REVERSIBLE LOGIC SYNTHESIS BY QUANTUM ROTATION GATES

Size: px
Start display at page:

Download "REVERSIBLE LOGIC SYNTHESIS BY QUANTUM ROTATION GATES"

Transcription

1 Quntum Inormtion nd Computtion, ol, No N YYYY inton Press EESIBLE LOGIC SYNTHESIS BY QANTM OTATION GATES AFSHIN ABDOLLAHI, MEHDI SAEEDI, MASSOD PEDAM Deprtment o Eletril Enineerin, niversity o Soutern Cliorni Los Aneles, CA A rottion-sed syntesis rmewor or reversile loi is proposed We develop nonil representtion sed on inry deision dirms nd introdue opertors to mnipulte te developed representtion model Furtermore, reursive untionl ideomposition ppro is proposed to utomtilly syntesize iven untion Wile Boolen reversile loi is prtiulrly ddressed, our rmewor onstruts intermedite quntum sttes tt my e in superposition, ene we omine teniques rom reversile Boolen loi nd quntum omputtion Te proposed ppro results in polynomil te ount or multiple-ontrol Tooli tes witout nille were te previous ppro uses eponentil numer o tes We lso improve iruit dept or quntum rry-ripple dder y onstnt tor, nd iruit size or quntum multipleer rom On to On lo n Keywords: Quntum iruits, reversile iruits, rottion tes, inry deision dirms Communited y: to e illed Introdution Te ppel or reser on quntum inormtion proessin [] is due to tree mjor resons Worin wit inormtion enoded t te tomi sle su s ions nd even elementry prtiles su s potons is sientii dvne Diret mnipultion o quntum inormtion my rete new pilities su s ultr-preise mesurement [], telemetry, nd quntum litorpy [3], nd omputtionl simultion o quntum-menil penomen [4] 3 Some time-eponentil omputtionl tss wit non-quntum input nd output ve eiient quntum loritms [] Prtiulrly, most quntum iruits ieve quntum speed-up over onventionl loritms [5] However, useul pplitions remin limited eent dvnes in ult-tolernt quntum omputin derese per-te error rtes elow te tresold estimte [6] promisin lrer quntum omputin systems To e le to do eiient quntum omputtion, one needs to ve n eiient set o omputer-ided desin tools in ddition to te ility o worin wit vorle ompleity lss nd ontrollin quntum menil systems wit i idelity nd lon oerene times Tis is omprle wit te lssil domin were Turin mine, i lo speed nd no errors in switin were not dequte to desin st modern omputers Quntum iruit desin wit loritmi teniques nd CAD tools s een ollowed y severl reserers Te proposed metods eiter ddressed permuttion mtries [7] Current ddress: Knit Cpitl Ameris LLC, 545 Wsinton Blvd, Jersey City, NJ 0730 Correspondin utor: mseedi@usedu

