EEE 184 Project: Option 1


 Denis Wade
 1 years ago
 Views:
Transcription
1 EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same correct result expressed in a very similar way a new project within three days. 1 Transfer function and state space model 1. Consider the circuit of figure 1. This transfer function is denoted by G 1. (a) Find the transfer function for the circuit. (b) Suggest values for R 1 and C 1 so that the settling time is 5s. (c) Use KCL and KVL to write the state space model when the output is v c1. (d) Obtain the state space model directly from the transfer function and compare with the previous question. Comment your result. (e) Build the Simulink model for the open loop system, simulate the system and obtain the time response for the previous values of R 1 and C 1. The input is a unit step. (f) Graphically deduce the time constant and the settling time (show T s and the time constant on the graph). 2. Now we combine the RC circuit of figure 1 with another RC circuit as shown in figure 2. (a) Find the transfer function of the entire circuit (v in /v c2 ). We call this transfer function G(s). (b) With references to figure 2, is G(s) = G 1 (s)g 2 (s)? Explain. (c) Suggest values for the circuit elements so that the settling time is 5s. (d) Use KCL and KVL to write the state space model. The output is v c2. 3. Now we combine the RC circuit with an op amp circuit as shown in figure 3. We call the open loop transfer function for this system L(s). (a) Find the transfer function L(s). What is the type of the system? (b) Use KCL and KVL to write the state space model as a function of the circuit elements. 1
2 Figure 1: Figure 2: Figure 3: 2
3 Figure 4: 2 Integral, derivative, and proportional circuits 1. Suggest opamp based circuits to realize the following: (a) Pure integral. The transfer function and the gain of the integrator are denoted by G i and K i, respectively. (b) Pure gain: Should not invert the signal. The transfer function and the gain are denoted by G p and K p, respectively. (c) Pure derivative. The transfer function and the gain for the derivative are denoted by G d and K d, respectively. (d) Comparator: A circuit allowing to close the loop and realize negative feedback. The comparator should have a unity gain. 2. For the integrator, gain and derivative circuits of the previous questions, write the gains as a function of the circuit s elements. 3 Analysis Now we take the transfer function of figure 2 with R 1 = 2, R 2 = 1, C 1 = 1/5, C 2 = 1/2, and we close the loop as shown in figure Analytically find the closed loop transfer function. We call it T (s). 2. Write the steady state error as a function of T (s). 3. Write the steady state error as a function of G(s). What is the type of the system? 4. Use the RouthHurwitz test to check the stability of the system and deduce the range of the gain for which the system is stable. 5. Plot the root locus of the system and deduce the gain range for stability. Compare with the previous question. 6. Find K p then suggest values for the resistors so that: (a) The percent overshoot is 10%. Calculate the corresponding settling time. The gain allowing for 10% percent overshoot is denoted by K p1. 3
4 i. For K p1, find analytically the steady state error for a unit step input. ii. For K p1, use Matlab or Simulink to show the step response and confirm the numerical values for the percent overshoot, the steady state error, and the settling time. (b) The settling time is 3s. Calculate the corresponding percent overshoot. The gain allowing for 3s settling time is denoted by K p2. i. For this value of the gain (K p2 ), find analytically the steady state error for a unit step input. ii. Use Matlab or Simulink (for K p2 ) to show the step response and confirm the numerical values for the percent overshoot, the steady state error, and the settling time.. (c) The steady state error is zero. denoted by K p3. The gain allowing to obtain a zero steady state error is i. Use Matlab or Simulink to show the step response and confirm the numerical value the steady state error (for K p3 ). 7. Is it possible to specify the settling time and percent overshot, and the steady state error for the same value of gain? Explain. 8. Now we consider the circuit of figures 2 in cascade with a pure gain circuit, and unity feedback. For gain K p1, build the circuit (on a breadboard) or simulate the circuit (use circuit, not block diagram) using pspice (or similar tools). Show your results (oscilloscope or computer screen shot). 4 Improving steady state errors Now the goal is to improve the steady state errors. We suggest to use three different approaches: pure gain (proportional), ideal integral and lag compensator 1. Write the transfer functions for these compensators and explain their working principles. 2. Improving steady state for G 1 (s) (Use appropriate test signal depending on the type of the system) (a) Simulate the closed loop system for G 1 without controller and show the time response. What is the steady state error? (b) Analytically, design a proportional controller so that the steady state error is less than 0.1 (c) Simulate the proportional controller effect, show the time response and discuss your results. (d) Analytically, design an ideal integral compensator so that the steady state error is less than 0.1 (e) Simulate the ideal integral compensator effect, show the time response and discuss your results. (f) Analytically, design a lag compensator so that the steady state error is less than 0.1 (g) Simulate the lag compensator effect, show the time response and discuss your results. (h) Compare between the transients obtain for the different compensators. 3. Improving steady state for G(s) (Use appropriate test signal depending on the type of the system) (a) Simulate the closed loop system for G without controller and show the time response. What is the steady state error? 4
