Modeling I/O Links With X Parameters

Size: px
Start display at page:

Download "Modeling I/O Links With X Parameters"

Transcription

1 Modeling I/O Links With X Parameters José E. Schutt Ainé and Pavle Milosevic Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana, IL Wendemagegnehu T. Beyene Research & Technology Development Rambus Inc. Los Altos, CA

2 Outline Motivation S Parameters PHD Framework and X Parameters a. Definitions b. Properties c. Matrix Formulation d. Time Domain Simulation Application to CMOS Inverter High-Speed Link Simulations Conclusions 2

3 Scattering Parameters V1 a1 b1 I b1 S11a1 S12a2 a a2 b 1 b1 2 b2 S21a1 S22a I 2 2 Z Z o o B SA For a two-port For a general N-port N B B i SA Sij A Ak 0 i ij j j1 most successful behavioral models V a b j k j k1,..., N 3

4 Challenges in HS Links High speed Serial channels are pushing the current limits of simulation. Models/Simulator need to handle current challenges Need to accurately handle very high data rates Simulate large number of bits to achieve low BER Non linear blocks with time variant systems Model TX/RX equalization All types of jitter: (random, deterministic, etc.) Crosstalk, loss, dispersion, attenuation, etc Handle and manage vendor specific device settings Clock data recovery (CDR) circuits These cannot be accurately modeled with S parameters 4

5 X Parameters for SI Objective Adopt X parameters as the framework for highspeed channel design modeling and simulation. Advantages - Mathematically robust framework - Can handle nonlinearities - Instrument exists (NVNA) - Blackbox format vendor IP protection - Matrix format easy incorporation in CAD tools - X Parameters are a superset of S parameters See Refs [1] & [2] by Verspecht and Root 5

6 Cascading X Parameters GOAL: Simulate complete channel by combining X- parameter blocks from different sources into a single composite X matrix. Vendor A Foundry In-House Vendor B In-House Vendor C Foundry X X-parameters of individual devices can be accurately cascaded within a harmonic balance simulator environment. 6

7 Nonlinear Vector Network Analyzer (NVNA) NVNA instruments will gradually replace all VNAs 7

8 PHD Modeling Polyharmonic distortion (PHD) modeling is a frequency-domain modeling technique PHD model defines X parameters which form a superset of S parameters To construct PHD model, DUT is stimulated by a set of harmonically related discrete tones In stimulus, fundamental tone is dominant and higher-order harmonics are smaller 8

9 PHD Framework Signal is represented by a fundamental with harmonics Signals are periodic or narrowband modulated versions of a fundamental with harmonics Harmonic index: 0 for dc contribution, 1 for fundamental and 2 for second harmonic Power level, fundamental frequency can be varied to generate complete data for DUT 9

10 Excitation Design Excitation 1 Excitation 2 Excitation 3 Excitation 4 Each excitation will generate response with fundamental and all harmonics 10

11 PHD Framework 11

12 Harmonic Superposition In many situations, there is only one dominant largesignal input component present. The harmonic frequency components are relatively small harmonic components can be superposed Harmonic superposition principle is key to PHD model 12

13 X-Parameter Data File TOP: FILE DESCRIPTION! Created Fri Jul 30 07:44: ! Version = 2.0! HB_MaxOrder = 25! XParamMaxOrder = 12! NumExtractedPorts = 3! IDC_1=0 NumPts=1! IDC_2=0 NumPts=1! VDC_3=12 NumPts=1! ZM_2_1=50 NumPts=1! ZP_2_1=0 NumPts=1! AN_1_1=100e-03( dBm) NumPts=1! fund_1=[100 Hz->1 GHz] NumPts=4 13

14 X-Parameter Data File MIDDLE: FORMAT DESCRIPTION BEGIN XParamData % fund_1(real) FV_1(real) FV_2(real) FI_3(real) FB_1_1(complex) % FB_1_2(complex) FB_1_3(complex) FB_1_4(complex) % FB_1_7(complex) FB_1_8(complex) FB_1_9(complex) % FB_1_12(complex) FB_2_1(complex) FB_2_2(complex) % FB_2_5(complex) FB_2_6(complex) FB_2_7(complex) % FB_2_10(complex) FB_2_11(complex) FB_2_12(complex) % T_1_1_1_1(complex) S_1_2_1_1(complex) T_1_2_1_1(complex) % S_1_4_1_1(complex) T_1_4_1_1(complex) S_1_5_1_1(complex) % T_1_6_1_1(complex) S_1_7_1_1(complex) T_1_7_1_1(complex) % S_1_9_1_1(complex) T_1_9_1_1(complex) S_1_10_1_1(complex)) % T_1_11_1_1(complex) S_1_12_1_1(complex) T_1_12_1_1(complex) % T_2_1_1_1(complex) S_2_2_1_1(complex) T_2_2_1_1(complex) % S_2_4_1_1(complex) T_2_4_1_1(complex) S_2_5_1_1(complex % T_2_6_1_1(complex) S_2_7_1_1(complex) T_2_7_1_1(complex) % S_2_9_1_1(complex) T_2_9_1_1(complex) S_2_10_1_1(complex) 14

