l 2 p2 n 4n 2, the total surface area of the
|
|
- Joan Jenkins
- 3 years ago
- Views:
Transcription
1 Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone C n of slnt length l by glueing together n iscoseles tringles with sides of length l, l, pn. n Given tht ech tringle hs re 1 p n n l p n n, the totl surfce re of the cone is 1p n l p n. The cone C n n is n pproximtion of the right circulr cone corresponding to circle of rdius r nd slnt length l. Given tht 1 lim n p n l p n n = πrl, the surfce re of the cone with circulr bse is πrl. Surfce re of Conic Frustrum: To obtin the surfce re of conic frustrum with slnt length l nd rdii r nd R, imgine subtrcting two cones, the smll one with slnt length l 1 nd rdius r 1, nd the lrge one with slnt length l nd rdius r. Then the net surfce re is πr l πr 1 l 1. Given the reltionships l 1 = r 1 l r nd l l 1 = l, the net surfce re (fter simplifiction) is πl(r 1 + r ). Surfce re of Revolution: Let y = f(x) be curve from x = to x = b. Rotting bout the x-xis yields surfce of revolution. pproximting the curve by line segments with slope f (x i ), we obtin conic frustrums with slnt length 1 + f (x i ) x nd rdii f(x i 1 ) nd f(x i ). Summing, we obtin the pproximtion π 1 + f (x i ) (f(x i 1 ) + f(x i )) x. 1
2 Using the further pproximtion f(x i 1 ) + f(x i )) f(x i ), we obtin the Riemnn sum πf(x i ) 1 + f (x i ) x. This yields surfce re = πf(x) 1 + f (x) dx. For exmple, using f(x) = x, x [, 1], we obtin 1 π x 1 + x dx = π (sec 6 θ sec θ) cos θ dθ = I 3 (u) I (u) π = 1 16 tn θ sec 3 θ dθ = ( 6 log π 1 (1 u ) 1 3 sec 5 θ sec 3 θ dθ = ( + 3 (1 u ) du = )). Homework: Section 7.5, problems 7, 9, 11, 13, 5. Section 7.6: pplictions to Physics nd Engineering Things tht cn be mesured: distnce (d), time (t), mss (m). Things tht cn be clculted: re (), velocity (v), ccelertion (), force (F ), pressure (P ), work (W ). English Units: d ft, t sec, v ft/sec, ft/sec, F lbs, P = F/ lbs/ft, F d ft-lbs. Metric Units: d m, t sec, m kg, v m/sec, m/sec, F = m N, P = F/ N/m, F d J. Note tht N is short for netwons (kg m/sec ) nd J is short for Joules (newton-meters or kg m /sec ). Constnts:
3 Grvity ner erth cuses constnt ccelertion of 3 ft/sec nd 9.8 m/sec. Wter hs weight density 6.5 lbs/in 3 nd mss density 1 kg/m 3. Work clcultions: If you lift n object of weight 3 ounces (force) through 75 inches (distnce), then the work done is F d = = 8.98 ft lbs. If you lift n object of mss 7 g through 5 cm, the work done is F d = md = = J. Vrible Work Clcultion: Exmple 3, pge. pound rope tht is 1 feet long is suspended from the top of building. Find the work done in pulling up the rope to the top of the building, discounting other forces. Solution: Think of the rope s being prtitioned into N pieces of length x feet. We will clculte the work done to lift ech segment, then dd. Ech segment weighs x pounds, nd the i th segment from the top is lifted through x i feet, so the x i x foot pounds of work is done, for totl of x i x foot pounds. Since x i is vrying in [, 1], the exct mount the work is foot-pounds. 1 x dx The Leky Bucket Problem: Imgine tht the rope bove is supporting bucket of 5 gllons of wter, tht n empty bucket weighs 1 pounds, tht we pull up the bucket t rte of 1 feet per second, nd tht t the moment we strt pulling the bucket leks wter t rte of gllons per 3
4 second. Clculte the work done in pulling up the rope nd the bucket nd the wter in the bucket. Solution: We will just clculte the mount of work to pull up the bucket nd the wter in it, then dd to the previous nswer. It will tke 1 seconds to pull up the bucket. Think of time s being prtitioned into N subintervls of t seconds. We will clculte the work done in ech subintervl of time. From time t i to time t i+1 we hve lifted the bucket 1 t feet. Choosing ny t i in this intervl, the bucket nd wter weighs pproximtely t i = 6 t i pounds, so in this time intervl we hve done pproximtely (6 t i ) t foot-pounds of work. Totl pproximte work done is (6 t i ) t. Since t i is vrying in [, 1], the exct mount of work done is 1 6 t dt. Pumping Wter out of Tnk