a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a"

Transcription

1 Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation to transient response and stability RL to select a parameter (such as K) to meet closed loop transient response specifications a. Closed-loop system; b. equivalent transfer function NG () s NH () s If G() s and () H s D ()() s D s Then the CLTF () T is s G KNG ()() s DH s T () s D ()()()() s D s KN s N s G H G H The zeros of () T are s from ()() Nands D s the poles of () T are s from a contribution of a lot factors. Also the transient response is affected by the poles and zeros of () G and s (). H s The RL give a good representaion of the poles of T() as s varies. K G H H

2 Vector representation of complex numbers: a. s = + j; b. (s + a); c. alternate representation of (s + a); d. (s + 7) s5 + j Consider a function of the form F() s m j s zi i n s p j The parameter m is the number of zeros and n is the number of poles which are complex factors. The magnitude M of F() to s any point iss m s zi i M n s p j j The term is the magnitude of the vector from the zeros of F() at s to z the point. s Similarly, s z i s p j i is the magnitude of the vector from the poles of () F at s p to the point. s j The angle of () F s to any point s is = zero angles - poles angles s zi s p j

3 The zero angle is measured in the positive sense from the vector starting at the zero at - z on the s plane to the s point in question. i The pole angle is measured in the positive sense from the vector starting at the pole - p on the s plane to the s point in question. j Find the vector representation M of F(s) to the point -+j M? F() s s s s The vector from zero at - to the s point is The vector from pole at to the s point is (8 tan) 6.6 (8 tan) The vector from pole at - to the s point is Using the Eq. m s zi i M n s zi s pi s pi i (8 tan) 7. M which is evaluating F() at s the point -+ j

4 Courtesy of ParkerVision. a. CameraMan Presenter Camera System automatically follows a subject who wears infrared sensors on their front and back (the front sensor is also a microphone); tracking commands and audio are relayed to Camera Man via a radio frequency link from a unit worn by the subject. b. block diagram. c. closed-loop transfer function. Pole location as a function of gain for the system a. Pole plot from Table b. root locus

5 Root Locus Definition of the RL The root locus of a closed loop TF is a representation of a continuous path of the closed loop poles on the s-plane as the gain K or other parameter is varied from - to +. For this course, the parameter K is Properties of the RL Consider the CLTF () T s KG() s ()() KG s H s A pole s exists when the characteristic polynomial in the denominator becomes zero. Therefore, ()() KG s H s 5

6 That pole can be represented by a vector that has magnitude and an angle. Therefore, a value of s is a closed loop pole if KG()() s H s This is called the magnitude criterion. KG()()( s H s )8 k ;, k,,... i.e. an odd multiple of 8. This is called the angle criterion. A pole s exist when the char. eqn becomes zero or KG()() s H s ( )8 k The value of K can be evaluated as K G()() s H s Since the magnitude of KG(s)H(s) is unity, K can be solved as above once the pole value is substituted. So satisfying the angle and magnitude criteria of KG(s)H(s) indicates that the s value is a pole on the root locus. Example Prove whether that the s point -+j is on the RL of a open loop system as KG()() s H s K( s )( s ) ( s )( s ) If the s point -+j is on the RL of the system, then the magnitude and angle criteria are satisfied. 6

7 a. Example system; b. pole-zero plot of G(s) Vector representation of G(s) from -+ j Test point -+j Using the angle criterion i j s z s p (k )8 ; k,,,... Using the previous figure, we need to evaluate all the angles from the zeros and poles to the point in question ( j) and observe whether the result is an odd multiple of 8. The result of has to be evaluated. 7

8 This image cannot currently be displayed. tan() 56. tan() tan() ( )8 k ; k,,,... -+j Therefore, the point j is not on the root locus of K( s )( s ). ( s )( s ) The point j is a point on the RL so the angle add up to a 8 (check). Now the gain K has to be evaluated at this point of j using the magnitude criterion pole vector lengths i K = n G()() s H s M zero vector lengths m j L. L L..77 L L L K. L L. ( )( ) The point j is a point on the RL of ( )( ) with a gain of.. K K s s s s 8

9 Sketching the root locus Number of branches the number of branches of the root locus equals the number of closed loop poles Symmetry root locus is symmetrical about the real axis Real axis segment on the real axis, for K> the root locus exists to the left of an odd number of real axis, finite open-loop poles and/or finite open loop zeroes example Complete root locus for the system The number of paths to infinity = n (poles) - m (zeros) none 9