15 X-Parameter Data File BOTTOM: DATA LISTING e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-14 Remarks Data is measured or generated from a harmonic balance simulator Data file can be very large 15

16 X-Parameter Relationship k kl kl * 11, 11, 11 b D a P S a P a T a P a ik ik ik jl jl ik jl jl ( jl, ) (1,1) P : Phase of a 11 D : B type X parameter ik Sik, jl : S type X parameter Tik, jl : T type X parameter 16

17 Index Convention S ik,jl T ik,jl out port in port harmonic out harmonic in out port in port harmonic out harmonic in a ik b ik port harmonic port harmonic 17

18 X Parameters of CMOS -1 x S11,11 - Amplitude (db) GHz 1 GHz T11,11 - Amplitude (db) GHz 1 GHz A11 (dbm) A11 (dbm) S21,11 - Amplitude (db) GHz 1 GHz T21,11 - Amplitude (db) GHz 1 GHz A11 (dbm) A11 (dbm) 18

19 X Parameters of CMOS S12,11 - Amplitude (db) GHz 1 GHz T12,11 - Amplitude (db) GHz 1 GHz A11 (dbm) A11 (dbm) S22,11 - Amplitude (db) GHz 1 GHz T22,11 - Amplitude (db) GHz 1 GHz A11 (dbm) A11 (dbm) 19

20 Special Terms T-Type X Parameter Spectral mapping is non-analytical Real and imaginary parts in FD are treated differently Even and odd parts in TD are treated differently T involves non-causal component of signal Phase Term P P is phase of large-signal excitation (a 11 ) Contributions to B waves will depend on P In measurements, system must be calibrated for phase 20

21 Handling Phase Term k kl kl * 11, 11, 11 b D a P S a P a T a P a ik ik ik jl jl ik jl jl ( jl, ) (1,1) Multiply through by P k * 11, 11, 11 bp D a S a P a T a P a k l l ik ik ik jl jl ik jl jl ( jl, ) (1,1) P where is the phase of a j 11 e we can always express the relationship in terms of modified power wave variables * 11, 11, 11 b D a S a a T a a ik ik ik jl jl ik jl jl ( jl, ) (1,1) where k b b P and a a P ik ik ik ik k 21

22 Handling R&I Components Because of non-analytical nature of spectral mapping, real and imaginary component interactions must be accounted for separately. we have b X X a r rr ri r b X X a i ir ii i where, X S T X S T rr r r ri i i, X S T X S T ir i i ii r r 22

23 Handling Phase Term Phase term can be accounted for by applying following transformations br Xrr Xriar b X X a i ir ii i ' cosb sinb b cos sin r Xrr Xri a a ' sinb cos b b Xir X ii sina cos i a ' a r ' ai in which ' br cosb sinbb r ' b i sinb cos b bi ' ar cosa sina a r ' a i sina cos a ai 23

24 X Matrix Construction Separate real and imaginary components Account for real-imaginary interactions Account for harmonic-to-harmonic contributions Account for harmonic-to-dc contributions Matrix size is 2mn 2mn m: number of harmonics n: number of ports 24

25 Matrix Formulation* size:2mn a1 a 2 a ap an a p a a a a a a (1) pr (1) pi (2) pr (2) pi ( m) pr ( m) pi We wish to use: b=xa b b b b b vector size is 2m m: number of harmonics n: number of ports (real vectors) *DC term not included 1 2 p n b p size:2 mn b b b b b b (1) pr (1) pi (2) pr (2) pi ( m) pr ( m) pi 25

26 X= X X X X 21 X22 Xpq Xn1 X n X pq (real matrix) *DC term not included Matrix Formulation* nn matrix size is 2mn 2mn m: number of harmonics n: number of ports size: 2m 2m X X X X X X X X X X X X X X X X X X (11) (11) (12) (12) (1 m) (1 m) pqrr pqri pqrr pqri pqrr pqri (11) (21) (21) (11) (21) (21) (12) (22) (22) (12) (22) (22) pqir pqrr pqir pqii pqri pqii pqir pqrr pqir pqii pqri pqii X X X X ( m1) ( m1) ( mm) ( mm) pqir pqii pqir pqii 26

