Laplace Transform Analysis of Signals and Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Laplace Transform Analysis of Signals and Systems"

Transcription

1 Laplace Transform Analysis of Signals and Systems

2 Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J. Roberts - All Rights Reserved 2

3 Transfer Functions A circuit can be described by a system of differential equations L d dt R t L d d 1i 1 i1t i2t ()+ ( ()) ( ()) vg t dt dt = () t d i t i t 1 2() ( 1 ) i2 d vc 0 R2i2 t 0 dt C λ λ ( ) () + ( ) + ( )+ ()= 0 5/10/04 M. J. Roberts - All Rights Reserved 3

4 Transfer Functions Using the Laplace transform, a circuit can be described by a system of algebraic equations ()+ () ()= () R I s sl I s sl I s V s sl I s sl I 1 s sc I s R I s () ()+ ()+ ()= 0 5/10/04 M. J. Roberts - All Rights Reserved 4 g

5 Transfer Functions A circuit can even be described by a block diagram. 5/10/04 M. J. Roberts - All Rights Reserved 5

6 Transfer Functions A mechanical system can be described by a system of differential equations () d 1 ( ) s1[ 1() 2() ]= 1 1 ( ) Ks1[ x1() t x2() t ] Ks2x2()= t m2x ( 2 t) f t K x t K x t x t m x t or a system of algebraic equations. () d 1() s1[ 1() 2() ]= 1 1() s1[ 1() 2() ] s2 2()= 2 2() 2 F s K sx s K X s X s m s X s 2 K X s X s K X s m s X s 5/10/04 M. J. Roberts - All Rights Reserved 6

7 Transfer Functions The mechanical system can also be described by a block diagram. Time Domain Frequency Domain 5/10/04 M. J. Roberts - All Rights Reserved 7

8 System Stability System stability is very important A continuous-time LTI system is stable if its impulse response is absolutely integrable This translates into the frequency domain as the requirement that all the poles of the system transfer function must lie in the open left half-plane of the s plane (pp ) Open left half-plane means not including the ω axis 5/10/04 M. J. Roberts - All Rights Reserved 8

9 System Interconnections Cascade Parallel 5/10/04 M. J. Roberts - All Rights Reserved 9

10 E(s) System Interconnections Error signal Feedback () H 1 s Forward path transfer function or the plant () H 2 s Feedback path transfer function or the sensor. ()= () () T s H1 s H2 s Loop transfer function H E()= s X() s H2() s Y() s Y()= s H1() s E() s Y s H s ()= s () X() s = 1() 1+ H1() s H2() s T()= s H1() s H2() s H1() s H()= s 1+ T() s 5/10/04 M. J. Roberts - All Rights Reserved 10

11 Analysis of Feedback Systems Beneficial Effects H ()= K s + KH () s If K is large enough that KH 2 ()>> s 1 then H() s. This H s means that the overall system is the approximate inverse of the system in the feedback path. This kind of system can be useful for reversing the effects of another system. 2 () 5/10/04 M. J. Roberts - All Rights Reserved 11

12 Analysis of Feedback Systems A very important example of feedback systems is an electronic amplifier based on an operational amplifier Let the operational amplifier gain be H 1 ()= s () Vo s A Ve () s = 1 0 s p 5/10/04 M. J. Roberts - All Rights Reserved 12

13 Analysis of Feedback Systems The amplifier can be modeled as a feedback system with this block diagram. The overall gain can be written as V V () s A Z f s () s = () s 1 + A0 Zi s 1 p 0 0 i ()+ s Zf() s p 5/10/04 M. J. Roberts - All Rights Reserved 13

14 Analysis of Feedback Systems If the operational amplifier low-frequency gain,, is very large (which it usually is) then the overall amplifier gain reduces at low-frequencies to V Z 0() s f s V() s () Z s i i () A 0 the gain formula based on an ideal operational amplifier. 5/10/04 M. J. Roberts - All Rights Reserved 14

15 Analysis of Feedback Systems 7 If A = 10 and p= 100 then H ( j100)= j If A = 10 and p= 100 then H ( j100)= j The change in overall system gain is about 0.001% for a change in open-loop gain of a factor of 10. The half-power bandwidth of the operational amplifier itself is 15.9 Hz (100/2π). The half-power bandwidth of the overall amplifier is approximately 14.5 MHz, an increase in bandwidth of a factor of approximately 910,000. 5/10/04 M. J. Roberts - All Rights Reserved 15