10 From Matlab.8 Root Locus System: sys Gain:. Pole: i Damping:.9 Overshoot (%):. Frequency (rad/sec):..6.. Imag Axis Stable for all K Real Axis Start and end points of the RL T () s KN G ()() s DH s D ()()()() s D s KN s N s G H G H The RL begins at K and ends at K As K ; () T s KN G ()() s DH s D ()() s D s G H As approaches zero due to K, the closed loop poles of () T s becomes the poles of D ( s) D (). s G H This implies that the RL commences at the poles of ()(). D s D s G H The RL therefore begins at the poles of the loop transfer function at K. Analytically, this can also be seen from D ()()()() s D s KN s N s G H G H As K ;()() D sd s G H RL end T () s T () s KNG ()() s DH s D ()()()() s D s KN s N s G H G H KNG ()() s DH s KN ()() s N s G H As K ; The poles of T() is s therefore the ze ros of N()() s N s G H

11 KNG ()() s DH s T () s D ()()()() s D s KN s N s D ()()()() s D s KN s N s Dividing by K K DG ()() s DH s NG ()() s NHs K N ()() s N s G H G H G H G H G H The RL ends at K, at the zeros of the open loop transfer function N()(). s N s G H Therefore, the RL starts at the poles of ()() G sand H sends at the zeros of ()() G s(the H sopen loop TF). Behavior at infinity If there are n poles of P(s) and m finite zeros of P(s), the number of loci that approaches infinity as K approaches infinity is n-m. They will approach infinity along asymptotes with angles of 8 (n-m=); +9 (n-m=); 8 and +6 (n-m=), or +5 and +5 (n-m=). Angles 8 k.6 k, k,,,, n m n m Real axis intercept p p pn z z zm c, n m n m

12 Example The real axis intercept a The angle of the lines that intersect at -/ are θ a = π/ for k = θ a = π for k = θ a = 5π/ for k = Root locus and asymptotes for the system G() s K( s ) s 7s s 8s # of Paths to infinity n m = # of zeros # of poles Root Locus Imag Axis System: sys Gain: 9.5 Pole: i Damping: -.87 Overshoot (%): Frequency (rad/sec): Stable up to a limiting K value Real Axis

13 Root Locus Imag Axis System: sys Gain:.5 Pole: -.5 Damping: Overshoot (%): Frequency (rad/sec): K at the breakaway point Real Axis Root locus example showing real- axis breakaway (- ) and break-in points ( ) Variation of gain along the real axis for the previous root locus

14 The previous plot show that the gain reaches a maximum between the poles (where K starts off at ). This occurs at the breakaway point. The gain is a minimum as the RL plot comes back on the real axis and goes towards the zeros (K becomes infinite). This occurs at the break-in point. Therefore, we can use basic calculus to find the breakaway and break-in points first method. Repeating part (d), Recall Recall K G()() s H s Subst s in the above K G()() H dk() Differentiating with respect to, with d we can solve for the values of (or valu s es) where the RL leaves and arrives on the real axis (the breakaway point and break-in points). Example K s s K s s KG()() s H s ( )( 5)( 8 5) ( s )( s ) s s Subst. s K ( 8 5) Making K the subject of the fromula K 8 5 Diff. with respect to and equating to dk d 6 6 ( 8 5) 6 6 Solving for gives.5 and =.8 the breakaway and break-in ponts

15 Second method breakaway and break-in point without differentiation (transition method). These points satisfy the relationship: m n p where zi and pi are the negative of the zero and pole values From the example zi and.8 i Data for breakaway and break-in points for the root locus j crossing CLTF () T s K( s ) s 7s (8) s K s K Completing the Routh array 5

16 Only s can from a row of zeros Solving -K 65K 7 K 9.65 Using the auxillary equation of the s term and K 9.65 (9) K K8.5 s.7 s j.59 The RL crosses the imaginary axis at s j.59 at a gain K At this gain, marginal stability occurs. Also, the system is stable for K 9.65 Angles of departure from poles of P(s) and angles of arrival at finite zeros of P(s) can determined by application of the angle criterion to a point selected arbitrarily close to the departure or arrival point Example Given a unity feedback system that has a forward TF K( s ) G() s, do the following ( s s ) (a) Obtain a RL using Matlab Roots: +i (b) Find the complex poles that crosses on the imaginary axis (c) Determine the gain at the j crossing (d) Determine the break-in point Discuss plant stability 6