27 X Matrix for 2-Port System* (2 harmonics) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X (11) (11) (12) (12) (11) (11) (12) (12) 11rr 11ri 11rr 11ri 12rr 12ri 12rr 12ri (11) (11) (12) (12) (11) (11) (12) (12) 11ir 11ii 11ir 11ii 12ir 12ii 12ir 12ii (21) (21) (22) (22) (21) (21) (21) (21) 11rr 11ri 11rr 11ri 12rr 12ri X12rr X12ri (21) (21) (22) (22) (21) (21) (22) (22) 11ir 11ii 11ir 11ii 12ir 12ii 12ir 12ii (11) (11) (12) (12) (11) (11) (12) (12) 21rr 21ri 21rr 21ri 22rr 22ri 22rr 22ri (11) (11) (12) (12) (11) (11) (12) (12) 21ir 21ii 21ir 21ii 22ir X22ii X22ir X22ii (21) (21) (22) (22) (21) (21) (22) (22) 21rr 21ri 21rr 21ri 22rr 22ri 22rr 22ri (21) (21) (22) (22) (21) (21) (22) (22) 21ir 21ii 21ir 21ii 22ir 22ii 22ir 22ii (real matrix) For instance, X (12) 21ri is the contribution to the real part of the 1 st harmonic of the wave scattered at port 2 due to the imaginary part of the 2 nd harmonic of the wave incident port in port 1. *DC term not included 27

28 Polyharmonic Impedance Linear Impedance Polyharmonic Impedance Nonlinear Impedance - Time invariant - Linear - Scalar - Time invariant - Linear - Matrix - Time variant - Nonlinear - Function V ZI FD & TD [ V( f)] [ Z( f)][ I( f)] Vt () ZIt ( ()) FD only Model assumes that nonlinear effects are mild and are captured via harmonic superposition. 28

29 Polyharmonic Impedance 4-harmonic system in frequency domain: (1) (11) (12) (13) (14) (1) V Z Z Z Z I (2) (21) (22) (23) (24) (2) V Z Z Z Z I (3) (31) (32) (33) (34) (3) V Z Z Z Z I (4) (41) (42) (43) (44) (4) V Z Z Z Z I in time domain: v t v t v t v t v t (1) (2) (3) (4) () () () () () i t i t i t i t i t (1) (2) (3) (4) () () () () () 29

30 Polyharmonic Impedance Z o : Reference impedance matrix Z V I : Polyharmonic impedance matrix : Voltage vector : Current vector Describes interactions between harmonic Z= 1+X1-X -1 Zo components of voltage and current. V=ZI 30

31 Network Formulation Scattered waves b=xa Termination equations a=dv +Γb g Wave Solution a= 1-ΓX -1 Dvg Voltage Solution v= 1+Xa 31

32 Steady-State Simulations cubic term Time-Domain Response Vin Vout 40 X Parameter Volts time(ns) ADS 32

33 CMOS Driver/Receiver Channel Generate X parameters for composite system Power level: 20 dbm, frequency: 1 GHz Construct X matrix Combine with terminations for simulation 33

34 CMOS Driver/Receiver - Harmonics 8 6 DC+Fundamental Vin Vout Harmonics Vin Vout Volts 0 Volts time(ns) time(ns) Harmonics Vin Vout Harmonics Vin Vout Volts 0 Volts time(ns) time(ns) 34

35 Validation 8 6 Time-Domain Response Vin Vout X Parameter Volts time(ns) ADS Vout, V Vin, V time, nsec 35

36 Equalized Channel ADS model of Tx (non linear) + backplane channel (linear) Rx is passive termination Uses a typical BSIM3 model of a 0.25um 2.5V CMOS process, provided in ADS Note: modified nfet and pfet to remove all parasitic caps, in order to run at higher speed. System Block Diagram: V V Main branch near V far src FIR tap 1 Tx Channel Passive termination 36

37 Channel Analysis Impulse Response, BR=5Gbps, t r =20ps Channel: 40-inch FR4, Z0=50Ohm; terminated with ZL=50 Ohm and Ci=2pF Unequalized impulse response Reveals 1 tap FIR at Tx will cancel most of ISI (m7) Equalized impulse response FIR tap coefficient set to 1/3 (ratio of m6 and m7) DC shift due to equalizer structure 37

38 Transmitter Structure Input signal V src expected: Single ended 2.5V NRZ, 5Gbps, t r =20ps FIR filter: modified single ended push pull Output signal obtained by voltage dividers Resistor sizing sets tap coefficients and DC levels Main branch R 1 V src FIR tap 1 R 2 V near Delay of 1UI = 200ps 38 [1] Heidar et al., Comparison of output drivers for high-speed serial links, ICM 2007.