5 (b) Analytically, design a proportional controller so that the steady state error is less than 0.1 (c) Simulate the proportional controller effect, show the time response and discuss your results. (d) Analytically, design an ideal integral compensator so that the steady state error is less than 0.1 (e) Simulate the ideal integral compensator effect, show the time response and discuss your results. (f) Analytically, design a lag compensator so that the steady state error is less than 0.1 (g) Simulate the lag compensator effect, show the time response and discuss your results. (h) Compare between the transients obtain for the different compensators. 4. Improving steady state for L(s) (Use appropriate test signal depending on the type of the system) (a) Simulate the closed loop system for L without controller and show the time response. What is the steady state error? (b) Analytically, design a proportional controller so that the steady state error is less than 0.1 (c) Simulate the proportional controller effect, show the time response and discuss your results. (d) Analytically, design an ideal integral compensator so that the steady state error is less than 0.1 (e) Simulate the ideal integral compensator effect, show the time response and discuss your results. (f) Analytically, design a lag compensator so that the steady state error is less than 0.1 (g) Simulate the lag compensator effect, show the time response and discuss your results. (h) Compare between the transients obtain for the different compensators. (i) For the lag compensator, complete the table below e ss ( ) z c p c T s %OS is of type 1. Use ramp input if the system (j) Plot the settling time as a function of the steady state error. Comment your results. (k) Plot the percent overshoot as a function of the steady state error. Comment your results. 5 Improving transients We suggest to use a lead compensator to improve the transient for L(s) as shown in figure Pick the values of the circuit s elements so that L(s) = 1 s(s + 5) (1) 2. Design a lead compensator to reduce the settling time by 1/3. 5
6 Figure 5: 3. Build the Simulink model and check your result. Use a unit step. 4. Design a lead compensator to reduce the percent overshoot by half. 5. Build the Simulink model and check your result. Use a unit step. 6. Discuss the effect of the lead compensator on the steady state error. 7. Use Matlab pidtool command to design PID controller for L(s) to satisfy desired response. Feel free to pick appropriate transient and steady state for the desired response. 6 Stability 8. Derive the state space model for the circuit of figure 6(a). i R is the output. 9. Use the eigenvalues to show that the system is unstable. 10. Find the transfer function. We call it M(s). 11. For the closed loop system shown in figure 6 (b), use the Routh Hurwitz test to find the range of the gain for which the system is stable. 12. To stabilize the closed loop system we suggest to use the pure gain circuit of figure 7. Find a combination of values for the circuit of figure 7 parameters so that the system is stable. Feel free to pick an appropriate value for the gain. 13. Simulate the system in pspice (or a similar software. Use the circuit, not the block diagrams) 6
7 Figure 6: Figure 7: 7
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationCONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationUnit 8: Part 2: PD, PID, and Feedback Compensation
Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:
More informationContents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 OpenLoop
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationME 475/591 Control Systems Final Exam Fall '99
ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does
More informationCONTROL * ~ SYSTEMS ENGINEERING
CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationPID controllers. Laith Batarseh. PID controllers
Next Previous 24Jan15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More information6.302 Feedback Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationFeedback Control part 2
Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open and closedloop control Everything before chapter 7 are openloop systems Transient response Design criteria Translate criteria
More informationMeeting Design Specs using Root Locus
Meeting Design Specs using Root Locus So far, we have Lead compensators which cancel a pole and move it left, speeding up the root locus. PID compensators which add a zero at s=0 and add zero, one, or
More informationEE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP SystemsModel: 205)
EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP SystemsModel: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationSECTION 5: ROOT LOCUS ANALYSIS
SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More informationProblems XO («) splane. splane *~8 X 5. id) X splane. splane. * Xtg) FIGURE P8.1. jplane. JO) k JO)
Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 XO
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationControl Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho kwangho@hansung.ac.kr Tel: 027604253 Fax:027604435 Introduction In this lesson, you will learn the following : The
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationEE 422G  Signals and Systems Laboratory