2 eversile Loi Syntesis y Quntum ottion Gtes or unitry mtries, e, [8] Permuttion mtries nd reversile iruits re n importnt lss o omputtions tt sould e eiiently perormed or te purpose o eiient quntum omputtion Indeed, Boolen reversile iruits ve ttrted ttention s omponents in severl quntum loritms inludin Sor s quntum torin [9, 0] nd stilizer iruits [] In tis pper, nonil deision dirm-sed representtion is presented wit novel teniques or syntesis o iruits wit inry inputs Tis wor my e onsidered lon wit te wor done or te syntesis o reversile iruits [7] However, we wor wit rottionsed tes wi llow omputin Boolen untion y levin te Boolen domin [] Tereore, tis ppro my e viewed s step to eplore syntesis o reversile untions y tes oter tn enerlized Tooli nd Fredin tes We sow tt pplyin te proposed ppro improves iruit size or multiple-ontrol Tooli tes rom eponentil in [3] to polynomil, iruit dept or quntum rry-ripple dders y onstnt tor ompred to [4], nd 3 iruit size or quntum multipleers rom On to On lo n Te reminder o tis pper is ornized s ollows In Setion, we tou upon neessry round in reversile nd quntum iruits eders milir wit quntum iruits my inore tis setion Setion 3 summrizes te previous wor on quntum nd reversile iruit syntesis In Setion 4, te proposed rottion-sed tenique is desried In Setion 5, we provide n etension o te proposed syntesis loritm to ndle more enerl loi untions, ie, untions wit inry inputs nd ritrry outputs Syntesis o severl untion milies re disussed in Setion 6, nd inlly Setion 7 onludes te pper A prtil version o tis pper ws presented in [5] Bsi Conepts A quntum it, quit, n e relized y pysil system su s poton, n eletron or n ion In tis pper, we tret quit s mtemtil ojet wi represents quntum stte wit two si sttes 0 nd A quit n et ny liner omintion o its si sttes, lled superposition, s ψ = α 0 + β were α nd β re omple numers nd α + β = Altou quit n et ny liner omintion o its si sttes, wen quit is mesured, its stte ollpses into te sis 0 nd wit te proility o α nd β, respetively It is lso ommon to denote te stte o sinle quit y vetor s [ α β ] T in Hilert spe H were supersript T stnds or te trnspose o vetor A quntum system wi ontins n quits is oten lled quntum reister o size n Aordinly, n n-quit quntum reister n e desried y n element ψ = ψ ψ ψ n simply ψ ψ ψ n in te tensor produt Hilert spe H = H H H n An n-quit quntum te perorms speii n n unitry opertion on seleted n quits A mtri is unitry i = I were is te onjute trnspose o nd I is te identity mtri Te unitry mtri implemented y severl tes tin on dierent quits independently n e lulted y te tensor produt o teir mtries Two or more quntum tes n e sded to onstrut quntum iruit For set o tes,,, sded in quntum iruit C in sequene, te mtri o C n e lulted s M M M were M i is te mtri o te i t te i For quntum iruit wit unitry mtri nd input vetor ψ, te output vetor is ψ = ψ

3 A Adolli, M Seedi, M Pedrm 3 p = p = p = q = q = q = r = r = Fi CNOT nd Tooli tes Deomposition o Tooli te into -quit tes were = ii + ix/ [3] rious quntum tes wit dierent untionlities ve een introdued Te θ-rottion tes 0 θ round te, y nd z es tin on one quit re deined s Eq Te sinle-quit NOT te is desried y te mtri X in Eq Te CNOT ontrolled NOT ts on two quits ontrol nd tret is desried y te mtri representtion sown in Eq Te Hdmrd te, H, s te mtri representtion sown in Eq θ = os θ i sin θ i sin θ os θ os θ sin θ, yθ = sin θ os θ e iθ 0, zθ = 0 e iθ X = 0 0, CNOT = , H = Given ny unitry over m quits m, ontrolled- te wit ontrol quits y y y my e deined s n m + -quit te tt pplies on m i y y y = For emple, CNOT is te ontrolled-not wit sinle ontrol, Tooli is NOT te wit two ontrols, nd C θ is θ te wit sinle ontrol Similrly, multiple-ontrol Tooli te C NOT is NOT te wit ontrols Fi sows CNOT nd Tooli tes For iruit implementin unitry, it is possile to implement iruit or te ontrolled- opertion y replin every te y ontrolled te In iruit dirms, is used or onditionin on te quit ein set to vlue one 3 Previous Wor Syntesis o 0- unitry mtries, lso lled permuttion, s een ollowed y severl reserers durin te reent yers Here, we review te reent pproes wit vorle results More inormtion n e ound in [7] Trnsormtion-sed metods [6] itertively selet te to me iven untion more similr to te identity untion Tese metods onstrut ompt iruits minly or permuttions wit repetin ptterns in output odewords Ser-sed metods [7] eplore ser tree to ind reliztion Tese metods re ily useul i te numer o iruit lines nd te numer o tes in te inl iruit re smll Cyle-sed metods [8] deompose iven permuttion into set o disjoint oten smll yles nd syntesize individul yles seprtely Tese metods re minly eiient or permuttions witout repetin output ptterns BDD-sed metods [9] use inry deision dirms to improve srin etween ontrols o reversile tes Tese teniques sle etter tn oters However, tey require lre numer o nill quits Quntum-loi syntesis dels wit enerl unitry mtries nd is more llenin tn reversile-loi syntesis Syntesis o n ritrry unitry mtri rom universl set o