39 Transmitter Structure 39

40 Transient Response Unequalized Equalized 2 Vin Vout 2 Vin Vout X Parameter Volts Volts Time (ns) Time (ns) ADS 40

41 Far-End Eye Diagrams Unequalized Equalized In-phase Signal In-phase Signal Amplitude (AU) 12 dbm Amplitude (AU) Time (s) In-phase Signal Time (s) In-phase Signal x Amplitude (AU) Amplitude (AU) dbm 0 x Time (s) x Time (s) x 10 41

42 Conclusions X Parameters represent a powerful format for the exchange of nonlinear behavioral models for use in the analysis and design of high-speed links Challenges Ahead Standardization from different levels of approximation Define protocols for X-parameter exchange 42

43 References [1] J Verspecht and D. E. Root, ʺPolyharmonic Distortion Modeling,ʺ IEEE Magazine, June 2006, pp [2] D.E. Root, J. Verspecht, D. Sharrit, J. Wood, and A.Cognata, Broad band poly harmonic distortion (PHD) behavioral models from fast automated simulations and large signal vectorial network measurements, IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp , Nov [3] Agilent Nonlinear Vector Network Analyzer (NVNA), Agilent Technologies, Inc., March

44 Acknowledgement The authors thank Agilent Technologies Inc., for encouraging this work and providing the ADS X- parameter generation platform, especially Loren Betts, Steve Fulwider and Bill Wallace for fruitful discussions, insightful comments and helpful suggestions. X parameters is a registered trademark of Agilent Technologies, Inc. 44

ECE 546 Lecture 19 X Parameters

ECE 546 Lecture 19 X Parameters ECE 546 Lecture 19 X Parameters Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 References [1] J J. Verspecht and D.

More information

Modeling I/O Links with X Parameters

Modeling I/O Links with X Parameters DesignCon Modeling I/O Links with X Parameters José Schutt-Ainé, University of Illinois, Urbana Email: jschutt@emlab.uiuc.edu Phone: +-7--779 Pavle Milosevic, University of Illinois, Urbana Email: pavle@emlab.uiuc.edu

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

Nonlinear Vector Network Analyzer Applications

Nonlinear Vector Network Analyzer Applications Nonlinear Vector Network Analyzer Applications presented by: Loren Betts and David Root Agilent Technologies Presentation Outline Nonlinear Vector Network Analyzer Applications (What does it do?) Device

More information

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

(1) The open and short circuit required for the Z and Y parameters cannot usually be

(1) The open and short circuit required for the Z and Y parameters cannot usually be ECE 580 Network Theory Scattering Matrix 76 The Scattering Matrix Motivation for introducing the SM: () The open and short circuit required for the Z and Y parameters cannot usually be implemented in actual

More information

SerDes_Channel_Impulse_Modeling_with_Rambus

SerDes_Channel_Impulse_Modeling_with_Rambus SerDes_Channel_Impulse_Modeling_with_Rambus Author: John Baprawski; John Baprawski Inc. (JB) Email: John.baprawski@gmail.com Web sites: https://www.johnbaprawski.com; https://www.serdesdesign.com Date:

More information

Black Box Modelling of Power Transistors in the Frequency Domain

Black Box Modelling of Power Transistors in the Frequency Domain Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Black Box Modelling of Power Transistors in the Frequency Domain Jan Verspecht

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

ECE 451 Macromodeling

ECE 451 Macromodeling ECE 451 Macromodeling Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 Blackbox Macromodeling Nonlinear Network 1 Nonlinear Network

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 14 Gb/s AC Coupled Receiver in 90 nm CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca OUTLINE Chip-to-Chip link overview AC interconnects Link modelling ISI & sensitivity

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Frequency Multiplexing Tickle Tones to Determine Harmonic Coupling Weights in Nonlinear Systems

Frequency Multiplexing Tickle Tones to Determine Harmonic Coupling Weights in Nonlinear Systems Charles Baylis and Robert J. Marks II, "Frequency multiplexing tickle tones to determine harmonic coupling weights in nonlinear systems,'' Microwave Measurement Symposium (ARFTG), 2011 78th ARFTG pp.1-7,

More information

Everything you've always wanted to know about Hot-S22 (but we're afraid to ask)

Everything you've always wanted to know about Hot-S22 (but we're afraid to ask) Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Everything you've always wanted to know about Hot-S22 (but we're afraid to ask)

More information

ECE 451 Black Box Modeling

ECE 451 Black Box Modeling Black Box Modeling Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu Simulation for Digital Design Nonlinear Network Nonlinear Network 3 Linear N-Port with

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: pecial Topics in High-peed Links Circuits and ystems pring 01 Lecture 3: Time-Domain Reflectometry & -Parameter Channel Models am Palermo Analog & Mixed-ignal Center Texas A&M University Announcements

More information

Polyharmonic Distortion Modeling

Polyharmonic Distortion Modeling Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Polyharmonic Distortion Modeling Jan Verspecht and David E. Root IEEE Microwave