17 Repeating part (d), Recall Recall K G()() s H s Subst s in the above K G()() H dk() Differentiating with respect to, with d we can solve for the values of (or valu s es) where the RL leaves and arrives on the real axis (the breakaway point and break-in points). 7

18 K( s ) KG()() s H s Subst s ; K dk d ( s s ) ( )( )( ), 7 ( ) The break-in point occurs at s 7. Example Given a unity feedback system that has a forward TF K( s )( s ) G() s, do the following ( s 6s 5) (a) Obtain a RL using Matlab (b) Find the complex poles that crosses on the imaginary axis (c) Determine the gain K at the j crossing (d) Determine the break-in point (e) Find the point where the RL crosses the.5 damping ratio line (f) Find the gain at the point where the RL crosses the.5 damping ratio line (g) Find the range of gain K, for which the system is stable 8

19 Root Locus System: sys Gain: Pole:.6 +.5i Damping: -.65 Overshoot (%): Frequency (rad/sec):.5 Imag Axis Real Axis Root Locus Imag Axis System: sys Gain: 5. Pole: e-8i Damping: - Overshoot (%): Inf Frequency (rad/sec): Real Axis 9

20 System: sys Gain:.8 Pole: i Damping:.5 Overshoot (%): 6. Frequency (rad/sec):.8 Root Locus Real Axis Root Locus System: sys Gain:.8 Pole: i Damping:.5 Overshoot (%): 6. Frequency (rad/sec):.8 Imag Axis Real Axis Repeat part (f) using the magnitude criterion. This is to be done at the point. j.8 First from the poles ( j) L L (.)(.8 ).67 (.)(.8) 8. Now from the zeros (, ) L (.) L (.) Imag Axis L L K L L.7 Transient Response via Gain Adjustment nd order approximation must be upheld since the RL provides various damping ratios, settling time, peak time etc. Higher order poles are much farther from the dominant second-order pair. Closed loop zeros near the closed loop second poles are canceled or nearly cancelled by the close proximity of other higher order closed loop poles.

21 Closed loop zeros not cancelled by the close proximity of other higher order poles are far removed from the closed loop second order dominant pair. Design procedure for higher order systems Sketch the root locus for the given system Assume the system is second order with no zeroes. Find the gain to meet the desired spec Justify second order approximation If it is not justified, then perform constrol simulations to ensure that the specs are met Second-order approximations Example: For the system as shown, determine the value of K to give a.5% overshoot. Evaluate the settling time, peak time and SSE. The system is third order with a zero at s = -.5

22 First get the Root locus Assuming the system can be nd order approx draw the damping ratio line Searching for the closed loop poles at =.8 Root Locus.5 Imag Axis.5.5 System: sys Gain:.7 Pole: i System: sys Damping:.8 Gain: 7.6 Overshoot (%):.5 Pole: i Frequency (rad/sec): Damping:.9.8 Overshoot (%):.5 Frequency (rad/sec): Real Axis Root Locus 8 6 System: sys Gain: 9. Pole: i Damping:.8 Overshoot (%):.5 Frequency (rad/sec): 5.7 Imag Axis Real Axis

23 The point where the RL crosses the =.8 is at points yielding sets of closed loop poles at.87 j.66,.9 j.9 and.6 j.5. The respective gains from the RL plot are 7.6,.79 and 9.6. For each point the settling time, time to first peak can be evaluated from Ts n ; T p d The third closed loop pole must be obtained for each dominant set having the same corresponding gain. Searching for the third pole on the RL at each of the corresponding gains 7.6,.79 and 9.6. Note that the third pole cannot be complex as the CLTF is third order, ie. the third pole must be on the real axis. The poles are at s = -9.5, -8.6 and.8 respectively. Root Locus 8 6 Imag Axis System: System: sys sys Gain: 7. Gain:.8 Pole: -9.5 Pole: -8.6 Damping: Damping: Overshoot Overshoot (%): (%): Frequency Frequency (rad/sec): (rad/sec): System: sys Gain: 9. Pole: -.8 Damping: Overshoot (%): Frequency (rad/sec): Real Axis

24 Using Ts ; T n p and the real and imaginary parts of the dominant pole. The velocity error constant is sk( s.5)(.5) K Kv lim() sg slim s s s( s )( s )()() d Subst. various values of K gives the K values in the Table below. v Second- and third-order responses a. Case ; b. Case Cases and have the third pole far away from the complex pair. However, there is no approx. pole zero cancellation. Case, the third pole is closer to the zero, so a nd order approx can be considered valid. The plots are relatively close. A step input is used to show the second order dynamics and validity of the second order approximation. We will now re-evaluate for the third pole analytically knowing the gain at the corresponding dominant pair. As an example, Case will be used.