EE 4G  Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationCourse roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs
ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform
More informationControl 2. Proportional and Integral control
Control 2 Proportional and Integral control 1 Disturbance rejection in Proportional Control Θ i =5 + _ Controller K P =20 Motor K=2.45 Θ o Consider first the case where the motor steadystate gain = 2.45
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More informationDesign via Root Locus
Design via Root Locus I 9 Chapter Learning Outcomes J After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steadystate error (Sections
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationDesign of a Lead Compensator
Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc  Funded by MHRD The Lecture Contains Standard Forms of
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationSolution for Mechanical Measurement & Control
Solution for Mechanical Measurement & Control December2015 Index Q.1) a). 23 b).34 c). 5 d). 6 Q.2) a). 7 b). 7 to 9 c). 1011 Q.3) a). 1112 b). 1213 c). 13 Q.4) a). 1415 b). 15 (N.A.) Q.5) a). 15
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More information1 Chapter 9: Design via Root Locus
1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2
More informationChapter 10 Sinusoidal Steady State Analysis Chapter Objectives:
Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steadystate analysis. Learn how to apply nodal and mesh analysis in the frequency
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationAutomatic Control Systems
Automatic Control Systems Edited by Dr. Yuri Sokolov Contributing Authors: Dr. Victor Iliushko, Dr. Emaid A. AbdulRetha, Mr. Sönke Dierks, Dr. Pascual Marqués. Published by Marques Aviation Ltd Southport,
More informationIMPROVED TECHNIQUE OF MULTISTAGE COMPENSATION. K. M. Yanev A. Obok Opok
IMPROVED TECHNIQUE OF MULTISTAGE COMPENSATION K. M. Yanev A. Obok Opok Considering marginal control systems, a useful technique, contributing to the method of multistage compensation is suggested. A
More informationR10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK
Set No. 1 1 a) Explain about the shifting and scaling operator. b) Discuss briefly about the linear time invariant and causal systems. 2 a) Write the mapping points between SPlane and Zplane. b) Find
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationProportional plus Integral (PI) Controller
Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationExperiment 81  Design of a Feedback Control System
Experiment 81  Design of a Feedback Control System 201139030 (Group 44) ELEC273 May 9, 2016 Abstract This report discussed the establishment of openloop system using FOPDT medel which is usually used
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationRoot Locus U R K. Root Locus: Find the roots of the closedloop system for 0 < k < infinity
Background: Root Locus Routh Criteria tells you the range of gains that result in a stable system. It doesn't tell you how the system will behave, however. That's a problem. For example, for the following
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationEC CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING
EC 2255  CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationDigital Control Engineering Analysis and Design
Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is
More informationDesign via Root Locus
Design via Root Locus 9 Chapter Learning Outcomes After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steadystate error (Sections
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationEE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas
EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error
More informationLecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationControl Systems. EC / EE / IN. For
Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8
Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by
More informationEET 3212 Control Systems. Control Systems Engineering, 6th Edition, Norman S. Nise December 2010, A. Goykadosh and M.
NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York 300 Jay Street Brooklyn, NY 112012983 Department of Electrical and Telecommunications Engineering Technology TEL (718) 2605300  FAX:
More informationEE C128 / ME C134 Final Exam Fall 2014
EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket
More informationDigital Control: Summary # 7
Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationFEEDBACK and CONTROL SYSTEMS
SCHA UM'S OUTLINE OF THEORY AND PROBLEMS OF FEEDBACK and CONTROL SYSTEMS Second Edition CONTINUOUS (ANALOG) AND DISCRETE (DIGITAL) JOSEPH J. DiSTEFANO, III, PhD. Departments of Computer Science and Mediane
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More information1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii
Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationDepartment of Electronics and Instrumentation Engineering M. E CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I BASICS AND ROOTLOCUS DESIGN PARTA (2 marks) 1. What are the
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More informationSECTION 8: ROOTLOCUS ANALYSIS. ESE 499 Feedback Control Systems
SECTION 8: ROOTLOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closedloop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss
More informationCHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS
CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More information