More information

IEEE 802.3ap Task Force Ottawa Sept 27-29, 2004

IEEE 802.3ap Task Force Ottawa Sept 27-29, 2004 Edge-Equalized NRZ and Duobinary IEEE 82.3ap Task Force Ottawa Sept 27-29, 24 Brian Brunn, Xilinx Intro It appears the equalization algorithm for EE-NRZ and Duobinary are the same. Both want to zero-force

More information

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2

EE290C Spring Motivation. Lecture 6: Link Performance Analysis. Elad Alon Dept. of EECS. Does eqn. above predict everything? EE290C Lecture 5 2 EE29C Spring 2 Lecture 6: Link Performance Analysis Elad Alon Dept. of EECS Motivation V in, ampl Voff BER = 2 erfc 2σ noise Does eqn. above predict everything? EE29C Lecture 5 2 Traditional Approach Borrowed

More information

Anisotropic Substrates Variance for IBIS-AMI Simulation

Anisotropic Substrates Variance for IBIS-AMI Simulation Anisotropic Substrates Variance for IBIS-AMI Simulation Naijen Hsuan naijen.hsuan@ansys.com Asian IBIS Summit Shanghai, China November 15, 2013 1 High speed Challenges Today (1) High Speed Data Rate Issue

More information

GMII Electrical Specification Options. cisco Systems, Inc.

GMII Electrical Specification Options. cisco Systems, Inc. DC Specifications GMII Electrical Specification Options Mandatory - Communication between the transmitter and receiver can not occur at any bit rate without DC specifications. AC Specifications OPTION

More information

New Interconnect Models Removes Simulation Uncertainty

New Interconnect Models Removes Simulation Uncertainty New Interconnect Models Removes Simulation Uncertainty Fangyi Rao, Agilent Technologies Chad Morgan, Tyco Electronics Vuk Borich, Agilent Technologies Sanjeev Gupta, Agilent Technologies Presentation Outline

More information

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application KH 1GHz, Differential Input/Output Amplifier www.cadeka.com Features DC - 1GHz bandwidth Fixed 1dB (V/V) gain 1Ω (differential) inputs and outputs -7/-dBc nd/3rd HD at MHz ma output current 9V pp into

More information

Acoustic Research Institute ARI

Acoustic Research Institute ARI Austrian Academy of Sciences Acoustic Research Institute ARI System Identification in Audio Engineering P. Majdak piotr@majdak.com Institut für Schallforschung, Österreichische Akademie der Wissenschaften;

More information

ECE Networks & Systems

ECE Networks & Systems ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Module 13: Network Analysis and Directional Couplers

Module 13: Network Analysis and Directional Couplers Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, S-parameters, Z-parameters, Y-parameters The study of two port networks is important in the field of electrical

More information

Inducing Chaos in the p/n Junction

Inducing Chaos in the p/n Junction Inducing Chaos in the p/n Junction Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage CSR, Department of Physics MURI Review 14 November, 2003

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

Keysight Technologies Measurement Uncertainty of VNA Based TDR/TDT Measurement. Application Note

Keysight Technologies Measurement Uncertainty of VNA Based TDR/TDT Measurement. Application Note Keysight Technologies Measurement Uncertainty of VNA Based TDR/TDT Measurement Application Note Table of Contents Introduction... 3 S-parameter measurement uncertainty of VNA... 4 Simplification of systematic

More information

ECE 497 JS Lecture - 11 Modeling Devices for SI

ECE 497 JS Lecture - 11 Modeling Devices for SI ECE 497 JS Lecture 11 Modeling Devices for SI Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday Feb 26 th NO CLASS Tuesday

More information

EE247 Analog-Digital Interface Integrated Circuits

EE247 Analog-Digital Interface Integrated Circuits EE247 Analog-Digital Interface Integrated Circuits Fall 200 Name: Zhaoyi Kang SID: 22074 ******************************************************************************* EE247 Analog-Digital Interface Integrated

More information

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Steven M. Anlage, Vassili Demergis, Renato Moraes, Edward Ott, Thomas Antonsen Thanks to Alexander Glasser, Marshal

More information

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope

Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope Application Note: HFAN-4.5.0 Rev1; 04/08 Measuring Deterministic Jitter with a K28.5 Pattern and an Oscilloscope [A version of this application note has been published in the July, 2002 issue of Communications

More information

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes EE 434 Lecture 3 Basic Semiconductor Processes Devices in Semiconductor Processes Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below a) Identify the device b)

More information

DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION MAY 09, 2015, TURIN, ITALY

DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION MAY 09, 2015, TURIN, ITALY DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION IEEE Workshop on Signal and Power Integrity (SPI) MAY 09, 2015, TURIN, ITALY WAEL DGHAIS AND F. H. BELLAMINE waeldghais@ua.pt/wael.dghais@hotmail.co.uk