4 4 eversile Loi Syntesis y Quntum ottion Gtes p = p = q = q = r r = / / p q r p = q = / r = Fi New deinitions or CNOT nd Tooli tes usin ontrolled rottion tes Deomposition o Tooli te into 5 -quit ontrolled-rottion tes tes inludin one-quit opertions nd CNOTs s ri istory Breno et l in 995 [3] sowed tt te numer o CNOT tes required to implement n ritrry unitry mtri over n quits ws On 3 4 n As o 0, te most ompt iruit onstrutions use n 3 n CNOTs [8, 0] nd 4n + n n one-quit tes [] Te srpest lower ound on te numer o CNOT tes is 4 4n 3n [] Dierent trde-os etween te numer o one-quit tes nd CNOTs re eplored in [3] 4 ottion-bsed Syntesis o Boolen Funtions In tis setion, we ddress te prolem o utomtilly syntesizin iven Boolen untion y usin rottion nd ontrolled-rottion tes round te is In tis pper, we ne te sis sttes s ˆ0 = [ 0 ] T nd ˆ = ˆ0 = [ 0 i ] T Wit tis deinition o ˆ0 nd ˆ, te sis sttes remin ortoonl Also, inversion ie, te NOT te rom one sis stte to te oter is simply otined y te Susequently, te CNOT te n e desried y usin te C opertor sown in Fi In ddition, te Tooli te my e desried y usin te C opertor illustrted in Fi Tooli te n e implemented usin 5 ontrolled-rottion opertors s demonstrted in Fi ell tt 3-quit Tooli te needs 5 -quit tes i 0 nd re used s te sis sttes Fi For -quit C θ te wit ontrol quit nd tret quit, te irst output is equl to However, te seond output depends on ot te ontrol line nd te tret line We use te nottion θ to desrie te seond output Furtermore, we write θ to unonditionlly pply sinle-quit θ to te quit Additionlly, one n sow tt or inry vriles,, we ve θ [ θ ] = θ + θ, θ [ θ ] = θ [ θ ], ˆ = is used or netion, nd ˆ0 = Deinition ˆ0 nd ll vriles re in te rottion-sed tored tored in sort orm I nd re in te tored orm, ten θ nd θ re in te tored orm too In quntum iruit syntesized wit θ nd C θ opertors, ll outputs nd intermedite sinls in te iven iruit n e desried in te tored orm For emple, te output r in Fi n e desried s r = [ ] / [ / [ /]] Deinition ˆ0 nd ll vriles re rottion-sed sde sde in sort epressions Wile we used ˆ0 nd ˆ s te sis sttes, te presented loritm n e esily modiied to e pplile to quntum untions desried in terms o 0 nd An lternte solution is to deine te ollowin opertors nd use M to trnsorm te 0 nd sttes to ˆ0 nd ˆ sttes nd opertor M to perorm te reverse trnsormtion Hene to ompute in 0 nd sis, one needs to pply M nd M sinle-quit opertors eore nd ter te omputtion done in te ˆ0 nd ˆ sis, respetively Notie tt M nd M re rottions round te z is M = [ 0 0 i ], M = [ 0 0 i ]