16 Analysis of Feedback Systems Feedback can stabilize an unstable system. Let a forward-path transfer function be 1 H 1()= s, p > s p This system is unstable because it has a pole in the right halfplane. If we then connect feedback with a transfer function, K, a constant, the overall system gain becomes H s 1 s p K ()= + and, if K > p, the overall system is now stable. 0 5/10/04 M. J. Roberts - All Rights Reserved 16

17 Analysis of Feedback Systems Feedback can make an unstable system stable but it can also make a stable system unstable. Even though all the poles of the forward and feedback systems may be in the open left half-plane, the poles of the overall feedback system can be in the right half-plane. A familiar example of this kind of instability caused by feedback is a public address system. If the amplifier gain is set too high the system will go unstable and oscillate, usually with a very annoying high-pitched tone. 5/10/04 M. J. Roberts - All Rights Reserved 17

18 Analysis of Feedback Systems As the amplifier gain is increased, any sound entering the microphone makes a stronger sound from the speaker until, at some gain level, the returned sound from the speaker is a large as the originating sound into the microphone. At that point the system goes unstable (pp ). Public Address System 5/10/04 M. J. Roberts - All Rights Reserved 18

19 Analysis of Feedback Systems Stable Oscillation Using Feedback Prototype Feedback System Feedback System Without Excitation 5/10/04 M. J. Roberts - All Rights Reserved 19

20 Analysis of Feedback Systems Stable Oscillation Using Feedback Can the response be non-zero when the excitation is zero? Yes, if the overall system gain is infinite. If the system transfer function has a pole pair on the ωaxis, then the transfer function is infinite at the frequency of that pole pair and there can be a response without an excitation. In practical terms the trick is to be sure the poles stay on the ω axis. If the poles move into the left half-plane the response attenuates with time. If the poles move into the right half-plane the response grows with time (until the system goes nonlinear). 5/10/04 M. J. Roberts - All Rights Reserved 20

21 Analysis of Feedback Systems Stable Oscillation Using Feedback A real example of a system that oscillates stably is a laser. In a laser the forward path is an optical amplifier. The feedback action is provided by putting mirrors at each end of the optical amplifier. 5/10/04 M. J. Roberts - All Rights Reserved 21

22 Analysis of Feedback Systems Stable Oscillation Using Feedback Laser action begins when a photon is spontaneously emitted from the pumped medium in a direction normal to the mirrors. 5/10/04 M. J. Roberts - All Rights Reserved 22

23 Analysis of Feedback Systems Stable Oscillation Using Feedback If the round-trip gain of the combination of pumped laser medium and mirrors is unity, sustained oscillation of light will occur. For that to occur the wavelength of the light must fit into the distance between mirrors an integer number of times. 5/10/04 M. J. Roberts - All Rights Reserved 23

24 Analysis of Feedback Systems Stable Oscillation Using Feedback A laser can be modeled by a block diagram in which the K s represent the gain of the pumped medium or the reflection or transmission coefficient at a mirror, L is the distance between mirrors and c is the speed of light. 5/10/04 M. J. Roberts - All Rights Reserved 24

25 Analysis of Feedback Systems The Routh-Hurwitz Stability Test The Routh-Hurwitz Stability Test is a method for determining the stability of a system if its transfer function is expressed as a ratio of polynomials in s. Let the numerator be N(s) and let the denominator be D D 1 D()= s a s + a s + L+ a s+ a D D /10/04 M. J. Roberts - All Rights Reserved 25

26 Analysis of Feedback Systems The Routh-Hurwitz Stability Test The first step is to construct the Routh array. D a a a L a D D 2 D 4 0 D 1 a a a L 0 D 1 D 3 D 5 D 2 b b b L 0 D 2 D 4 D 6 D 3 c c c L 0 D 3 D 5 D 7 M M M M M M 2 d d e f D even D a a a L a D D 2 D 4 1 D 1 a a a L a D 1 D 3 D 5 0 D 2 b b b L 0 D 2 D 4 D 6 D 3 c c c L 0 D 3 D 5 D 7 M M M M M M 2 d d e f D odd 5/10/04 M. J. Roberts - All Rights Reserved 26

27 Analysis of Feedback Systems The Routh-Hurwitz Stability Test The first two rows contain the coefficients of the denominator polynomial. The entries in the following row are found by the formulas, b D 2 = a a D a a a D 2 D 1 D 3 D 1 b D 4 = a a D a a a D 4 D 1 D 5 The entries on succeeding rows are computed by the same process based on previous row entries. If there are any zeros or sign changes in the a D column, the system is unstable. The number of sign changes in the column is the number of poles in the right half-plane (pp ). D /10/04 M. J. Roberts - All Rights Reserved 27

