f (x) dx = f(b) f(a) f (x i ) x i i=1

Size: px
Start display at page:

Download "f (x) dx = f(b) f(a) f (x i ) x i i=1"

Transcription

1 1 Cse Study: Flood Wtch c 00 Donld Kreider nd Dwight L Animtion: Flood Wtch To get you going on the Cse Study! In this section, we hve lerned tht if we re given the continuous derivtive f of function on the intervl [, b], then one version of the Fundmentl Theorem of Clculus sttes tht f (x) dx = f(b) f() This formul is very useful if we cn find n ntiderivtive for f ; tht is, if we hve n explicit representtion of f. However, in n pplied setting, we my not hve formul for f nd thus cnnot use the fundmentl theorem directly. The derivtive f (x) my be given t only finite number of points of the intervl, nd tht my be ll tht is known. Tht nd the fct tht f (x) is continuous rte of chnge of function f. In these cses, we wnt to keep in mind tht we cn pproximte the integrl using Riemnn sum. This is the procedure tht we will follow in the CSC of this section where the derivtive is non-negtive function on n intervl. We will use the Riemnn sum f (x i ) x i i=1 s n pproximtion to the re under the grph of the continuous function f. As usul, the purpose of CSC is to consider rel ppliction of clculus, with rel dt. In this section, we will work with our erth scientist collegues to study problems relted to river flooding 1. Without being too specific bout our objective t this time, we will stte it in generl terms so tht we hve n ide where we re going. Objective: From dt collected ten yers prt, to determine if the Gorge River hs n incresed or decresed likelihood of flooding. In order to mke the objective more concrete, we re going to hve to lern how erth scientists collect nd ssemble informtion bout rivers. We will ply the role of mthemticins working with geologists to provide the mthemticl nlyses tht regionl nd urbn plnners need for the mngement of resources hving n impct on wtersheds nd the like. We hve to be creful, though, becuse we will find tht mthemticins nd erth scientists sometimes use the sme terminology for different concepts. Becuse this is CSC nd we wnt to get prctice pplying mthemtics to different field, we will use the erthscience terms. But be creful to trnslte them into their mthemticl form so tht you know wht clculus tools to pply. In the next prgrph, we describe ll of the terms we will be using. Often the physicl units (for exmple, volume of wter per unit time) will help with the lnguge conversions from erth sciences to mthemtics. River Flooding: Bckground The flow of wter on the surfce of the erth in rivers nd strems hs n importnt impct on humns. Mny of these wter bodies provide importnt resources s nvigtion routes nd sources of fresh wter for residentil nd industril use. The erosion force of the strems is responsible for the formtion of mny of our lnd forms both by removl s well s deposition of mteril. Perhps their most drmtic impct is flooding, when the discge (volume of wter per unit time) exceeds the norml crrying cpcity of the chnnel, nd the wter spills out onto the djcent flood plin. In n idel world, flood plins would be reserved 1 The CSC is dpted from Skinner, B. J. nd Porter, S. C., 196, The Dynmic Erth, An Introduction to Physicl Geology, nd ed., Wiley, 570 pp.; nd from Leopold, L. B., 1968, Hydrology for Urbn Lnd Plnning, guidebook on the hydrologic effects of urbn lnd use, U.S. Geologicl Survey Circulr 554. We lso owe specil thnks to Professor Dick Birnie, Deprtment of Erth Sciences, Drtmouth College, for collborting on this work.