5 A Adolli, M Seedi, M Pedrm 5 I is sde epression nd v is vrile, ten θ nd v θ re sde epressions too θ A sde epression n e epressed s θ 0 [ v θ [ v θ [v n θ n ˆ0 ] ] ] Te prolem o relizin untion wit θ nd C θ opertors is equivlent to indin sde epression or te untion To do tis, we irst introdue rp-sed dt struture in te orm o deision dirm or representin untions 4 A ottion-bsed Dt Struture Te onept o inry deision dirm BDD ws irst proposed y Lee [4] nd lter developed y Aers [5] nd ten y Brynt [6], wo introdued edued Ordered BDD OBDD nd proved its noniity property Brynt lso provided set o opertors or mnipultin OBDDs In tis pper, we omit te prei O BDD s een etensively used in lssil loi syntesis Furtermore, severl vrints o BDD were lso proposed or loi syntesis [9], veriition [7, 8, 9] nd simultion [30, 3] o reversile nd quntum iruits In tis setion, we desrie new deision dirm or te representtion o untions sed on rottion opertors Net, we use it to propose syntesis rmewor or loi syntesis wit rottion tes Deinition 3 A ottion-sed Deision Dirm DD is direted yli rp wit tree types o nodes: sinle terminl node wit vlue ˆ0, weited root node, nd set o non-terminl internl nodes E internl node represents untion nd is ssoited wit inry deision vrile wit two outoin edes: weited ˆ-ede solid line ledin to noter node, te ˆ-ild, nd non-weited ˆ0-ede dsed line ledin to noter node, te ˆ0-ild Te weits o te root node nd ˆ-edes re in te orm o θ mtries We ssume tt < θ Wen weit eiter or n ede or te root node is te identity mtri ie, 0 = I, it is not sown in te dirm Te let DD in Fi 3 sows n internl node wit deision vrile, te orrespondin ˆ0 nd ˆ edes, nd ild nodes 0 nd Te reltion etween te DD nodes in tis iure is s ollows I = ˆ, ten = θ else = 0 In ddition, i is weited root node s sown in te rit DD in Fi 3, ten or = ˆ we ve = θ r θ = θ r + θ ; oterwise = θ r 0 Similr to BDDs, in DDs isomorpi su-rps wi re nodes wit te sme untions re mered Additionlly, i te ˆ0-ild nd te ˆ-ild o node re te sme nd te weit o ˆ-ede is 0 = I, ten tt node is eliminted sin tese two redution rules nd iven totl orderin on input vriles, one n uniquely onstrut te DD o iven untion Notly, deision dirm lled DDMF ws proposed in [8], were e ede n represent ny unitry mtri inludin rottion opertors DDMF ws used or veriition o quntum iruits For iven untion wit n inry vriles v, v,, v n, e vlue ssinment to v, v,, v n orresponds to pt rom te root to te terminl node in te DD o Assumin te vrile orderin v < v < < v n, te orrespondin pt n e identiied y top-down trversl o te DD strtin rom te root node For e node visited durin te trversl, we selet te ede orrespondin to te vlue o its deision vrile v i Denote te weit o te root node y w 0 nd te weit o te seleted [ edes ] y T w, w,, w n We ve v, v,, v n = w 0 w w n ˆ0 = w 0 w w n 0 I ˆ0-ede is seleted or vrile v i ie, i v i = ˆ0, we ve w i = I Note tt wen te