More information

RESOLVER (D/R) CONVERTERS

RESOLVER (D/R) CONVERTERS HIGH POWER 1-BIT digital-to- RESOLVER (D/R) CONVERTERS FEATURES Make sure the next Card you purchase has... VA Drive Capacity 8-Bit/-Byte Double Buffered Transparent Latch Resolution: 1 Bits Accuracy:

More information

IBIS-AMI Concern for PAM4 Simulation

IBIS-AMI Concern for PAM4 Simulation IBIS-AMI Concern for PAM4 Simulation Asian IBIS Summit Tokyo, Japan November 16, 2015 Shinichi Maeda E-mail: KEI-Systems@jcom.home.ne.jp 56 Gbps coming soon How to realize 56 Gbps What is PAM4 How to simulate

More information

Repetitive control : Power Electronics. Applications

Repetitive control : Power Electronics. Applications Repetitive control : Power Electronics Applications Ramon Costa Castelló Advanced Control of Energy Systems (ACES) Instituto de Organización y Control (IOC) Universitat Politècnica de Catalunya (UPC) Barcelona,

More information

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels ECE 451 Advanced Microwave Measurements Requirements of Physical Channels Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 451 Jose Schutt Aine 1

More information

Jitter Decomposition in Ring Oscillators

Jitter Decomposition in Ring Oscillators Jitter Decomposition in Ring Oscillators Qingqi Dou Jacob A. Abraham Computer Engineering Research Center Computer Engineering Research Center The University of Texas at Austin The University of Texas

More information

A GENERALIZED COUPLED-LINE DUAL-BAND WILKINSON POWER DIVIDER WITH EXTENDED PORTS

A GENERALIZED COUPLED-LINE DUAL-BAND WILKINSON POWER DIVIDER WITH EXTENDED PORTS Progress In Electromagnetics Research, Vol. 19, 197 14, 1 A GENERALIZED COUPLED-LINE DUAL-BAND WILKINSON POWER DIVIDER WITH EXTENDED PORTS J. C. Li *, Y. L. Wu, Y. A. Liu, J. Y. Shen, S. L. Li, and C.

More information

Volterra Series: Introduction & Application

Volterra Series: Introduction & Application ECEN 665 (ESS : RF Communication Circuits and Systems Volterra Series: Introduction & Application Prepared by: Heng Zhang Part of the material here provided is based on Dr. Chunyu Xin s dissertation Outline

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Similarities of PMD and DMD for 10Gbps Equalization

Similarities of PMD and DMD for 10Gbps Equalization Similarities of PMD and DMD for 10Gbps Equalization Moe Win Jack Winters win/jhw@research.att.com AT&T Labs-Research (Some viewgraphs and results curtesy of Julien Porrier) Outline Polarization Mode Dispersion

More information

Load-pull measurement of transistor negative input impedance

Load-pull measurement of transistor negative input impedance Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Load-pull measurement of transistor negative input impedance Fabien De Groote,

More information

Conventional Paper I-2010

Conventional Paper I-2010 Conventional Paper I-010 1. (a) Sketch the covalent bonding of Si atoms in a intrinsic Si crystal Illustrate with sketches the formation of bonding in presence of donor and acceptor atoms. Sketch the energy

More information

Lecture 13. Vector Network Analyzers and Signal Flow Graphs

Lecture 13. Vector Network Analyzers and Signal Flow Graphs HP8510 Lecture 13 Vector Network Analyzers and Signal Flow Graphs 1 Vector Network Analyzers HP8510 Agilent 8719ES R&S ZVA67 VNA 2 ports, 67 GHz port 1 port 2 DUT Agilent N5247A PNA-X VNA, 4 ports, 67

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Qualification of tabulated scattering parameters

Qualification of tabulated scattering parameters Qualification of tabulated scattering parameters Stefano Grivet Talocia Politecnico di Torino, Italy IdemWorks s.r.l. stefano.grivet@polito.it 4 th IEEE Workshop on Signal Propagation on Interconnects

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations Makram M. Mansour Mohammad M. Mansour Amit Mehrotra Berkeley Design Automation American University of Beirut University

More information

ECE 546 Lecture 07 Multiconductors

ECE 546 Lecture 07 Multiconductors ECE 546 Lecture 07 Multiconductors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 TELGRAPHER S EQUATION FOR N COUPLED

More information

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG INTRODUCTION TO ACTIVE AND PASSIVE ANALOG FILTER DESIGN INCLUDING SOME INTERESTING AND UNIQUE CONFIGURATIONS Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 TOPICS Introduction

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

GHz 6-Bit Digital Phase Shifter

GHz 6-Bit Digital Phase Shifter 180 90 45 22.5 11.25 5.625 ASL 2004P7 3.1 3.5 GHz 6-Bit Digital Phase Shifter Features Functional Diagram Frequency Range: 3.1 to 3.5 GHz RMS Error < 2 deg. 5 db Insertion Loss TTL Control Inputs 0.5-um