28 Analysis of Feedback Systems Root Locus Common Type of Feedback System System Transfer Function H()= s 1 KH1() s + KH () s H () s 1 2 ()= () () Loop Transfer Function T s KH s H s 1 2 5/10/04 M. J. Roberts - All Rights Reserved 28

29 Analysis of Feedback Systems Root Locus Poles of H(s) Zeros of 1 + T(s) T is of the form T P s K s Q s ()= () () () () P Poles of H(s) Zeros of 1 + K s Q s Poles of H(s) Q()+ s KP()= s 0 or Q() s + P ()= s 0 K 5/10/04 M. J. Roberts - All Rights Reserved 29

30 Analysis of Feedback Systems Root Locus K can range from zero to infinity. For K approaching zero, using Q s KP s ()+ ()= 0 the poles of H are the same as the zeros of Q()= s 0 which are the poles of T. For K approaching infinity, using Q() s + P ()= s 0 K the poles of H are the same as the zeros of P()= s 0 which are the zeros of T. So the poles of H start on the poles of T and terminate on the zeros of T, some of which may be at infinity. The curves traced by these pole locations as K is varied are called the root locus. 5/10/04 M. J. Roberts - All Rights Reserved 30

31 Analysis of Feedback Systems Root Locus K Let H 1 ()= s and let H. s+ 1 s 2 2 ()= s 1 Then ()= T s ( )( + ) K s+ 1( s 2) Root Locus ( ) + No matter how large K gets this system is stable because the poles always lie in the left half-plane (although for large K the system may be very underdamped). 5/10/04 M. J. Roberts - All Rights Reserved 31

32 Analysis of Feedback Systems Root Locus Let K H 1 ()= s s+ 1 s 2 s 3 ()= and let H 2 s 1. ( )( + )( + ) Root Locus At some finite value of K the system becomes unstable because two poles move into the right half-plane. 5/10/04 M. J. Roberts - All Rights Reserved 32

33 Analysis of Feedback Systems Root Locus Four Rules for Drawing a Root Locus 1. Each root-locus branch begins on a pole of T and terminates on a zero of T. 2. Any portion of the real axis for which the sum of the number of real poles and/or real zeros lying to its right on the real axis is odd, is a part of the root locus. 3. The root locus is symmetrical about the real axis... 5/10/04 M. J. Roberts - All Rights Reserved 33

34 Analysis of Feedback Systems Root Locus.. 4. If the number of finite poles of T exceeds the number of finite zeros of T by an integer, m, then m branches of the root locus terminate on zeros of T which lie at infinity. Each of these branches approaches a straight-line asymptote and the angles of these asymptotes are at the angles, kπ, k = 135,,,... m with respect to the positive real axis. These asymptotes intersect on the real axis at the location, σ = 1 ( finite poles finite zeros) m 5/10/04 M. J. Roberts - All Rights Reserved 34

35 Analysis of Feedback Systems Root Locus Examples 5/10/04 M. J. Roberts - All Rights Reserved 35

36 Analysis of Feedback Systems Gain and Phase Margin Real systems are usually designed with a margin of error to allow for small parameter variations and still be stable. That margin can be viewed as a gain margin or a phase margin. System instability occurs if, for any real ω, T( jω)= 1 a number with a magnitude of one and a phase of -π radians. 5/10/04 M. J. Roberts - All Rights Reserved 36

37 Analysis of Feedback Systems Gain and Phase Margin So to be guaranteed stable, a system must have a T whose magnitude, as a function of frequency, is less than one when the phase hits -π or, seen another way, T must have a phase, as a function of frequency, more positive than - π for all T greater than one. The difference between the a magnitude of T of 0 db and the magnitude of T when the phase hits - π is the gain margin. The difference between the phase of T when the magnitude hits 0 db and a phase of - π is the phase margin. 5/10/04 M. J. Roberts - All Rights Reserved 37

38 Analysis of Feedback Systems Gain and Phase Margin 5/10/04 M. J. Roberts - All Rights Reserved 38

39 Analysis of Feedback Systems Steady-State Tracking Errors in Unity-Gain Feedback Systems A very common type of feedback system is the unity-gain feedback connection. The aim of this type of system is to make the response track the excitation. When the error signal is zero, the excitation and response are equal. 5/10/04 M. J. Roberts - All Rights Reserved 39

