudes for the sensitivity function are given by S (jω) max +L (jω) w I (jω) L (jω), S (jω) min (6) +L (jω) + w I (jω) L (jω) and the maximum and minimum magnitudes for the complementary sensitivity function are T (jω) max L (jω), T (jω) +L (jω) min L (jω) (7) max +L (jω) min The minimum and maximum sensitivity magnitudes are easy to compute based on the geometric relationship between sensitivity and the circles of uncertainty. The corresponding complementary sensitivity magnitudes are less easy to visualize since they depend on the ratios of vectors drawn from the origin and from the point to L (jω). Knowing that the family of systems is robustly stable (from kw I T k < ), the fact that the maximum sensitivity magnitude for all systems in the family is below / w P (jω) at all frequencies indicates that the family also has robust performance. In other words, if all plants in the family are stable, and the worst-case system satisfies the performance criterion, then all systems in the family satisfy the performance criterion and robust performance is achieved. The nine graphs in Fig. 7 illustrate the relationship between the circle of uncertainty at a particular frequency, centered on L (jω) with radius w I (jω) L (jω), and the performance weighting function at the same frequency, centered at +j with radius w P (jω). For the family of systems to be robustly stable, the circles of uncertainty must not intersect the circles representing performance at any frequency. This relationship cannot conveniently be shown on a single plot since the circles must be compared on a frequency-by-frequency basis. At low frequencies, w P (jω) À, and those circles would clearly enclose the circles of uncertainty at high frequencies. To show both sets of circles at all frequencies on a single plot and to indicate which pairs of circles should be compared would be difficult. The graphs in Fig. 7 merely illustrate how the circles of uncertainty move along the polar plot, decreasing in radius, and slide past the circles of the performance weighting function when the family has robust performance. The plot of w P (jω) S (jω) + w I (jω) T (jω) in Fig. 4 is the easiest way to graphically show whether or not a family of systems is robust in terms of performance. REFERENCES [] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control. Chichester, England: John Wiley & Sons, 996. [2] G. Beale, Compensator design to improve transient performance using root locus. Available from the author as a pdf file. [3] G. Beale, Compensator design to improve steady-state performance using root locus. Available from the author as a pdf file. [4] R. C. Dorf and R. H. Bishop, Modern Control Systems. Upper Saddle River, NJ: Prentice Hall, th ed., 25. [5] J. D Azzo and C. Houpis, Linear Control System Analysis and Design. New York: McGraw-Hill, 4th ed., 995. [6] K. Ogata, Modern Control Engineering. Upper Saddle River, NJ: Prentice Hall, 4th ed., 22.

6 6.4 Closed Loop Step Responses for Nominal and Perturbed Systems.2 Nominal Perturbed Amplitude Time (s) 2.5 Polar Plots for Nominal and Perturbed Systems L: ω 2.82 r/s, PM 68.2 deg c L : ω 2.5 r/s, PM 54. deg c L L Fig. 5. Closed-loop step responses and open-loop polar plots for the nominal and extreme systems.

7 7 Maximum and Minimum Sensitivity Functions Magnitude (db) 3 4 / w P S max S min Maximum and Minimum Complementary Sensitivity Functions / w I Magnitude (db) 3 T min T max Frequency (r/s) Fig. 6. Worst case sensitivity and complementary sensitivity functions.

8 8 RP: ω. r/s 5 RP: ω.3 r/s 5 RP: ω.6 r/s RP: ω. r/s RP: ω 2.5 r/s RP: ω 3.2 r/s RP: ω 4.7 r/s RP: ω 5. r/s RP: ω 7.8 r/s Fig. 7. Illustration of the relationship between the circles of uncertainty and the circles of performance for a family of systems with robust performance.

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### Root Locus Design Example #4

Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

### 16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

### Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

### Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

### ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

### Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER

### EE3CL4: Introduction to Linear Control Systems

1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop

### FREQUENCY-RESPONSE DESIGN

ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

### (b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

### An Internal Stability Example

An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

### Frequency Response Analysis

Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

### Transient Response of a Second-Order System

Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

### Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

### Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain

### ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

### 7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

### The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

### 6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

### The Generalized Nyquist Criterion and Robustness Margins with Applications

51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA The Generalized Nyquist Criterion and Robustness Margins with Applications Abbas Emami-Naeini and Robert L. Kosut Abstract

### H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

### Frequency domain analysis

Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

### Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

### Root Locus Design Example #3

Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll

### MULTIVARIABLE ROBUST CONTROL OF AN INTEGRATED NUCLEAR POWER REACTOR

Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil Vol. 19, No. 04, pp. 441-447, October - December 2002 MULTIVARIABLE ROBUST CONTROL OF AN INTEGRATED NUCLEAR POWER REACTOR A.Etchepareborda

### ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

### 1 (20 pts) Nyquist Exercise

EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

### PM diagram of the Transfer Function and its use in the Design of Controllers

PM diagram of the Transfer Function and its use in the Design of Controllers Santiago Garrido, Luis Moreno Abstract This paper presents the graphical chromatic representation of the phase and the magnitude

### Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

### Phase Margin Revisited: Phase-Root Locus, Bode Plots, and Phase Shifters

168 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 1, FEBRUARY 2003 Phase Margin Revisited: Phase-Root Locus, Bode Plots, and Phase Shifters Thomas J. Cavicchi Abstract In learning undergraduate controls,

### Compensator Design for Helicopter Stabilization

Available online at www.sciencedirect.com Procedia Technology 4 (212 ) 74 81 C3IT-212 Compensator Design for Helicopter Stabilization Raghupati Goswami a,sourish Sanyal b, Amar Nath Sanyal c a Chairman,

### Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

### INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

### The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.

Introduction to the Nyquist criterion The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location. Mapping. If we take a complex number

### Chapter 12. Feedback Control Characteristics of Feedback Systems

Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop

### r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

### Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

### Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles

### Root Locus Methods. The root locus procedure

Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501

### NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

### Alireza Mousavi Brunel University

Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

### Chapter 10 Feedback. PART C: Stability and Compensation

1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

### Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

### Lecture 13: Internal Model Principle and Repetitive Control

ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)

### Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

### Classical Dual-Inverted-Pendulum Control

PRESENTED AT THE 23 IEEE CONFERENCE ON DECISION AND CONTROL 4399 Classical Dual-Inverted-Pendulum Control Kent H. Lundberg James K. Roberge Department of Electrical Engineering and Computer Science Massachusetts

### EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

### DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

### Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

### Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2

### ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

### EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

### Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna

### Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

### Performance of Feedback Control Systems

Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

### ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

### Lecture 1 Root Locus

Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

### Chapter 7 - Solved Problems

Chapter 7 - Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal

### Essence of the Root Locus Technique

Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

. The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer

### MAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: I-B. Name & Surname: Göksel CANSEVEN

MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: I-B Name & Surname: Göksel CANSEVEN Date: December 2001 The Root-Locus Method Göksel CANSEVEN

### School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

### Inverted Pendulum. Objectives

Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

### CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

### Robust H Control of a Scanning Tunneling Microscope under Parametric Uncertainties

2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 FrC08.6 Robust H Control of a Scanning Tunneling Microscope under Parametric Uncertainties Irfan Ahmad, Alina

### Solutions to Skill-Assessment Exercises

Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

### The Frequency-Response

6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method The design of feedback control systems in industry is probably accomplished using frequency-response methods

### CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

### Step Response for the Transfer Function of a Sensor

Step Response f the Transfer Function of a Sens G(s)=Y(s)/X(s) of a sens with X(s) input and Y(s) output A) First Order Instruments a) First der transfer function G(s)=k/(1+Ts), k=gain, T = time constant

### EE3CL4: Introduction to Linear Control Systems

1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

### Desired Bode plot shape

Desired Bode plot shape 0dB Want high gain Use PI or lag control Low freq ess, type High low freq gain for steady state tracking Low high freq gain for noise attenuation Sufficient PM near ω gc for stability

### Lecture 17 Date:

Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

### MIMO analysis: loop-at-a-time

MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

### Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

### Dynamics and Control of Double-Pipe Heat Exchanger

Nahrain University, College of Engineering Journal (NUCEJ) Vol.13 No.2, 21 pp.129-14 Dynamics and Control of Double-Pipe Heat Exchanger Dr.Khalid.M.Mousa Chemical engineering Department Nahrain University

### Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

### Robust Internal Model Control for Impulse Elimination of Singular Systems

International Journal of Control Science and Engineering ; (): -7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department

### Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

### PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

### AN INTRODUCTION TO THE CONTROL THEORY

Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

### Tradeoffs and Limits of Performance

Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop

### Robust control of MIMO systems

Robust control of MIMO systems Olivier Sename Grenoble INP / GIPSA-lab September 2017 Olivier Sename (Grenoble INP / GIPSA-lab) Robust control September 2017 1 / 162 O. Sename [GIPSA-lab] 2/162 1. Some

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

### Homework Assignment 3

ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full

### Chapter 7 : Root Locus Technique

Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

### Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can

### Goals for today 2.004

Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation