We know that if f is a continuous nonnegative function on the interval [a, b], then b


 Ronald Chapman
 1 years ago
 Views:
Transcription
1 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going to extend this notion bit by considering how to find the re between two functions. To be specific, suppose we re given two continuous functions, f top nd g bottom defined on the intervl [, b], with g bottom (x) f top (x) for ll x in the intervl. How do we find the re bounded by the two functions over tht intervl? We hve used the nottion f top nd g bottom for obvious resons. However, we wnt to cution you tht ll of the subsequent nlysis relly does ssume tht f lies bove or is equl to g t every point throughout the intervl. So, you wnt to be sure in problemsolving tht you hve verified tht this is the cse before using the formul tht we will develop next. The re of the region between the two curves nd bove the intervl [, b] equls the re of the region under the grph of f top on tht intervl minus the re of the region under the grph of g bottom on the sme intervl. Thus, the re of the region between the two curves equls f top (x) dx g bottom (x) dx = (f top (x) g bottom (x)) dx The lst integrl is normlly the form in which we express the re between the two curves. But remember tht to pply the formul, we hve to know which curve is on top nd which is on bottom, nd we hve to be certin tht tht reltionship is mintined throughout the intervl. Note though tht the verticl plcement of the curves does not mtter. For exmple, both of them could lie below the xxis, or one bove nd one below, nd the formul would still hold. Exmple 1: Find the re of the region between the grphs of y = x 2 nd y = x 3 for x 1. Solving for the point(s) of intersection, we find tht the curves intersect t x =, 1: x 2 = x 3 x 2 (x 1) = implies x =, x = 1. Here is wht quick sketch by hnd might look like:
2 2 To determine which curve is on top, we plug in convenient vlue of x to find tht y = x 2 is on top throughout the intervl [, 1]. Thus, we cn use the formul bove: The re of the region between the two curves equls 1 ( x 2 x 3) dx = ( x 3 /3 x 4 /4 ) 1 = 1/3 1/4 = 1/12. Exmple 2: Find the re of the region between y = e x nd y = 1 1+x on the intervl [, 1]. The grph is shown. Becuse the curves intersect t x =, nd y = e x is incresing while y = 1/(1 + x) is decresing, we know tht e x is on top. Thus, the re of the region between the curves equls 1 ( e x 1 ) dx = (e x ln 1 + x ) x = e ln 2 e + ln 1 = e ln 2 1 Exmple 3: Find the re of the region bounded by y = x 2 2x nd y = 4 x 2. To solve this problem, we need sketch so tht we cn determine which function is on top over which intervls. We will begin by determining the points of intersection. x 2 2x = 4 x 2 2x 2 2x 4 = 2(x 2 x 2) = 2(x 2)(x + 1) = So, x = 2 or x =. Both functions re qudrtic polynomils, so their grphs re prbols, one opening up nd the other down. We should recognize from the sign on x 2 which curve is on top, or we cn test vlue of x to find out.
3 3 Thus, the re of the region cn be gotten by pplying our integrl formul to obtin: 2 ) (4 x 2 (x 2 2x)) dx = (4x 2x x2 = 8 16 ( ) = 9 Exmple 4: Find the re of the region bounded by the two curves y = x 3 9x nd y = 9 x 2. [Hint: You probbly will need to know tht x+1 is fctor of x 3 +x 2 9x 9.] Let s find the points of intersection: x 3 9x = 9 x 2 x 3 + x 2 9x 9 = (x + 1)(x 2 9) = (x + 1)(x 3)(x + 3) = Note tht to obtin the next to the lst eqution bove, we used the hint nd divided x 3 + x 2 9x 9 by x + 1. A sketch of the grphs follows: Thus, the re cn be gotten by pplying our integrl formul twice once to the intervl [ 3, ] where x 3 9x is on top, nd once to the intervl [, 3] where 9 x 2 is on top nd dding the results together: (x 3 9x (9 x 2 )) dx (9 x 2 (x 3 9x)) dx Routine clcultion gives the nswer Try it for yourself nd verify this result. Exmple 5: Find the re between sin x nd cos x on [, π/4]. Here is sketch:
4 4 So, the re is π/4 (cos x sin x) dx = (sin x + cos x) π/4 = sin(π/4) + cos(π/4) (sin + cos ) = ( + 1) 2 2 = 2 1 Functions of y: Thus fr, we hve only considered functions of x. We could just s well consider two functions of y, sy, x = f Left (y) nd x = g Right (y) defined on the intervl [c, d] on the yxis s in the sketch below: Then the re between the grphs cn be found by subdividing the intervl [c, d] on the yxis, nd using horizontl rectngulr re elements. In tht cse, we get tht the re between the two curves is the definite integrl d c (g Right (y) f Left (y)) dy Exmple 6: Find the re under the grph of y = ln x nd bove the intervl [1, e] on the xxis. We know tht integrting with respect to x yields the definite integrl e ln x dx. However, suppose we 1 do not know (or remember, or wnt to investigte) n ntiderivtive for ln x. Then we cn try to solve this problem by integrting insted with respect to y. The functions re x = e on the right, x = e y on the left, over the intervl from y = to y = 1: 1 (e e y ) dy = (ey e y ) 1 = e e + 1 = 1
5 5 Thus, our problem is solved. Alterntively, we could go bck to where we begn. It turns out tht by ppliction of the Integrtion by Prts formul to the integrl ln x dx, x ln x x is n ntiderivtive of ln x. (Just clculte the derivtive to verify this result.) Thus, we cn evlute the originl integrl with respect to x: e 1 ln x dx = (x ln x x) e 1 = e e ( 1) = 1 As we should, we get the sme nswer for the re of the region integrting with respect to either x or y. Exercises: Problems Check wht you hve lerned! Videos: Tutoril Solutions See problems worked out!
approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More information38 Riemann sums and existence of the definite integral.