40 Analysis of Feedback Systems Steady-State Tracking Errors in Unity-Gain Feedback Systems The Laplace transform of the error signal is E()= s () X s + H () s 1 1 The steady-state value of this signal is (using the finalvalue theorem) lim e lim E lim X () s ()= t s ()= s s t s 0 s 0 1 H s u( ) + () If the excitation is the unit step, A t, then the steadystate error is A lim e t lim t s 0 1 H s ()= + () 1 1 5/10/04 M. J. Roberts - All Rights Reserved 40

41 Analysis of Feedback Systems Steady-State Tracking Errors in Unity-Gain Feedback Systems If the forward transfer function is in the common form, N N 1 2 bn s + bn 1s + Lb2s + bs 1 + b0 H 1 ()= s D D 1 2 as D + ad 1s + Las 2 + as 1 + a0 then 1 a0 lim e()= t lim N N 1 2 = t s 0 bn s + bn 1s + Lb2s + bs 1 + b0 a0 + b0 1+ D D 1 2 as D + ad 1s + Las 2 + as 1 + a0 If a 0 = 0 and b 0 0 the steady-state error is zero and the forward transfer function can be written as N N 1 2 bn s + bn 1s + b2s + bs 1 + b0 H 1 ()= s 1 2 sas ( D D D + ad 1s + as 2 + a) L 1 which has a pole at s = 0. 5/10/04 M. J. Roberts - All Rights Reserved 41 L

42 Analysis of Feedback Systems Steady-State Tracking Errors in Unity-Gain Feedback Systems If the forward transfer function of a unity-gain feedback system has a pole at zero and the system is stable, the steady-state error with step excitation is zero. This type of system is called a type 1 system (one pole at s = 0 in the forward transfer function). If there are no poles at s = 0, it is called a type 0 system and the steady-state error with step excitation is non-zero. 5/10/04 M. J. Roberts - All Rights Reserved 42

43 Analysis of Feedback Systems Steady-State Tracking Errors in Unity-Gain Feedback Systems The steady-state error with ramp excitation is Infinite for a stable type 0 system Finite and non-zero for a stable type 1 system Zero for a stable type 2 system (2 poles at s = 0 in the forward transfer function) 5/10/04 M. J. Roberts - All Rights Reserved 43

44 Block Diagram Reduction It is possible, by a series of operations, to reduce a complicated block diagram down to a single block. Moving a Pick-Off Point 5/10/04 M. J. Roberts - All Rights Reserved 44

45 Block Diagram Reduction Moving a Summer 5/10/04 M. J. Roberts - All Rights Reserved 45

46 Block Diagram Reduction Combining Two Summers 5/10/04 M. J. Roberts - All Rights Reserved 46

47 Block Diagram Reduction Move Pick-Off Point 5/10/04 M. J. Roberts - All Rights Reserved 47

48 Block Diagram Reduction Move Summer 5/10/04 M. J. Roberts - All Rights Reserved 48

49 Block Diagram Reduction Combine Summers 5/10/04 M. J. Roberts - All Rights Reserved 49

50 Block Diagram Reduction Combine Parallel Blocks 5/10/04 M. J. Roberts - All Rights Reserved 50

51 Block Diagram Reduction Combine Cascaded Blocks 5/10/04 M. J. Roberts - All Rights Reserved 51

52 Block Diagram Reduction Reduce Feedback Loop 5/10/04 M. J. Roberts - All Rights Reserved 52

53 Block Diagram Reduction Combine Cascaded Blocks 5/10/04 M. J. Roberts - All Rights Reserved 53

54 Definitions: Mason s Theorem Number of Paths from Input to Output - N p Number of Feedback Loops - N L Transfer Function of ith Path from Input to Output - P i () s Loop transfer Function of ith Feedback Loop - T i () s N L i i j i j k i= 1 ith loopand ith, jth, kth j th loop not loops not sharing a signal sharing a signal ()= + ()+ () ()+ () () ()+ s 1 T s T s T s T s T s T s L 5/10/04 M. J. Roberts - All Rights Reserved 54

55 Mason s Theorem The overall system transfer function is H()= s N p i= 1 P () s () s i () s i () where i () s is the same as s except that all feedback loops which share a signal with the ith path, P i () s, are excluded. 5/10/04 M. J. Roberts - All Rights Reserved 55

