Lecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion


 Noel Burke
 10 months ago
 Views:
Transcription
1 Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26
2 FirstOrder Specs: Step : Pole Real inputs contain randomness (for example, noise): unpredictable. Test inputs help to predict response quality under other inputs. step inputs are useful to simulate sudden changes (startup, jump loading, etc) sinusoidal inputs are used to test frequency response (more later) impulses are used to simulate shock conditions ramp inputs are used to simulate transitions between setpoints 2 / 26
3 FirstOrder Specs: Step : Pole z 2 Im G(s) = p 5 p 4 z 1 p2 p 1 z 1 p 4 p 5 (s z 1 )(s z 1 )(s z 2 ) (s p 5 )(s p 5 )(s p 2 ) 2 (s p 1 )(s p 4 )(s p 4 )(s p 5 )(s p 5 ) Re 3 / 26
4 FirstOrder FirstOrder Specs: Step : Pole Firstorder systems are described by the I/O differential equation or in TF form τċ+c = r(t) C(s) R(s) = 1 τs+1 The number τ is called the time constant of the system. The TF has one real pole at s = 1 τ. Step Applying the unit step input R(s) = 1 s gives the response c(t) = 1 e t τ 4 / 26
5 FirstOrder Specs: Step : Pole (Stable) firstorder systems always track the step command (the error approaches zero asymptotically). The time it takes for the output to reach approx. 98% of its steady value is called settling time, also referred to as 2 % settling time. It equals 4 time constants. 5 / 26
6 FirstOrder Specs: Step : Pole Firstorder systems cannot track a ramp command. The tracking error is always equal to the time constant. 6 / 26
7 FirstOrder Specs: Step : Pole The standard form of a secondorder system is: C(s) R(s) = w 2 n s 2 +2ζw n s+w 2 n where w n and ζ are called the natural frequency (in rad/s) and damping ratio (dimensionless), respectively. The response will depend on the nature of the poles: Underdamped: 0 < ζ < 1 Marginally Stable: ζ = 0 Critically Damped: ζ = 1 Overdamped: ζ > 1 7 / 26
8 Case 1: Underdamped (0 < ζ < 1) FirstOrder Specs: Step : Pole The poles are complex conjugates. The response to a unit step input is given by ( ) c(t) = 1 e ζw nt 1 ζ sin w d t+tan ζ 2 where w d is the damped natural frequency: w d = w n 1 ζ 2 The damped natural frequency is the one obtained by counting the cycles per unit time in an experimental (and underdamped) response and converting the result to radians per second. ζ 8 / 26
9 Underdamped Case FirstOrder Specs: Step : Pole Poles: ζw n ± w d j cos β = ζ ζw n β w n Im w d = w n 1 ζ 2 0 Re w d 9 / 26
10 Marginally Stable and Overdamped Cases FirstOrder Specs: Step : Pole Marginally Stable Case (ζ = 0) When ζ = 0 the poles lie on the imaginary axis and the response to a step input is c(t) = 1 cosw n t that is, the oscillation does not die out. The system oscillates with its natural frequency w n. Critically Damped Case (ζ = 1) When ζ = 1 we get a real pole of multiplicity two at s = w n. The response is given by c(t) = 1 e w nt (1+w n t). No oscillations occur for a step input. 10 / 26
11 Overdamped Case (ζ > 1) FirstOrder Specs: Step : Pole When ζ > 1 the poles lie are real and unequal. The response features two decaying exponential terms (no oscillations): c(t) = 1+ where the poles are w n 2 ζ 2 1 ( e s 1 t s 1 e s2t s 2 s 1,2 = (ζ ± ζ 2 1)w n ) 11 / 26
12 Normalized FirstOrder Specs: Step : Pole 12 / 26
13 FirstOrder Specs: Step : Pole Many practical design cases call for timedomain specifications Step response specs are often demanded (worstcase, drastic situation) Common specifications 1. Rise time (T r ) 2. Peak time (T p ) 3. Percent overshoot (P.O.) 4. Settling time (T s ) 13 / 26
14 Specs: Step FirstOrder Specs: Step : Pole FV Setpoint 1.02*F.V 0.98*F.V Second Order Step Characteristics Overshoot 0 0 Tr Tp Tset 2% Time (sec) Setpoint Steady Error Final Value 14 / 26
15 FirstOrder Specs: Step 2ndOrder : Pole 2 % settling time: t s = 4 ζw n Rise time: t r = π β w d Peak time: t p = π w d Peak value: M pt = (e ( ζ 1 ζ 2)π +1)y( ) Percent overshoot: P.O.= 100e ( ζ 1 ζ 2)π 15 / 26
16 FirstOrder Specs: Step 2ndOrder : Pole 16 / 26
17 FirstOrder Specs: Step Pole Locations and : Pole 17 / 26
18 FirstOrder Specs: Step : Pole The above design formulas are valid when no zeros are present. In general, zeros spoil the response by increasing the overshoot. If zeros are found on the r.h.p., the system is said to be nonminimum phase, and the response is worsened. Zeros may be neglected in some cases (more about this later in this lecture) 18 / 26