38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the xxis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationSections 5.2: The Definite Integral
Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More information5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of crosssection or slice. In this section, we restrict
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More informationAPPM 1360 Exam 2 Spring 2016
APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More informationx 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx
. Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute
More informationMath 113 Exam 2 Practice
Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This
More informationdifferent methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).
Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different
More informationRiemann Integrals and the Fundamental Theorem of Calculus
Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationMath 113 Exam 1Review
Mth 113 Exm 1Review September 26, 2016 Exm 1 covers 6.17.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationAnonymous Math 361: Homework 5. x i = 1 (1 u i )
Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationFinal Exam Study Guide
Finl Exm Study Guide Includes. Integrls & Antiderivtive Rules 2. Definite Integrls (Integrls with bounds) 3. Are Between Two Curves  Region Bounded by Two Curves 4. Consumer nd Producer Surplus. USubstitution.
More informationx ) dx dx x sec x over the interval (, ).
Curve on 6 For , () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationImproper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.
Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationChapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1
Chpter 5. Let g ( e. on [, ]. The derivtive of g is g ( e ( Write the slope intercept form of the eqution of the tngent line to the grph of g t. (b Determine the coordinte of ech criticl vlue of g. Show
More informationEulerMaclaurin Summation Formula 1
Jnury 9, EulerMclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More information(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35
7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationSOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014
SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.
More informationHomework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.
Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points
More informationMath 3B Final Review
Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:4510:45m SH 1607 Mth Lb Hours: TR 12pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationNot for reproduction
AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationChapter 6. Riemann Integral
Introduction to Riemnn integrl Chpter 6. Riemnn Integrl WonKwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl
More informationChapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...
Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting
More informationSummer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo
Summer 6 MTH4 College Clculus Section J Lecture Notes Yin Su University t Bufflo yinsu@bufflo.edu Contents Bsic techniques of integrtion 3. Antiderivtive nd indefinite integrls..............................................
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationMTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008
MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationProblem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:
(x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one
More informationSection 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
More information5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationIf u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find ntiderivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
More informationProblem Set 3
14.102 Problem Set 3 Due Tuesdy, October 18, in clss 1. Lecture Notes Exercise 208: Find R b log(t)dt,where0
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More informationCalculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties
Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwthchen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:
More informationMidpoint Approximation
Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do
More informationContinuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom
Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationPreSession Review. Part 1: Basic Algebra; Linear Functions and Graphs
PreSession Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:
More informationIf deg(num) deg(denom), then we should use longdivision of polynomials to rewrite: p(x) = s(x) + r(x) q(x), q(x)
Mth 50 The method of prtil frction decomposition (PFD is used to integrte some rtionl functions of the form p(x, where p/q is in lowest terms nd deg(num < deg(denom. q(x If deg(num deg(denom, then we should
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationa a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.
Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting
More informationTopic 1 Notes Jeremy Orloff
Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More informationMath 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C
Integrtion Mth 07H Topics for the first exm Bsic list: x n dx = xn+ + C (provided n ) n + sin(kx) dx = cos(kx) + C k sec x dx = tnx + C sec x tnx dx = sec x + C /x dx = ln x + C cos(kx) dx = sin(kx) +
More informationPractice final exam solutions
University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If
More information2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).
AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following
More informationSection 7.1 Area of a Region Between Two Curves
Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationMath 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)
Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte singlevrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion
More informationChapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
More informationChapter 1  Functions and Variables
Business Clculus 1 Chpter 1  Functions nd Vribles This Acdemic Review is brought to you free of chrge by preptests4u.com. Any sle or trde of this review is strictly prohibited. Business Clculus 1 Ch 1:
More informationTrignometric Substitution
Trignometric Substitution Trigonometric substitution refers simply to substitutions of the form x sinu or x tnu or x secu It is generlly used in conjunction with the trignometric identities to sin θ+cos
More informationu( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 218, pp 4448): Determine the equation of the following graph.
nlyzing Dmped Oscilltions Prolem (Medor, exmple 218, pp 4448): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $
More informationFUNCTIONS: Grade 11. or y = ax 2 +bx + c or y = a(x x1)(x x2) a y
FUNCTIONS: Grde 11 The prbol: ( p) q or = +b + c or = ( 1)( ) The hperbol: p q The eponentil function: b p q Importnt fetures: intercept : Let = 0 intercept : Let = 0 Turning points (Where pplicble)
More informationCalculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.
Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite
More informationLecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at UrbanaChampaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t UrbnChmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More information7  Continuous random variables
71 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7  Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin
More informationCalculus  Activity 1 Rate of change of a function at a point.
Nme: Clss: p 77 Mths Helper Plus Resource Set. Copright 00 Bruce A. Vughn, Techers Choice Softwre Clculus  Activit Rte of chnge of function t point. ) Strt Mths Helper Plus, then lod the file: Clculus
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationUNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE
UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence
More informationMathematics of Motion II Projectiles
Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More informationPART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.
PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic
More informationMath 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two
More informationBig idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
More informationLine and Surface Integrals: An Intuitive Understanding
Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of
More informationa 2 +x 2 x a 2 x 2 Figure 1: Triangles for Trigonometric Substitution
I.B Trigonometric Substitution Uon comletion of the net two sections, we will be ble to integrte nlyticlly ll rtionl functions of (t lest in theory). We do so by converting binomils nd trinomils of the
More information38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes
The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which
More information31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes
Numericl Integrtion 3. Introduction In this Section we will present some methods tht cn be used to pproximte integrls. Attention will be pid to how we ensure tht such pproximtions cn be gurnteed to be
More informationTHE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS
THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2Dimensionl Gussin Qudrture 20 4
More information