More information

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013

Issues with sampling time and jitter in Annex 93A. Adam Healey IEEE P802.3bj Task Force May 2013 Issues with sampling time and jitter in Annex 93A Adam Healey IEEE P802.3bj Task Force May 2013 Part 1: Jitter (comment #157) 2 Treatment of jitter in COM Draft 2.0 h (0) (t s ) slope h(0) (t s ) 1 UI

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 3: Sample and Hold Circuits Switched Capacitor Circuits Circuits and Systems Sampling Signal Processing Sample and Hold Analogue Circuits Switched Capacitor

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

Efficient Per-Nonlinearity Distortion Analysis for Analog and RF Circuits

Efficient Per-Nonlinearity Distortion Analysis for Analog and RF Circuits IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 10, OCTOBER 2003 1297 Efficient Per-Nonlinearity Distortion Analysis for Analog and RF Circuits Peng Li, Student

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

Motivation for CDR: Deserializer (1)

Motivation for CDR: Deserializer (1) Motivation for CDR: Deserializer (1) Input data 1:2 DMUX 1:2 DMUX channel 1:2 DMUX Input clock 2 2 If input data were accompanied by a well-synchronized clock, deserialization could be done directly. EECS

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator

Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator AWR Microwave Office Application Note INTRODUCTION Nonlinear circuits are known to have multiple mathematical solutions

More information

Time Domain Modeling of Lossy Interconnects

Time Domain Modeling of Lossy Interconnects IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 24, NO. 2, MAY 2001 191 Time Domain Modeling of Lossy Interconnects Christer Svensson, Member, IEEE, and Gregory E. Dermer Abstract A new model for dielectric

More information

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Michel Nakhla Carleton University Canada Model Reduction for Complex Dynamical Systems Berlin 2010 EMI Delay Crosstalk Reflection

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

Microwave Oscillators Design

Microwave Oscillators Design Microwave Oscillators Design Oscillators Classification Feedback Oscillators β Α Oscillation Condition: Gloop = A β(jω 0 ) = 1 Gloop(jω 0 ) = 1, Gloop(jω 0 )=2nπ Negative resistance oscillators Most used

More information

Series CCR-39S Multi-Throw DC-12 GHz, SP9T & SP10T Latching Coaxial Switch

Series CCR-39S Multi-Throw DC-12 GHz, SP9T & SP10T Latching Coaxial Switch PART NUMBER CCR-39S DESCRIPTION Commercial Latching Multi-throw, DC-12GHz The CCR-39Sis a broadband, multi-throw, electromechanical coaxial switch designed to switch a microwave signal from a common input

More information

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION VNA Measurement S-Parameter Quality Metrics 2 S-Parameter Quality Metrics Quality is important Reciprocity Forward and reverse transmission

More information

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output Description: The NTE74HC299 is an 8 bit shift/storage register with three state bus interface capability

More information

Chapter 2 Voltage-, Current-, and Z-source Converters

Chapter 2 Voltage-, Current-, and Z-source Converters Chapter 2 Voltage-, Current-, and Z-source Converters Some fundamental concepts are to be introduced in this chapter, such as voltage sources, current sources, impedance networks, Z-source, two-port network,

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

Transient Analysis of Interconnects by Means of Time-Domain Scattering Parameters

Transient Analysis of Interconnects by Means of Time-Domain Scattering Parameters Transient Analysis of Interconnects by Means of Time-Domain Scattering Parameters Wojciech Bandurski, Poznań Univ. of Technology 60-965 Poznań, Piotrowo 3a, Poland, bandursk@zpe.iee.put.poznan.pl INTRODUCTION

More information

Modeling of Devices for Power Amplifier Applications

Modeling of Devices for Power Amplifier Applications Modeling of Devices for Power Amplifier Applications David E. Root Masaya Iwamoto John Wood Contributions from Jonathan Scott Alex Cognata Agilent Worldwide Process and Technology Centers Santa Rosa, CA

More information

An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Network Design

An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Network Design An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Networ Design José Carlos Pedro and Nuno Borges Carvalho Telecommunications Institute University of Aveiro International Microwave Symposium

More information

TITLE. In-depth Analysis of DDR3/DDR4 Channel with Active Termination. Image. Topic: Topic: Changwook Yoon, (Intel)

TITLE. In-depth Analysis of DDR3/DDR4 Channel with Active Termination. Image. Topic: Topic: Changwook Yoon, (Intel) TITLE Topic: o Nam elementum commodo mattis. Pellentesque In-depth Analysis of DDR3/DDR4 Channel with Active Termination malesuada blandit euismod. Topic: Changwook Yoon, (Intel) o Nam elementum commodo