19 : Pole FirstOrder Specs: Step : Pole When more than two poles are present, or when two distinct real poles are present, it can be difficult to predict the response without computer simulation Frequently, one or two poles are dominant. Remember that each single real pole gives rise to a term of the form a s(s+a) when a step input is applied. If we invert the term, the contribution of the pole is 1 e at. So if the time constant of the pole (1/a) is very small, the transient is very short and does not contribute much to the overall response. On the other hand, poles with large time constants are the ones dictating the response. We say that such poles are dominant. The same applies to complex conjugate pairs, where the time 1 constant taken into consideration is ζw n. 19 / 26
20 Pole Criterion FirstOrder Specs: Step : Pole Begin by finding all poles of the TF and finding their time constants. Remember: For a real pole at s = a, the time constant is 1/a, and for a complex conjugate pair with 0 < ζ < 1, it is 1 ζw n. Sort out the time constants: (high) τ 1,τ 2...,τ n (low). Attempt to find a gap of a factor of eight or more between two consecutive time constants, starting with the highest. If such a gap is found, neglect all poles on the fast side of the gap (small time constants). Careful! when reassembling the TF. You may be inadvertently changing the TF gain (a.k.a. DC gain): Make sure that the responses to a step input have the same final value. If not, correct the reduced TF with an appropriate constant. 20 / 26
21 Pole : Example FirstOrder Specs: Step : Pole G(s) = 3 s s s s+32 Poles: s 1 = 2, s 2 = 4, s 3,4 = 0.2 ± 1.989i(ζ = 0.1, w n = 2). Time constants for real poles: τ 1 = 0.5 and τ 2 = For the complex poles : τ = 5. The factored TF is: G(s) = 3 (s+2)(s+4)(s s+4). Time constants: 5,0.5,0.25. A gap of a factor of 10 is found, therefore we neglect the fast poles at s 2 = 4 and s 1 = 2. If we simply eliminate the factors (s + 2) and (s + 4), we have a gain mismatch. In order to have the same final value, we correct the gain to obtain: G r (s) = 3/8 s s + 4 Check with the final value theorem: lim s 0 sg r (s) = lim s 0 sg(s). 21 / 26
22 FirstOrder Specs: Step : Pole For secondorder systems, we can predict the effect of a single real zero on the overshoot. Consider G(s) = (w2 n /a)(s + a) s 2 + 2ζw n s + wn 2 If a/ζw n > 8, neglect the zero due to dominance: G r (s) = wn 2 s 2 +2ζwns+wn 2. If not, use the chart: 22 / 26
23 Example FirstOrder Specs: Step : Pole Sketch the response of the following TF when the input is a step of size 2: 3(s+5) G(s) = (s+23)(s 2 +5s+16) 23 / 26
24 Solution FirstOrder Specs: Step : Pole 24 / 26
25 Solution FirstOrder Specs: Step : Pole 25 / 26
26 Matlab Simulation FirstOrder Specs: Step : Pole c(t) c(t p )= t s =1.3 s c( )= Overshoot=12.76% t 26 / 26
Second Order and Higher Order Systems
Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical secondorder control system to a step input. In terms of damping ratio and natural
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationCHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS
CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationChapter 5 HW Solution
Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, timeinvariant system. Let s see, I
More informationLaboratory handouts, ME 340
Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 20142016 Harry Dankowicz, unless otherwise
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER
More informationPoles, Zeros and System Response
Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More information1DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011
MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 8 Fall 2011 Harmonic Forcing Functions Transient vs. Steady Vibration Follow Palm, Sect. 4.1, 4.9 and 4.10 Harmonic forcing
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationFeedback Control part 2
Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open and closedloop control Everything before chapter 7 are openloop systems Transient response Design criteria Translate criteria
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationFundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.
Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS
7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental statespace concepts and analysis tools, have now set the stage for our initial foray into statespace methods
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More information9/9/2011 Classical Control 1
MM11 Root Locus Design Method Reading material: FC pp.270328 9/9/2011 Classical Control 1 What have we talked in lecture (MM10)? Lead and lag compensators D(s)=(s+z)/(s+p) with z < p or z > p D(s)=K(Ts+1)/(Ts+1),
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationEXAMPLE PROBLEMS AND SOLUTIONS
Similarly, the program for the fourthorder transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa42o0sa3 + 1 80O0sA2840000~ + 16800000 sa4
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationEE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationLecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)
232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + +
Out: 8 November Due: 3 November Problem : You are given the following system: Gs () =. s + s+ a) Using Lalace and Inverse Lalace, calculate the unit ste resonse of this system (assume zero initial conditions).
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationPD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada
PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closedloop
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More informationD G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationMITOCW watch?v=poho4pztw78
MITOCW watch?v=poho4pztw78 GILBERT STRANG: OK. So this is a video in which we go for secondorder equations, constant coefficients. We look for the impulse response, the key function in this whole business,
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationVibrations: Second Order Systems with One Degree of Freedom, Free Response
Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationMechanical Systems Part A: StateSpace Systems Lecture AL12
AL: 436433 Mechanical Systems Part A: StateSpace Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & EmamiNaeini, Ch. 9. Requirements: accurate
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]
ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative
More informationStudy Material. CONTROL SYSTEM ENGINEERING (As per SCTE&VT,Odisha new syllabus) 4th Semester Electronics & Telecom Engineering
Study Material CONTROL SYSTEM ENGINEERING (As per SCTE&VT,Odisha new syllabus) 4th Semester Electronics & Telecom Engineering By Sri Asit Kumar Acharya, Lecturer ETC, Govt. Polytechnic Dhenkanal & Sri
More informationOpen Loop Tuning Rules
Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationLecture 9 Timedomain properties of convolution systems
EE 12 spring 2122 Handout #18 Lecture 9 Timedomain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)
More information4.2 Homogeneous Linear Equations
4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the firstorder linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this
More information6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closedloop behavior what we want it to be. To review:  G c (s) G(s) H(s) you are here! plant For
More informationI Poles & zeros. I Firstorder systems. I Secondorder systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities
EE C28 / ME C34 Lecture Chater 4 Time Resonse Alexandre Bayen Deartment of Electrical Engineering & Comuter Science University of California Berkeley Lecture abstract Toics covered in this resentation
More informationFREQUENCYRESPONSE ANALYSIS
ECE450/550: Feedback Control Systems. 8 FREQUENCYRESPONSE ANALYSIS 8.: Motivation to study frequencyresponse methods Advantages and disadvantages to rootlocus design approach: ADVANTAGES: Good indicator
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationPower System Control
Power System Control Basic Control Engineering Prof. Wonhee Kim School of Energy Systems Engineering, ChungAng University 2 Contents Why feedback? System Modeling in Frequency Domain System Modeling in
More informationSolution of ODEs using Laplace Transforms. Process Dynamics and Control
Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52
1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n
More informationDIGITAL CONTROL OF POWER CONVERTERS. 3 Digital controller design
DIGITAL CONTROL OF POWER CONVERTERS 3 Digital controller design Frequency response of discrete systems H(z) Properties: z e j T s 1 DC Gain z=1 H(1)=DC 2 Periodic nature j Ts z e jt e s cos( jt ) j sin(
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationInverted Pendulum. Objectives
Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationENGR 2405 Chapter 8. Second Order Circuits
ENGR 2405 Chapter 8 Second Order Circuits Overview The previous chapter introduced the concept of first order circuits. This chapter will expand on that with second order circuits: those that need a second
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationUnit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers
Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationEEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:
EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to firstorder circuit From the last lecture, we have learnt
More information