25 In case, K 9.6. Using the magnitude criterion assuming the third pole p exists somewhere between the pole at and the zero at.5. The point in question is p. L p L p L p L p.5 ()( p p ) p K 9.6 ( p.5) Solving for p gives p.795 which is the third pole. The same can be done for the finding the other third poles. Note the RL does NOT exist on portions of the real axis where the sum of poles and zeros to the left is even. The closed loop TF is using K 9.6 C() s 9.6 s 59.6 R S s s s () Since ()(discuss R s Matlab) s The figure shows that there is a steady state error e() of (.5.).7. NOTE THAT THIS IS = K For Case, K 9.6 K 5.9 e().7 which matches the Matlab plot. 5.9 v v 6 Step Response 5 System: sys Time (sec):.5 Amplitude:. Amplitude 5 6 Time (sec) 5

26 Example Given a unity feedback system that has a forward TF K G() s, do the following ( s )( s )( s 6) (a) Obtain a RL using Matlab (b) Using a nd order approx. determine the value of K to give a % overshoot for a unit step input (c) Determine settling and peak times (d) The natural frequency (e) The SSE for the value of K. (f) Determine the validity of the nd order approx. Repeat part (b) using the magnitude criterion. This is to be done at the point.8 j.768 From the poles L (.8 )(.768).768 L (.8 )(.768).99 L (.8 6)(.768).8 There are no zeros L L L K

27 (d) n (e) The system is Type, the position error constant is K 5.55 lim() G s K p.99 s * *6 8 Therefore, e().5 K p (f) In this case, K Using the magnitude criterion assuming the third pole p exists somewhere to the left of the pole at 6. The point in question is p. L p 6 L p L p ( p 6)( p )( p ) K 5.55 Solving for p gives p 7.9 which is the third pole. Since this third close loop pole is NOT 5 times or more the magnitude of the real part of the closed loop dominant pole, the second approx. NOT valid. Root Locus 8 6 Imag Axis System: sys Gain:.6 Pole: -7.9 Damping: Overshoot (%): Frequency (rad/sec): Real Axis 7

Software Engineering 3DX3. Slides 8: Root Locus Techniques

Software Engineering 3DX3. Slides 8: Root Locus Techniques Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

More information

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

More information

SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

More information

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

More information

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

More information

Lecture 1 Root Locus

Lecture 1 Root Locus Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

More information

If you need more room, use the backs of the pages and indicate that you have done so.

If you need more room, use the backs of the pages and indicate that you have done so. EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

More information

CHAPTER # 9 ROOT LOCUS ANALYSES

CHAPTER # 9 ROOT LOCUS ANALYSES F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation

More information

Module 07 Control Systems Design & Analysis via Root-Locus Method

Module 07 Control Systems Design & Analysis via Root-Locus Method Module 07 Control Systems Design & Analysis via Root-Locus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March

More information

Chapter 7 : Root Locus Technique

Chapter 7 : Root Locus Technique Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

More information

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by

More information

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.

More information

Root Locus Methods. The root locus procedure

Root Locus Methods. The root locus procedure Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

More information

Root Locus Techniques

Root Locus Techniques Root Locus Techniques 8 Chapter Learning Outcomes After completing this chapter the student will be able to: Define a root locus (Sections 8.1 8.2) State the properties of a root locus (Section 8.3) Sketch

More information

Automatic Control Systems, 9th Edition

Automatic Control Systems, 9th Edition Chapter 7: Root Locus Analysis Appendix E: Properties and Construction of the Root Loci Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois

More information

Unit 7: Part 1: Sketching the Root Locus

Unit 7: Part 1: Sketching the Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland March 14, 2010 ENGI 5821 Unit 7: Root

More information

Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07

Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07 Root locus Analysis P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: Mr Chaitanya, SYSCON 07 Recap R(t) + _ k p + k s d 1 s( s+ a) C(t) For the above system the closed loop transfer function

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO)

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO) Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 -X-O