Formed by Volume of Revolution: Imgine tht tnk of wter is formed by revolving the region bounded by y = x nd y = 3 bout the y-xis. The tnk is filled with wter, nd the wter is to be pumped out. How much work does this tke, ssuming tht the units long the x nd y xes re given in feet? Solution: We will prtition the tnk into slices of width y nd clculte the work done to pump ech slice out. The slice tht extends from y i 1 to y i cn be pproximted by wsher tht hs thickness of y feet, cross-sectionl rdius of pproximtely x i feet corresponding to vlue of yi [y i 1, y i ], cross-sectionl re of pproximtely π(x i ) = π yi squre feet, volume of pproximtely π yi y cubic feet, nd weight of 6.5π yi y pounds. Since this slice is to be lifted 3 y i feet, the work done is 6.5π yi (3 y i ) y foot-pounds. Totl pproximte work done is 6.5π yi (3 y i ) y
5 foot-pounds Exct work done is foot-pounds 3 6.5π y(3 y) dy Exmple, pge : The tnk is the volume of revolution formed by the line y =.5x. The slice tht extends from y i 1 to y i cn be pproximted by wsher tht hs thickness of y meters, cross-sectionl rdius of pproximtely x i meters corresponding to vlue of yi [y i 1, y i ], cross-sectionl re of pproximtely π(x i ) = π (y i ) squre meters, volume of pproximtely 6.5 π (y i ) y cubic meters, mss of 1π (y i ) y kilogrms, nd represents force of 98π (y i ) y newtons. Since this slice is to be lifted y i feet, the work done is 98π (y i ) 6.5 (1 y i ) y foot-pounds. Totl pproximte work done is 98π (y i ) 6.5 (1 y i ) y. Since y i vries in [, 8], exct work done is 8 98π y (1 y) dy 6.5 joules. We get the sme nswer s in the book. Remrk: We cn use the sme ides for other shpes, so long s we cn pproximte the typicl slice of volume. Hydrosttic Pressure: Consider rectngulr continer tht hs bse re squre feet nd depth d feet. When the contininer is filled with wter, the pressure on the bse of the continer from the weight of the wter bove it is P = F/. The weight of the wter 6.5 pounds per cubic foot times d cubic feet, which yields F = 6.5d. The re of the bse is squre feet. Hence the pressure is 6.5d = 6.5d pounds per squre foot. 5
6 If the continer hs bse re squre meters nd depth d meters, then the mss of the wter is d kg, the ccelertion is 9.8 meters per squre second, hence force of the wter on the bse is F = 9.8d newtons, hence the pressure on the bse is 9.8d = 9.8d newtons per squre meter. Hydrosttic pressure is regrded to be the sme in ll directions t ny given depth. Hydrosttic Force Problem: metl plte in the shpe bounded by the curves y = x nd y = 18 x (dimensions re feet) is submerged in wter so tht the top is 1 feet below wter level. Clculte the totl mout of hydrosttic force exerted by the wter ginst the plte. Solution: Since hydrosttic pressure (pounds of force per squre foot of re) cross slice of the plte is the sme, we will pproximte the totl force on given slice of the plte by multiplying the re of the slice by the force per squre foot, then dd the result. Segment ech hlf of the plte into slices of width y. ssuming the pproximte depth of the i th slice is yi, the hydrosttic pressure on the plte t depth of yi is 6.5( yi ) pounds per squre foot. For yi [, 9], the slice cn be pproximted by rectngle with length extending between the corresponding x-coordintes on the curve y = x, nmely yi, for n re of yi y squre feet nd force of 15( y i ) y i y pounds. For yi [9, 18], the slice cn be pproximted by rectngle with length extending between the corresponding x-coordintes on the curve y = 18 x, nmely 18 yi, for n re of 18 yi y squre feet nd force of 15( yi ) 18 yi y pounds. Hence totl force is F = 9 15( y) y dy ( y) 18 y dy = 9, 5 pounds. In the second integrl, mke the substitution u = 18 y to simplify the clcultion. 6
7 Center of mss: Sy objects with msses m 1 through m k nd totl mss M re locted t positions (x 1, y 1, z 1 ) through (x k, y k, z k ). The center of mss of the collection of objects is defined to be (x, y, z) where x = m 1 M x m k M x k, nd y = m 1 M y m k M y k, z = m 1 M z m k M z k. Given, for simplicity, two-dimensionl region with uniform mss density nd bounded by the curves y = f(x) nd y = g(x) over [, b], we pproximte the region by rectngulr slices nd tret ech rectngle s hving mss equl to the re of the rectngle concentrted in the center of the rectngle. This yields x f(x 1) g(x 1 ) x x (f(x n) g(x n )) x x n, y (f(x 1) g(x 1 )) x f(x 1 ) + g(x 1 ) Letting n, we obtin + + (f(x n) g(x n )) x f(x n ) + g(x n ). x = x(f(x) g(x)) dx, f(x) g(x) dx y = f(x) g(x) dx f(x) g(x) dx. Note: If there is mss density function ρ tht vries with x-coordinte, we cn modify the formuls bove suitbly. Theorem of Pppus: Rotte plne figure bout xis. Volume of revolution is re times distnce centroid (center of mss ssuming uniform density) trvels. Homework: Section 7.6, Problems 9, 11, 13,, 7, 3, 53 7
7.6 The Use of Definite Integrals in Physics and Engineering
Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems
Math 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two
APPLICATIONS OF THE DEFINITE INTEGRAL
APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through
a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1
Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the
We divide the interval [a, b] into subintervals of equal length x = b a n
Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:
Math 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
Sample Problems for the Final of Math 121, Fall, 2005
Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.
Math 1132 Worksheet 6.4 Name: Discussion Section: 6.4 Work
Mth 1132 Worksheet 6.4 Nme: Discussion Section: 6.4 Work Force formul for springs. By Hooke s Lw, the force required to mintin spring stretched x units beyond its nturl length is f(x) = kx where k is positive
Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes
Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl
Definite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
Math 113 Exam 1-Review
Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
MAT187H1F Lec0101 Burbulla
Chpter 6 Lecture Notes Review nd Two New Sections Sprint 17 Net Distnce nd Totl Distnce Trvelled Suppose s is the position of prticle t time t for t [, b]. Then v dt = s (t) dt = s(b) s(). s(b) s() is
[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves
Gols: 1. To find the re etween two curves Section 6.1 Are of Regions etween two Curves I. Are of Region Between Two Curves A. Grphicl Represention = _ B. Integrl Represention [ ( ) ( )] f x g x dx = C.
Math 113 Exam 2 Practice
Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This
Not for reproduction
AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type
14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes
Lengths of curves nd surfces of revolution 4.4 Introduction Integrtion cn be used to find the length of curve nd the re of the surfce generted when curve is rotted round n xis. In this section we stte
7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus
7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e
Section 6: Area, Volume, and Average Value
Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find
Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn
INTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
Math 120 Answers for Homework 13
Mth 12 Answers for Homework 13 1. In this problem we will use the fct tht if m f(x M on n intervl [, b] (nd if f is integrble on [, b] then (* m(b f dx M(b. ( The function f(x = 1 + x 3 is n incresing
The Fundamental Theorem of Calculus, Particle Motion, and Average Value
The Fundmentl Theorem of Clculus, Prticle Motion, nd Averge Vlue b Three Things to Alwys Keep In Mind: (1) v( dt p( b) p( ), where v( represents the velocity nd p( represents the position. b (2) v ( dt
JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson
JUST THE MATHS UNIT NUMBER 3.8 INTEGRATIN APPLICATINS 8 (First moments of volume) b A.J.Hobson 3.8. Introduction 3.8. First moment of volume of revolution bout plne through the origin, perpendiculr to
Section 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
MA 124 January 18, Derivatives are. Integrals are.
MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,
The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.
Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F
Math 116 Final Exam April 26, 2013
Mth 6 Finl Exm April 26, 23 Nme: EXAM SOLUTIONS Instructor: Section:. Do not open this exm until you re told to do so. 2. This exm hs 5 pges including this cover. There re problems. Note tht the problems
Distance And Velocity
Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl
Week 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
5 Applications of Definite Integrals
5 Applictions of Definite Integrls The previous chpter introduced the concepts of definite integrl s n re nd s limit of Riemnn sums, demonstrted some of the properties of integrls, introduced some methods
We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.
Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn
Final Exam - Review MATH Spring 2017
Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.
Big idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
Module M5.4 Applications of integration
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module M5.4 Opening items. Module introduction. Fst trck questions. Redy to study? Ares. Are under grph. Are between two grphs Solids of
Riemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
Riemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
Total Score Maximum
Lst Nme: Mth 8: Honours Clculus II Dr. J. Bowmn 9: : April 5, 7 Finl Em First Nme: Student ID: Question 4 5 6 7 Totl Score Mimum 6 4 8 9 4 No clcultors or formul sheets. Check tht you hve 6 pges.. Find
Indefinite Integral. Chapter Integration - reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
Math 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
Geometric and Mechanical Applications of Integrals
5 Geometric nd Mechnicl Applictions of Integrls 5.1 Computing Are 5.1.1 Using Crtesin Coordintes Suppose curve is given by n eqution y = f(x), x b, where f : [, b] R is continuous function such tht f(x)
Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A
Time : hours 0 - Mthemtics - Mrch 007 Mrks : 100 Pg - 1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new
The Fundamental Theorem of Calculus
The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls
ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus
ES 111 Mthemticl Methods in the Erth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry nd bsic clculus Trigonometry When is it useful? Everywhere! Anything involving coordinte systems
Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties
Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:
AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight
AP Clculus BC Review Applictions of Integrtion (Chpter Things to Know n Be Able to Do Fin the re between two curves by integrting with respect to x or y Fin volumes by pproximtions with cross sections:
13.4 Work done by Constant Forces
13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push
APPM 1360 Exam 2 Spring 2016
APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the
Line Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
APPLICATIONS OF DEFINITE INTEGRALS
Chpter 6 APPICATIONS OF DEFINITE INTEGRAS OVERVIEW In Chpter 5 we discovered the connection etween Riemnn sums ssocited with prtition P of the finite closed intervl [, ] nd the process of integrtion. We
4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
(6.5) Length and area in polar coordinates
86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +
Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions
Mth 1102: Clculus I (Mth/Sci mjors) MWF 3pm, Fulton Hll 230 Homework 2 solutions Plese write netly, nd show ll work. Cution: An nswer with no work is wrong! Do the following problems from Chpter III: 6,
Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).
Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested
1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection
Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?
Section 5. - Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles
7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?
7.1 Integrl s Net Chnge Clculus 7.1 INTEGRAL AS NET CHANGE Distnce versus Displcement We hve lredy seen how the position of n oject cn e found y finding the integrl of the velocity function. The chnge
Chapter 12. Lesson Geometry Worked-Out Solution Key. Prerequisite Skills (p. 790) A 5 } perimeter Guided Practice (pp.
Chpter 1 Prerequisite Skills (p. 790) 1. The re of regulr polygon is given by the formul A 5 1 p P, where is the pothem nd P is the perimeter.. Two polygons re similr if their corresponding ngles re congruent
n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity.