More information

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2) Discrete Time Signals and Switched Capacitor Circuits (rest of chapter 9 + 0., 0.2) Tuesday 6th of February, 200, 9:5 :45 Snorre Aunet, sa@ifi.uio.no Nanoelectronics Group, Dept. of Informatics Office

More information

Reducing EMI Noise by Suppressing Power-Distribution Resonances. Istvan Novak Distinguished Engineer, Signal and Power Integrity Sun Microsystems 1

Reducing EMI Noise by Suppressing Power-Distribution Resonances. Istvan Novak Distinguished Engineer, Signal and Power Integrity Sun Microsystems 1 Reducing EMI Noise by Suppressing Power-Distribution Resonances Istvan Novak Distinguished Engineer, Signal and Power Integrity Sun Microsystems 1 Outline Introduction: revisiting the definition of EMI

More information

Voltage-Controlled Oscillator (VCO)

Voltage-Controlled Oscillator (VCO) Voltage-Controlled Oscillator (VCO) Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range f max f osc Well-defined K vco f min slope = K vco VC V C in V K F(s)

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

Behavioral modeling of nonlinear transfer systems with load-dependent X-parameters

Behavioral modeling of nonlinear transfer systems with load-dependent X-parameters Adv. Radio Sci., 15, 37 41, 017 https://doi.org/10.5194/ars-15-37-017 Authors) 017. This work is distributed under the Creative Commons Attribution 3.0 License. Behavioral modeling of nonlinear transfer

More information

Chapter - 1 Direct Current Circuits

Chapter - 1 Direct Current Circuits Chapter - 1 Direct Current Circuits RESISTANCE KIRKOFFS LAW and LOOP-MESH METHOD VOLTAGE DIVIDER INTERNAL RESISTANCE and OUTPUT IMPEDANCE HOW TO MEASURE OUTPUT IMPEDANCE OF A DEVICE THEVENIN's THEOREM

More information

Synthesis procedure for microwave resonant circuits.

Synthesis procedure for microwave resonant circuits. Synthesis procedure for microwave resonant circuits. The design equations of a series ideal circuit can be derived if it is known a value for the reflection coefficient at a frequency value note equal

More information

ECE 546 Lecture 15 Circuit Synthesis

ECE 546 Lecture 15 Circuit Synthesis ECE 546 Lecture 15 Circuit Synthesis Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 MOR via Vector Fitting Rational

More information

On Modern and Historical Short-Term Frequency Stability Metrics for Frequency Sources

On Modern and Historical Short-Term Frequency Stability Metrics for Frequency Sources On Modern and Historical Short-Term Frequency Stability Metrics for Frequency Sources Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc. EFTF-IFCS, Besançon, France Session BL-D:

More information

Power Splitter Characterisation EM Day

Power Splitter Characterisation EM Day Power Splitter Characterisation EM Day 9 November 007 James Miall (james.miall@npl.co.uk) National Physical Laboratory Teddington, UK Tuesday, 11 December 007 Contents Why we need to measure power splitters

More information

Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher

Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher The title of this section is A Commercial Multi-Line TRL Calibration

More information

Differential Impedance finally made simple

Differential Impedance finally made simple Slide - Differential Impedance finally made simple Eric Bogatin President Bogatin Enterprises 93-393-305 eric@bogent.com Slide -2 Overview What s impedance Differential Impedance: a simple perspective

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2) Discrete Time Signals and Switched Capacitor Circuits (rest of chapter 9 + 10.1, 10.2) Tuesday 16th of February, 2010, 0, 9:15 11:45 Snorre Aunet, sa@ifi.uio.no Nanoelectronics Group, Dept. of Informatics

More information

Preliminary Datasheet

Preliminary Datasheet Macroblock Preliminary Datasheet Features 3 output channels for RGB D lamps Output current invariant to load voltage change Programmable output current for each channel Built-in brightness control Constant

More information

Characterisation of Passive Intermodulation in Passive RF Devices with X-parameter

Characterisation of Passive Intermodulation in Passive RF Devices with X-parameter Characterisation of Passive Intermodulation in Passive RF Devices with X-parameter Kozlov, D. S., Shitvov, A. P., & Schuchinsky, A. G. (214). Characterisation of Passive Intermodulation in Passive RF Devices

More information

Series CCR-39S Multi-Throw DC-12 GHz, SP9T & SP10T Latching Coaxial Switch

Series CCR-39S Multi-Throw DC-12 GHz, SP9T & SP10T Latching Coaxial Switch COAX SWITCHES Series CCR-39S PART NUMBER CCR-39S DESCRIPTION Commercial Latching Multi-throw, DC-12GHz The CCR-39Sis a broadband, multi-throw, electromechanical coaxial switch designed to switch a microwave

More information