More information

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

Digital Control Systems

Digital Control Systems Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

More information

Controller Design using Root Locus

Controller Design using Root Locus Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers

More information

2.010 Fall 2000 Solution of Homework Assignment 8

2.010 Fall 2000 Solution of Homework Assignment 8 2.1 Fall 2 Solution of Homework Assignment 8 1. Root Locus Analysis of Hydraulic Servomechanism. The block diagram of the controlled hydraulic servomechanism is shown in Fig. 1 e r e error + i Σ C(s) P(s)

More information

ECE 486 Control Systems

ECE 486 Control Systems ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

More information

Root Locus Techniques

Root Locus Techniques 4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since

More information

Root Locus U R K. Root Locus: Find the roots of the closed-loop system for 0 < k < infinity

Root Locus U R K. Root Locus: Find the roots of the closed-loop system for 0 < k < infinity Background: Root Locus Routh Criteria tells you the range of gains that result in a stable system. It doesn't tell you how the system will behave, however. That's a problem. For example, for the following

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Lecture Sketching the root locus

Lecture Sketching the root locus Lecture 05.02 Sketching the root locus It is easy to get lost in the detailed rules of manual root locus construction. In the old days accurate root locus construction was critical, but now it is useful

More information

Compensator Design to Improve Transient Performance Using Root Locus

Compensator Design to Improve Transient Performance Using Root Locus 1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

More information

Dynamic Compensation using root locus method

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

More information

Introduction to Root Locus. What is root locus?

Introduction to Root Locus. What is root locus? Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Proportional plus Integral (PI) Controller

Proportional plus Integral (PI) Controller Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

5 Root Locus Analysis

5 Root Locus Analysis 5 Root Locus Analysis 5.1 Introduction A control system is designed in tenns of the perfonnance measures discussed in chapter 3. Therefore, transient response of a system plays an important role in the

More information

"APPENDIX. Properties and Construction of the Root Loci " E-1 K ¼ 0ANDK ¼1POINTS

APPENDIX. Properties and Construction of the Root Loci  E-1 K ¼ 0ANDK ¼1POINTS Appendix-E_1 5/14/29 1 "APPENDIX E Properties and Construction of the Root Loci The following properties of the root loci are useful for constructing the root loci manually and for understanding the root

More information

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

More information

Automatic Control (TSRT15): Lecture 4

Automatic Control (TSRT15): Lecture 4 Automatic Control (TSRT15): Lecture 4 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Review of the last

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

EXAMPLE PROBLEMS AND SOLUTIONS

EXAMPLE PROBLEMS AND SOLUTIONS Similarly, the program for the fourth-order transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa4-2o0sa3 + 1 80O0sA2-840000~ + 16800000 sa4

More information

IC6501 CONTROL SYSTEMS

IC6501 CONTROL SYSTEMS DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim

Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) = ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

More information

Class 11 Root Locus part I

Class 11 Root Locus part I Class 11 Root Locus part I Closed loop system G(s) G(s) G(s) Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K We shall assume here K >,

More information

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

More information

Lab # 4 Time Response Analysis

Lab # 4 Time Response Analysis Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

More information

Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems. Root Locus & Pole Assignment. L. Lanari Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

More information

Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of. Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

More information

Professor Fearing EE C128 / ME C134 Problem Set 4 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley. control input. error Controller D(s)

Professor Fearing EE C128 / ME C134 Problem Set 4 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley. control input. error Controller D(s) Professor Fearing EE C18 / ME C13 Problem Set Solution Fall 1 Jansen Sheng and Wenjie Chen, UC Berkeley reference input r(t) + Σ error e(t) Controller D(s) grid 8 pixels control input u(t) plant G(s) output

More information

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

Homework 11 Solution - AME 30315, Spring 2015

Homework 11 Solution - AME 30315, Spring 2015 1 Homework 11 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pts] R + - K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closed-loop pole locations as the parameter k is varied. Θpsq Ipsq k ωn

More information

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) = 567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or

More information

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s)

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s) EE3 - Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Class 12 Root Locus part II

Class 12 Root Locus part II Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,

More information

CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

More information

Frequency Response Techniques

Frequency Response Techniques 4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

Lecture 3: The Root Locus Method

Lecture 3: The Root Locus Method Lecture 3: The Root Locus Method Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 56001 This draft: March 1, 008 1 The Root Locus method The Root Locus method,

More information

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S Root Locus S5-1 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information