5 Distributed CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Wlt Oler Texs Tech Universit Forces: Centroids nd Centers of Grvit Contents Introduction
x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution
Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge
Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus
Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = -x + 8x )Use
The Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
Chapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions
MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2
MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points
Shape and measurement
C H A P T E R 5 Shpe nd mesurement Wht is Pythgors theorem? How do we use Pythgors theorem? How do we find the perimeter of shpe? How do we find the re of shpe? How do we find the volume of shpe? How do
MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS
MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION
5 Accumulated Change: The Definite Integral
5 Accumulted Chnge: The Definite Integrl 5.1 Distnce nd Accumulted Chnge * How To Mesure Distnce Trveled nd Visulize Distnce on the Velocity Grph Distnce = Velocity Time Exmple 1 Suppose tht you trvel
Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
AB Calculus Review Sheet
AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is
Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:
Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You
Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution
Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge
( ) as a fraction. Determine location of the highest
AB Clculus Exm Review Sheet - Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if
( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).
AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f
Math Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :
Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given
Math 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C
Integrtion Mth 07H Topics for the first exm Bsic list: x n dx = xn+ + C (provided n ) n + sin(kx) dx = cos(kx) + C k sec x dx = tnx + C sec x tnx dx = sec x + C /x dx = ln x + C cos(kx) dx = sin(kx) +
Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...
Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting
Operations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils
Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator.
Nme: MATH 2250 Clculus Eric Perkerson Dte: December 11, 2015 Prctice Finl Show ll of your work, lbel your nswers clerly, nd do not use clcultor. Problem 1 Compute the following limits, showing pproprite
JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson
JUST THE MATHS SLIDES NUMBER 13.12 INTEGRATION APPLICATIONS 12 (Second moments of n re (B)) b A.J.Hobson 13.12.1 The prllel xis theorem 13.12.2 The perpendiculr xis theorem 13.12.3 The rdius of grtion
Integrals - Motivation
Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but
Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x
Further integrtion Stndrd derivtives nd integrls The following cn be thought of s list of derivtives or eqully (red bckwrds) s list of integrls. Mke sure you know them! There ren t very mny. f(x) f (x)
Centre of Mass, Moments, Torque
Centre of ss, oments, Torque Centre of ss If you support body t its center of mss (in uniform grvittionl field) it blnces perfectly. Tht s the definition of the center of mss of the body. If the body consists
Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
Trigonometric Functions
Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds
Unit Six AP Calculus Unit 6 Review Definite Integrals. Name Period Date NON-CALCULATOR SECTION
Unit Six AP Clculus Unit 6 Review Definite Integrls Nme Period Dte NON-CALCULATOR SECTION Voculry: Directions Define ech word nd give n exmple. 1. Definite Integrl. Men Vlue Theorem (for definite integrls)
Riemann is the Mann! (But Lebesgue may besgue to differ.)
Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >
( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.
AP Clculus Finl Review Sheet solutions When you see the words This is wht you think of doing Find the zeros Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor Find
Chapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
Problems for HW X. C. Gwinn. November 30, 2009
Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object
Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas
Mth 19 Chpter 5 Lecture Notes Professor Miguel Ornels 1 M. Ornels Mth 19 Lecture Notes Section 5.1 Section 5.1 Ares nd Distnce Definition The re A of the region S tht lies under the grph of the continuous
SAINT IGNATIUS COLLEGE
SAINT IGNATIUS COLLEGE Directions to Students Tril Higher School Certificte 0 MATHEMATICS Reding Time : 5 minutes Totl Mrks 00 Working Time : hours Write using blue or blck pen. (sketches in pencil). This
JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 11 (Second moments of an area (A)) A.J.Hobson
JUST THE MATHS SLIDES NUMBER. INTEGRATIN APPLICATINS (Second moments of n re (A)) b A.J.Hobson.. Introduction..2 The second moment of n re bout the -xis.. The second moment of n re bout the x-xis UNIT.
Partial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3)
Fll 6 Solutions to Exm3 (ME39_F6_soln3 Solutions to Exm 3) Fll 6. ( pts totl) Unidirectionl Flow in Tringulr Duct (A Multiple-Choice Problem) We revisit n old friend, the duct with n equilterl-tringle