56 Mason s Theorem 10 P 1 ()= s s ()= + 1 P 2 s s 3 ()= + s H()= s N p i= 1 N p = 2 N L = ss+ 8 = 1+ 3 s s+ Pi() s i() s = () s ( 8) s s ss+ 8 ( ) ()= ()= 1 s 2 s 1 s+ 8 11s 30 2 s+ 3 s 8s 3 5/10/04 M. J. Roberts - All Rights Reserved 56 = ( )( + ) ( ) + + ( )

57 System Responses to Standard Signals N s Let H s be proper in s. Then the Laplace transform D s ()= () () of the unit step response is Y()= s H ()= s 1 N() s N s sd() s = 1() D s () + If the system is stable, the inverse Laplace transform of is called the transient response and the steady-state ( ) H0 response is. s Unit Step Response K s K = H0 ( ) () () N s 1 D s 5/10/04 M. J. Roberts - All Rights Reserved 57

58 System Responses to Standard Signals N s Let H s be proper in s. If the Laplace transform of the D s ()= () () excitation is some general excitation, X(s), then the Laplace transform of the response is N s Y D X N ()= s () s s D () s ()= () () s N D x x () s N s N x s () s = 1() D() s + 1() Dx() s same poles as system same poles as excitation 5/10/04 M. J. Roberts - All Rights Reserved 58

59 System Responses to Standard Signals Unit Step Response A Let H()= s. Then the unit step response is y s 1 p ()= ( ) () pt t A 1 e u t 5/10/04 M. J. Roberts - All Rights Reserved 59

60 System Responses to Standard Signals Let Unit Step Response ()= Η s s 2 2 Aω 0 + 2ζω s+ ω (pp ) 5/10/04 M. J. Roberts - All Rights Reserved 60

61 System Responses to Standard Signals Let ()= Η s s 2 2 Aω 0 + 2ζω s+ ω Unit Step Response /10/04 M. J. Roberts - All Rights Reserved 61

62 System Responses to Standard Signals ()= () () N s Let H s be proper in s. If the excitation is a suddenly- D s applied, unit-amplitude cosine, the response is N s Y()= s () D s s which can be reduced and inverse Laplace transformed into (pp ) y()= t N D L 1 1 () s () s If the system is stable, the steady-state response is a sinusoid of same frequency as the excitation but, generally, a different magnitude and phase. s 2 () + 2 ω 0 ( ) () H jω cos ω t H jω u t + ( 0) 0 + ( 0) 5/10/04 M. J. Roberts - All Rights Reserved 62

63 Pole-Zero Diagrams and Frequency Response If the transfer function of a system is H(s), the frequency response is H(jω). The most common type of transfer function is of the form, ( H s A s z s z s z 1) ( 2) L( N ) ()= s p s p L s p Therefore H(jω) is ( )( ) ( ) 1 2 ( )( ) ( N ) ( )( ) ( ) H j A j ω z j z j z 1 ω 2 L ω ( ω)= jω p jω p L jω p 1 2 D D 5/10/04 M. J. Roberts - All Rights Reserved 63

64 Let H s H( jω)= Pole-Zero Diagrams and ()= + 3 Frequency Response s s 3 jω 3 jω + 3 The numerator, jω, and the denominator, jω + 3, can be conceived as vectors in the s plane. ( ) = H jω 3 jω jω + 3 ( ) H( jω)= { 3+ jω jω + 3 = 0 5/10/04 M. J. Roberts - All Rights Reserved 64

65 Pole-Zero Diagrams and Frequency Response lim H( jω) = lim ω 0 ω 0 3 jω jω + 3 = 0 lim H( jω) = lim + + ω 0 ω 0 3 jω jω + 3 = 0 lim H( j ω) = ω lim ω 3 jω jω + 3 = 3 lim H( j ω) = ω + lim ω + 3 jω jω + 3 = 3 5/10/04 M. J. Roberts - All Rights Reserved 65

66 Pole-Zero Diagrams and Frequency Response π π lim H( jω)= 0 = ω lim π H ( jω )= 0 = + ω 0 2 π 2 lim ω π π H( j ω)= 2 2 = 0 lim H ( j π π ω )= = 0 ω /10/04 M. J. Roberts - All Rights Reserved 66

67 Butterworth Filters The squared magnitude of the transfer function of an nth order, unity-gain, lowpass Butterworth filter with a corner frequency of 1 radian/s is 2 ( ) = 1 + ω H jω 1 2n This is called a normalized Butterworth filter because its gain is normalized to one and its corner frequency is normalized to 1 radian/s. 5/10/04 M. J. Roberts - All Rights Reserved 67