2 for rivers nd perhps griculture which rejuventes from fresh silt nd nturl minerl fertilizers left by the river. However, the trnsporttion nd recretionl vlue of rivers hs lured mny humn settlements to river bnks. Over time, mny of these settlements hve grown into mjor metropolitn centers such s St. Louis nd New Orlens on the Mississippi River. When river floods, the humn impct is disstrous. People who live nd work long river should not be surprised by flood. Floods re regulr nd expected events; they hve hppened in the pst nd they will continue to hppen in the future. Erth Scientists mke continuous observtions of the discge (volume of wter per unit time) of strem. These observtions led to n understnding of the flow ccteristics of the river nd its wtershed (re tht drins into the river) nd llow predictions of future behvior. This concept repets itself toughout Erth Science: observtions (mesurements) re mde, n understnding (perhps mthemticl model) is derived by nlyzing (tbulting, grphing, sttisticlly processing) the observtions; nd then predictions re extrpolted from the model. The fundmentl wy to disply the observtions of strem discge is hydrogrph. A hydrogrph hs two components: the mount of rinfll (depth per unit time) nd discge (volume of wter per unit time) (see the exmple below). Prior to rin storm, the strem will be flowing t some bckground level of discge known s bse flow. However, following period of hevy precipittion, the rin flling in the wtershed drins into the strem, nd the discge increses over time. The plot below shows the mount of discge over 1 hour period following n intense rinstorm lsting bout 96 minutes. The discge increses rpidly to pek bout 3 hours fter the storm nd then grdully drops for the next 9 hours. The discge of strem does not rise immeditely with the onset of precipittion, rther it tkes time to flow cross the wtershed nd into the strem. The difference in time between the centroid of the precipittion nd the centroid of the discge (runoff) is known s the lg time nd tht depends on the size nd mkeup of the wtershed. Neglecting bsorption by the ground, the re of the wtershed times the depth of the rinfll equls the volume of discge bove the bseflow. If the totl volume of discge of the strem exceeds the crrying cpcity of the chnnel, the strem overflows its bnks nd floods. Exmple of Hydrogrph A hydrogrph consists of two prts: plot of rinfll, nd plot of discge. Here is set of possible dt giving the discge of specific strem cused by n intense mount of rinfll. First, the rinfll plot in inches per hour: in The rinfll is.1 in in for the first 0.6 hours, then it is 3.7 for the next 0.6 hours, nd finlly it is 1.9 for 0.4 hours. Next, the dt representing the discge D of strem t specific instnts of time beginning t the onset of the intense downpour of rin given bove re s follows, where the discge is mesured in cubic meters per second:

3 3 Notice tht lthough the discge rises rther quickly, it drops slowly bck to the bse flow level of the strem. To find the lg time, we need to compute the centroids of the plots of rinfll nd discge. The centroid of plne region is the point (x 0, y 0 ) on which the region, thought of s thin plte, would blnce horizontlly. To find the point, we use the formuls for the coordintes. Theorem: Suppose the region of re A is defined s lying between two curves y = f(x) nd y = g(x) where f(x) g(x) nd x b. Then its centroid is locted t the point (x 0, y 0 ) given by x 0 = 1 A y 0 = 1 A x(f(x) g(x)) dx f(x) g(x) dx Becuse the proof is instructive for our discussion of the hydrogrph, we will justify this formul before proceeding further with the rinfll dt. Derivtion of Formuls for the Centroid Suppose two msses m 1 nd m re plced on see-sw, t distnces d 1 nd d, respectively, from the pivot-point. Then how fr do we hve to move one mss reltive to the other so tht the see-sw will blnce? m m 1 d This is n old problem tht hs very simple solution: the see-sw will blnce when m 1 d 1 = m d. For exmple, if m is lrge reltive to m 1, then d must be smll reltive to d 1. We ll hve experienced the d 1

4 4 effects of this eqution: the lrger person hs to sit closer to the pivot point to blnce the smller person sitting t the opposite end of the see-sw. m m 3 m 4 m 5 m 1 x 3 x x 0 x 4 x 5 x 1 d Suppose now tht we consider n msses m 1, m, m 3,..., m n locted on see-sw t the points x 1, x, x 3,..., x n, nd suppose further tht the pivot point is locted t x 0. Then generlizing from the cse of two msses, it turns out tht blnce is chieved when d 1 m k (x k x 0 ) = 0 Note tht if x k > x 0, then x k x 0 is positive nd is the distnce of m k from the pivot-point, while if x k < x 0, then x k x 0 is negtive nd is the negtive of the distnce of m k from the pivot-point. So, this eqution is indeed generliztion of the one we strted with involving only two msses. If we solve for x 0 in this eqution, then we get tht x 0 n m k = Clling n m k the totl mss, we then hve tht m k x k x 0 = n m kx k totl mss By nlogy with msses, if the rectngles pictured bove re simply two-dimensionl regions, we cn write similr formul for the coordinte of the pivot-point using res: x 0 = n x ka k totl re where A k is the re of the k th rectngle. The product x k A k is clled the moment of the k th rectngle. Suppose now tht we strt with function y = f(x) defined on n intervl [, b], nd s usul we prtition the intervl into n subintervls with the points x 0 < x 1 < x < < x n. Let c k be the midpoint of the k th subintervl. Then c k A k = c k f(c k ) x k is the moment of the k th rectngle with respect to the y-xis.