68 Butterworth Filters A Butterworth filter transfer function has no finite zeros and the poles all lie on a semicircle in the left-half plane whose radius is the corner frequency in radians/s and the angle between the pole locations is always π/n radians. 5/10/04 M. J. Roberts - All Rights Reserved 68

69 Butterworth Filters Frequency Transformations A normalized lowpass Butterworth filter can be transformed into an unnormalized highpass, bandpass or bandstop Butterworth filter through the following transformations (pp ). Lowpass to Highpass s ω c s Lowpass to Bandpass s 2 s + ωω L s ω ω H H ( ) L Lowpass to Bandstop s ( ) s ωh ω 2 s + ωω L L H 5/10/04 M. J. Roberts - All Rights Reserved 69

70 Standard Realizations of Systems There are multiple ways of drawing a system block diagram corresponding to a given transfer function of the form, N k bs k N N Y s k bn s bn s bs b H()= s () 1 N N N X() s = = 0 = L+ + 1 k s + an 1s + L+ a1s+ a0 as k = 0 k 1 0, a N = 1 5/10/04 M. J. Roberts - All Rights Reserved 70

71 Standard Realizations of Systems Canonical Form The transfer function can be conceived as the product of two transfer functions, and H H 2 1 ()= s () Y1 s 1 N N 1 X() s = s + a s + L+ a s+ a 1 N Y s N N 1 ()= s () bn s bn 1s bs b Y () s = L 1 0 5/10/04 M. J. Roberts - All Rights Reserved 71

72 Standard Realizations of Systems Canonical Form The system can then be realized in this form, 5/10/04 M. J. Roberts - All Rights Reserved 72

73 Standard Realizations of Systems Cascade Form The transfer function can be factored into the form, H s A s ()= z s p 1 1 s z s p 2 s zn L L s p s p s p s p 2 N N+ 1 N+ 2 D and each factor can be realized in a small canonical-form subsystem of either of the two forms, and these subsystems can then be cascade connected. 5/10/04 M. J. Roberts - All Rights Reserved 73

74 Standard Realizations of Systems Cascade Form A problem that arises in the cascade form is that some poles or zeros may be complex. In that case, a complex conjugate pair can be combined into one second-order subsystem of the form, 5/10/04 M. J. Roberts - All Rights Reserved 74

75 Standard Realizations of Systems Parallel Form The transfer function can be expanded in partial fractions of the form, K1 K2 KD H()= s + + L+ s p s p s p 1 Each of these terms describes a subsystem. When all the subsystems are connected in parallel the overall system is realized. 2 D 5/10/04 M. J. Roberts - All Rights Reserved 75

76 Standard Realizations of Systems Parallel Form 5/10/04 M. J. Roberts - All Rights Reserved 76

77 State-Space Analysis In larger systems it is important to keep the analysis methods systematic to avoid errors One popular method for doing this is through the use of state variables State variables are signals in a system which, together with the excitations, completely characterize the state of the system As the system changes dynamically the state variables change value and the system moves on a trajectory through state space 5/10/04 M. J. Roberts - All Rights Reserved 77

78 State-Space Analysis State space is an N-dimensional space where N is the order of the system The order of a system is the number of state variables needed to characterize it State variables are not unique, there can be multiple correct sets 5/10/04 M. J. Roberts - All Rights Reserved 78

79 State-Space Analysis There are several advantages to state-space analysis Reduction of the probability of analysis errors Complete description of the system signals Insight into system dynamics Can be formulated using matrix methods and the system state can be expressed in two matrix equations Combined with transform methods it is very powerful 5/10/04 M. J. Roberts - All Rights Reserved 79

80 State-Space Analysis To illustrate state-space methods, let the system be this circuit Let the state variables be the capacitor voltage and the inductor current and let the output signals be v t and i t. out () () R 5/10/04 M. J. Roberts - All Rights Reserved 80

81 State-Space Analysis Two differential equations in the two state variables, called the state equations, characterize the circuit, i ()= t v () t L 1 L C 1 v i v i C t G 1 C C ()= t () ()+ t () t C L C in Two more equations called the output equations define the responses in terms of the state variables, v out ()= t v () t i t Gv t C R ()= () C 5/10/04 M. J. Roberts - All Rights Reserved 81

82 State-Space Analysis The state equations can be written in matrix form as i v L() t () t C = 0 1 C 1 L G C i v () t () t C [ iin() t ] and the output equations can be written in matrix form as v i out R () t () t i = G v L C L C () t () t iin t + 0 () 0 [ ] 5/10/04 M. J. Roberts - All Rights Reserved 82

83 State-Space Analysis A block diagram for the system can be drawn directly from the state and output equations. 5/10/04 M. J. Roberts - All Rights Reserved 83

84 State-Space Analysis The state and output equations can be written compactly as q ( t)= Aq()+ t Bx() t where ()= q t i v L C () t () t ()= y t y()= t Cq()+ t Dx() t 1 0 A = L B = G C C C vout() t R() t C = 0 1 i 0 G D = 0 0 [ in ] x()= t i () t 5/10/04 M. J. Roberts - All Rights Reserved 84

85 State-Space Analysis The solution of the state and output equations can be found using the Laplace transform. sq() s q( + 0 )= AQ()+ s BX() s or [ si A] Q()= s BX()+ s q( + 0 ) Multiplying both sides by si A ()= [ ] 1 () [ ] 1 [ ] 1 ()+ ( 0 + ) [ ] Q s si A BX s q The matrix, si A, is conventionally designated by the symbol, Φ s. Then ()= ()[ ()+ ( )]= () ()+ ()( ) + + Q s Φ s BX s q 0 Φ s BX s Φ s q zero state response zero input response 5/10/04 M. J. Roberts - All Rights Reserved 85

86 State-Space Analysis The time-domain solution is then + ()= () ()+ ()( ) q t φ t Bx t φ t q zero state response zero input response L where φ() t Φ s and φ t is called the state transition matrix. () () 5/10/04 M. J. Roberts - All Rights Reserved 86

87 State-Space Analysis To make the example concrete, let the excitation and initial conditions be and let i()= t Au() t q( + 0 )= 1 R=, C = 1, L = 1 3 ( ) = Φ()= s si A 1 1 s L 1 C s G + C 1 i v = ( + 0 ) L + C 0 ( ) 0 = 1 G 1 s + C L 1 s C 2 G s + C s 1 + LC 5/10/04 M. J. Roberts - All Rights Reserved 87

88 State-Space Analysis Solving for the states in the Laplace domain, ()= Q s slc s C s G C s 1 G L s LC C s LC 1 s + G C s 1 G + + s + LC C s 1 + LC Substituting in numerical component values, ()= Q s 1 ss ( + s+ ) s + 3s+ 1 1 s s + s s + 3s+ 1 5/10/04 M. J. Roberts - All Rights Reserved 88

89 State-Space Analysis Inverse Laplace transforming, the state variables are ()= q t t e e t e e t t u() t and the response is t e e y()= t q x t G + = e e t t u() t or ()= y t t e e t e e t t u() t 5/10/04 M. J. Roberts - All Rights Reserved 89

90 State-Space Analysis In a system in which the initial conditions are zero (the zero-input response is zero), the matrix transfer function can be found from the state and output equations. or The response is () ( )= ()+ () + sq s q 0 AQ s BX s 123 = 0 1 ()=[ ] ()= () () Q s si A BX s Φ s BX s ()= ()+ ()= () ()+ ()= () + Y s CQ s DX s CΦ s BX s DX s CΦ s B D X s and the matrix transfer function is ()= () + H s CΦ s B D [ ] () 5/10/04 M. J. Roberts - All Rights Reserved 90

91 State-Space Analysis Any set of state variables can be transformed into another valid set through a linear transformation. Let q 1 () t be the initial set and let q 2 t be the new set, related to by Then 1 and using q t T q t, where () q 1 () t q ()= t Tq () t 2 1 ( 2 t)= 1 ( t)= ( 1 1()+ t 1 () t )= 1 1()+ t 1 () t ()= () q Tq T A q B x TA q TB x ( t)= ()+ t ()= t ()+ t () t q TA T q TB x A q B x 2 1 A = TA T B = TB 2 1 5/10/04 M. J. Roberts - All Rights Reserved 91

92 State-Space Analysis By a similar argument, where C = ()= ()+ () y t C q t D x t C T Transformation to a new set of state variables does not change the eigenvalues of the system. D = D 2 1 5/10/04 M. J. Roberts - All Rights Reserved 92

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

More information

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Lecture 1 Root Locus

Lecture 1 Root Locus Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

More information

Generalizing the DTFT!

Generalizing the DTFT! The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discrete-time radian frequency, a real variable. The quantity e jωn is then a complex sinusoid

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8 Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER

More information

Definitions. Decade: A ten-to-one range of frequency. On a log scale, each 10X change in frequency requires the same distance on the scale.