5 5 y = f (x) f ( c k ) f ( c k ) c k b We next recognize tht the sum of the moments of the n rectngles is Riemnn sum whose limit is the definite integrl (ssumed to exist) of the function over the intervl [, b]: x k lim n c k f(c k ) x k = xf(x) dx In similr mnner, we cn compute the moment of the k th rectngle with respect to the x-xis. Becuse the y-coordinte of the center of the rectngle is f(c k), the moment with respect to the x-xis is f(c k ) f(c k ) x k, tht is, the y-coordinte of the center times the re of the rectngle. Once gin, we recognize the sum of these moments s Riemnn sum, whose limit is definite integrl: lim n Finlly, the point (x 0, y 0 ) whose coordintes stisfy f(c k ) f(c k ) x k = 1 f(x) dx Ax 0 = Ay 0 = 1 xf(x) dx f(x) dx where A is the re under the grph of f, is clled the centroid of the region. It is the blnce point of the re of the region. Bck to Exmple of Hydrogrph We hd gotten to the point in our discussion of the hydrogrph where we were bout to compute the centroids of the rinfll nd discge dt. The rinfll plot is composed of tee rectngles. We refer to the proof bove of the centroid formul to find the x-coordinte of the centroid. The proof shows tht we cn clculte it s the sum of the midpoint of rectngle times its re (the height of the rectngle times the width of the rectngle), ll divided by the re of the rinfll plot. The re of the rinfll dt is

6 6 A =.6(.1) +.6(3.7) +.4(1.9) = 4.4 Hence, we find tht the coordintes of the centroid of the rinfll dt re: x 0 = 1 (.3(.1)(.6) +.9(3.7)(.6) + 1.4(1.9)(.4)).8113 A y 0 = 1 ( (.1 )(.6) + (3.7 )(.6) + (1.9 )(.4) ) A Applet: Flood Wtch Try it! To find the centroid of the discge dt, which is given in convenient computtionl form such s n pplet or Mple worksheet, we use Riemnn sum pproximtion to clculte the integrls in question. First, letting y min ( = 150 in this exmple) be the bse level of the flow, the (pproximte) re A under the discge grph is obtined s the sum A = 3600 (f(c k ) y min ) x k 7418 where we hve shown explicitly the multiplier 3600 sec tht is needed to mke consistent the units on the verticl nd horizontl xes. Then, the x nd y coordintes of the centroid of the discge dt due to rinfll re: x 0 = 1 A y 0 = 1 A c k (f(c k ) y min ) x k 4.94 (f(c k ) y min ) x k Note tht x 0 is in hours, nd y 0 in m3 sec. The lg time is the difference of the x-vlues of the centroids of the discge nd rinfll dt, or pproximtely hours. Moreover, if we wnted mesure of the intensity of the storm, we could compute the difference in the y-vlues of the centroids. To see where the bove formuls for x 0 nd y 0 come from, note tht the re of one rectngle for computing the x coordinte x 0 nd the y coordinte y 0 of the centroid is ( ) f(ck ) y min xk. The distnce of the rectngle s centroid from the y-xis is c k, nd its distnce from the x-xis is 1 ( ) f(ck ) + y min. Thus, ech term in the sum for computing x 0 is 1 A c ( ) k f(ck ) y min xk, nd ech term in the sum for computing y 0 is 1 ( ) ( ) f(ck ) + y A min f(ck ) y min xk = 1 ( f(ck ) y ) A min xk nd both formuls re obtined s bove by summing the respective terms. The CSC: Flood Wtch

7 7 Now tht we hve considered n exmple of hydrogrph, nd discussed the relevnt mthemtics, we re redy to stte the objective, setup, nd thinking nd exploring issues for the CSC. Objective: We re given two hydrogrphs for the Gorge River tht hve been recorded ten yers prt. The overll objective is to nlyze, compre, nd interpret the two hydrogrphs, thereby reching conclusion bout the incresed or decresed likelihood of the Gorge River flooding. Setup: We will be plotting the rinfll nd discge dt, nd ssuming tht the discge represents smple of mesurements drwn from continuous function. We will be using Riemnn sums to clculte pproximtions to the re under the curve, nd to the centroid of the discge dt. We will keep trck of the vrious units of mesurement to be certin tht we hve consistent set. Thinking nd Exploring: We will be studying ech hydrogrph, nd then compring our findings for the two. The rinfll is mesured in units of inches per hour, the discge in units of cubic meters per second, nd the horizontl time line in hours. Some of the questions we will consider under Thinking nd Exploring re: Wht is the verge bse flow? Wht is the time t which the discge is mximum? Wht is the mximum discge? Wht is the discge due to bse flow over the 1 hour observtion time? Wht is the discge due to the rin storm over the 1 hour observtion time? Wht is the totl discge over the 1 hour observtion time? About how long did the rin storm lst? Wht is the center of mss of the precipittion? Wht is the center of mss of the discge? Wht is the lg time? Wht is the re of the wtershed? Applet: Flood Wtch Try it! As ususl, the lst step in CSC is to write summry of the investigtions. Interprettion nd Summry: After studying the two hydrogrphs of the Gorge River, nd thinking bout the mthemticl tools, it is time to interpret nd summrize the mthemticl results in terms of the originl objective. Pretend tht your synopsis is going to pper in the next issue of mgzine such s Scientific Americn. Include enough detils so tht reder would lern wht the mjor issues of the report re, nd how you went bout ddressing them. Wht will you wnt to tell reders bout your success with regrd to the originl stted objective of the investigtion? Be sure to write in complete sentences using correct rules of stndrd English grmmr. To get you strted, here re two questions tht definitely need to be nswered: 1. Wht chnges in the wtershed might hve occurred in the 10 yers between the hydrogrphs to ccount for the different pttern of the more recent hydrogrph reltive to the erlier one?. How might these chnges influence the likelihood of the Gorge River flooding? Wht dvice do you hve for public policy mkers? Mke the report interesting, compelling. Ask yourself: Would policy mker be ble to understnd it, nd feel compelled to follow its recommendtions? Exercises: Problems Check wht you hve lerned! Videos: Tutoril Solutions See problems worked out!

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

ROB EBY Blinn College Mathematics Department

ROB EBY Blinn College Mathematics Department ROB EBY Blinn College Mthemtics Deprtment Mthemtics Deprtment 5.1, 5.2 Are, Definite Integrls MATH 2413 Rob Eby-Fll 26 Weknowthtwhengiventhedistncefunction, wecnfindthevelocitytnypointbyfindingthederivtiveorinstntneous

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls

More information

!0 f(x)dx + lim!0 f(x)dx. The latter is sometimes also referred to as improper integrals of the. k=1 k p converges for p>1 and diverges otherwise.

!0 f(x)dx + lim!0 f(x)dx. The latter is sometimes also referred to as improper integrals of the. k=1 k p converges for p>1 and diverges otherwise. Chpter 7 Improper integrls 7. Introduction The gol of this chpter is to meningfully extend our theory of integrls to improper integrls. There re two types of so-clled improper integrls: the first involves

More information

The Fundamental Theorem of Calculus, Particle Motion, and Average Value

The Fundamental Theorem of Calculus, Particle Motion, and Average Value The Fundmentl Theorem of Clculus, Prticle Motion, nd Averge Vlue b Three Things to Alwys Keep In Mind: (1) v( dt p( b) p( ), where v( represents the velocity nd p( represents the position. b (2) v ( dt

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Stuff You Need to Know From Calculus

Stuff You Need to Know From Calculus Stuff You Need to Know From Clculus For the first time in the semester, the stuff we re doing is finlly going to look like clculus (with vector slnt, of course). This mens tht in order to succeed, you

More information

C1M14. Integrals as Area Accumulators

C1M14. Integrals as Area Accumulators CM Integrls s Are Accumultors Most tetbooks do good job of developing the integrl nd this is not the plce to provide tht development. We will show how Mple presents Riemnn Sums nd the ccompnying digrms

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled? Section 5. - Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator.

Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator. Nme: MATH 2250 Clculus Eric Perkerson Dte: December 11, 2015 Prctice Finl Show ll of your work, lbel your nswers clerly, nd do not use clcultor. Problem 1 Compute the following limits, showing pproprite

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Chpter 6 Lecture Notes Review nd Two New Sections Sprint 17 Net Distnce nd Totl Distnce Trvelled Suppose s is the position of prticle t time t for t [, b]. Then v dt = s (t) dt = s(b) s(). s(b) s() is

More information

Objectives. Materials

Objectives. Materials Techer Notes Activity 17 Fundmentl Theorem of Clculus Objectives Explore the connections between n ccumultion function, one defined by definite integrl, nd the integrnd Discover tht the derivtive of the

More information

Chapter 5. Numerical Integration

Chapter 5. Numerical Integration Chpter 5. Numericl Integrtion These re just summries of the lecture notes, nd few detils re included. Most of wht we include here is to be found in more detil in Anton. 5. Remrk. There re two topics with

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35 7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

MATH SS124 Sec 39 Concepts summary with examples

MATH SS124 Sec 39 Concepts summary with examples This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information