Definitions. Decade: A ten-to-one range of frequency. On a log scale, each 10X change in frequency requires the same distance on the scale. Circuits II EECS 3220 Lecture notes on making Bode plots Definitions Network Transfer Function: The function H s Xout s X in s where X out represents the voltage or current response of the network to X

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

Solutions to Skill-Assessment Exercises

Solutions to Skill-Assessment Exercises Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part

More information

Notes for ECE-320. Winter by R. Throne

Notes for ECE-320. Winter by R. Throne Notes for ECE-3 Winter 4-5 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

Low Pass Filters, Sinusoidal Input, and Steady State Output

Low Pass Filters, Sinusoidal Input, and Steady State Output Low Pass Filters, Sinusoidal Input, and Steady State Output Jaimie Stephens and Michael Bruce 5-2-4 Abstract Discussion of applications and behaviors of low pass filters when presented with a steady-state

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

Learn2Control Laboratory

Learn2Control Laboratory Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Root Locus Methods. The root locus procedure

Root Locus Methods. The root locus procedure Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

CONTROL SYSTEM STABILITY. CHARACTERISTIC EQUATION: The overall transfer function for a. where A B X Y are polynomials. Substitution into the TF gives:

CONTROL SYSTEM STABILITY. CHARACTERISTIC EQUATION: The overall transfer function for a. where A B X Y are polynomials. Substitution into the TF gives: CONTROL SYSTEM STABILITY CHARACTERISTIC EQUATION: The overall transfer function for a feedback control system is: TF = G / [1+GH]. The G and H functions can be put into the form: G(S) = A(S) / B(S) H(S)

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

Poles, Zeros and System Response

Poles, Zeros and System Response Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared

More information

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology. Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. Mark Fowler Note Set #9 C-T Systems: Laplace Transform Transfer Function Reading Assignment: Section 6.5 of Kamen and Heck /7 Course Flow Diagram The arrows here show conceptual

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. Q. 5 carry one mark each. Q. Consider a system of linear equations: x y 3z =, x 3y 4z =, and x 4y 6 z = k. The value of k for which the system has infinitely many solutions is. Q. A function 3 = is

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup

Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup Chapter 5 Standard LTI Feedback Optimization Setup Efficient LTI feedback optimization algorithms comprise a major component of modern feedback design approach: application problems involving complex models

More information

12.7 Steady State Error

12.7 Steady State Error Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Transfer func+ons, block diagram algebra, and Bode plots by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Going back and forth between the +me and the frequency domain (1) Transfer func+ons exist only for

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

More information

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S Root Locus S5-1 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the

More information

Class 12 Root Locus part II

Class 12 Root Locus part II Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

10 Transfer Matrix Models

10 Transfer Matrix Models MIT EECS 6.241 (FALL 26) LECTURE NOTES BY A. MEGRETSKI 1 Transfer Matrix Models So far, transfer matrices were introduced for finite order state space LTI models, in which case they serve as an important

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

More information

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011 ENG M 54 Laboratory #7 University of Alberta ENGM 54: Modeling and Simulation of Engineering Systems Laboratory #7 M.G. Lipsett & M. Mashkournia 2 Mixed Systems Modeling with MATLAB & SIMULINK Mixed systems

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

Lecture 13: Internal Model Principle and Repetitive Control

Lecture 13: Internal Model Principle and Repetitive Control ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)

More information

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 8. Active Filters - 2 Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Blast From The Past: Algebra of Polynomials * PP xx is a polynomial of the variable xx: PP xx = aa 0 + aa

More information

EEL2216 Control Theory CT1: PID Controller Design

EEL2216 Control Theory CT1: PID Controller Design EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

More information

D G 2 H + + D 2

D G 2 H + + D 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists

More information

Chapter 7 : Root Locus Technique

Chapter 7 : Root Locus Technique Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 21 Jansen Sheng and Wenjie Chen, UC Berkeley 1. (15 pts) Partial fraction expansion (review) Find the inverse Laplace transform of the following

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit

More information

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501

More information

Essence of the Root Locus Technique

Essence of the Root Locus Technique Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

More information

FREQUENCY-RESPONSE DESIGN

FREQUENCY-RESPONSE DESIGN ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information

S.E. Sem. III [EXTC] Circuits and Transmission Lines

S.E. Sem. III [EXTC] Circuits and Transmission Lines S.E. Sem. III [EXTC] Circuit and Tranmiion Line Time : Hr.] Prelim Quetion Paper Solution [Mark : 80 Q.(a) Tet whether P() = 5 4 45 60 44 48 i Hurwitz polynomial. (A) P() = 5 4 45 60 44 48 5 45 44 4 60

More information