6 Clerly, i durin tis rp trversl 0 -ede is seleted or vrile v i ie, i v i = 0, ten te orrespondin ede weit will e w i =I [ r + ] [ r 0 ] [ r + ] [ r We ve sown tt QDD s provide onise nd nonil representtion or quntum ule : < Consider perormin q-pply to to otin q-pply tes two two QDD nodes nd nd s s untions Notie tt QDD s n e rerded s enerliztion o BDD s ie, e BDD n lso ruments e rerded nd nd s ompres QDD te te A orrespondin QDD is BDD deision etly vriles i ll o te o te te weits nodes o Net, te ter QDD ter inludin re eiter [ r + ] [ r + ] [ r 0 ] [ r 0 ] te te weits o 6o te te eversile root root node node nd Loi nd ˆ Syntesis ˆ -ede in in te te y Quntum orrespondin ottion ˆ ˆ -ild Gtes nd nd -ild, it it dds dds new new 0 I or As will e sown lter, te syntesis proess strts wit te QDD o te node node to to te te resultin QDD,,, y y usin one one o o tree tree rules rules provided in in Fiure 7 7 Assume tt tt te te ule 3: = iven loi untion wi is lso QDD nd deomposes te iven QDD to relizle = orrespondin vriles or or QDD nodes r nd nd re re nd nd,, respetively Fiure Te 7 Te ules new new or node implementin node te q-pply opertor on two QDD s QDD s enerted y y q-pply depends on on te te vrile orderin o o nd nd s s demonstrted = in in Fiure 7 7 For terminl onditions, te ollowin reltions re used: v v nd ˆ v v Te QDD struture For For emple, suppose s some useul tt tt < < 0 ule ule properties is is invoed, One importnt 0 enertin new new node node in in te te resultin QDD Sine only ssumes nd ˆ vlues, tese re te only possile terminl onditions property, ie, te liner topoloy property, is demonstrted in Fiure θ = θ ontinin vrile ule ule direts te te q-pply opertion to to reursively ll ll itsel Ater reursive omputtion o te ˆ -ild nd -ild o, in order to mintin te noniit 5 Te ide is tt wen te -ild nd te ˆ -ild o node re Fiure 5: sd o te resultin QDD, isomorpi su-rps re mered nd i te -ild nd te ˆ -ild o te sme node Fi, 3 ten tt Internl node struture n e o diretly rottion-sed relized y deision dirm DD witout nd wit weited Fiure 5 Te liner r r root For node, i te ˆ0-ild nd tenode ˆ-ild re te resme tetopoloy sme nd node weit property, o te n o ˆ e -ede diretly is relized y ontrolled- θ opertor opertor in terms s sown o its in ild ie, QDD r r r r 0 I, ten tt node will v v 0 e eliminted In q ddition, me rqdd o nonil, te resultin 0 0 w w w 0 w 0 weits or te nodes ˆ -ild nd -ild o [r+] re modiied / s r demonstrted in Fiure 8 to ule : < q-pply tes two two QDD nodes nd nd s s Fiure 6 [ QDD s [ r + r or + ] intermedite ] [ [ r + sinls r + ] ] o te syntesized [ [ r r 0 ] 0 tree-input ] [ [ r Tooli r 0 ] 0 ] te Consider perormin q-pply to to otin ruments nd nd ompres te te orrespondin deision vriles o o te te nodes Net, ter ter inludin ule : < Fiure 7 7 ules or or implementin te te q-pply opertor on on two two QDD s ˆ0-ildmultiplyin nd te ˆ-ild te o root nodeweit re te o sme ynode γ, ten re modiied Tott otin s demonstrted node n in Fiure = e 8 to diretly γ relized or iven DDs o use te pply opertor Fiure 8 Weit modiition durin q-pply to mintin noniity o te resultin QDD y θ opertor, s = θindemonstrted tis ontet, infi nd3 re ndlled Fi 3, DD in terms opernds o its Te ppl ild Fi is implemented 4 sows te ydds reursive Fiure o untions 6: trversl Opernds p, qo or nd te opertion rtwo in Fi DD = γ opernds reprodued Te result For in o pply Fi eopertor pir o wi nodes dds i [r+] [r0] 6 4 visited Every DD durin wite trversl, innew struture node ntointernl te su resultin s te node DD ones is dded sown y usin in one tofi o te4 resultin treeisrules: ssoited i DD < ule y, utilizin v =, w te = [ rules wi depend on te α seleted r + α ] γ, w vrile 0 = [ orderin α r 0 ] γ I < ule, v =, w lso see Fiure 6 We = ssume γ[ β tt r + β ], wit sde epression nd nw e 0 = relized γ[ wit β r 0 rottion ] I = nd ule ontrolled-rottion 6 3, 6v = =, w = opertors [ α r + α ] γ[ β r + β ], Suppose two enerl tt tedds or sown w 0 untion = [α in Fiure r 0 ] isγ[ 6 iven β r 0 Te ] Weit pply DDmodiition or opertor = or te isγ pply reursively n opertor e tolled mintinwit noniity t o te resultin DD otined onditions y multiplyin ˆ0 θv te= root v[r+] nd weit ˆ [r+] o θv y = γ [r0] θv To otin [r0] = γ or iven DDs o nd, we use te pply opertor In tis ontet, nd re lled DD 4 Opertions on DDs opernds o Te pply opertor is implemented y reursive trversl o te two DD Suppose tt te DD or untion is iven Te DD or = γ n e otined y opernds For e ule pir o nodes Fiure < 7 7 ules Te or or implementin newte node te q-pply or opertor on two two is QDD s multiplyin in ndte visited root weit durin o yte γ trversl, To Te otin weits n = internl γ o ˆ-ild node or iven is DDs nd ˆ0-ild o nd, re we dded to te resultin α ]DD γ, ynd use utilizin te [pply αte opertor r ollowin 0 ] γ, In tisrules ontet, respetively wi nd depend re lledondd teopernds seletedo Te pply opertor is implemented y reursive trversl o te two DD opernds For e pir o nodes in nd vrile orderin lso see Fi visited 5 durin We te ssume trversl, tt n internl ndnode ve is dded two to te enerl resultindds y utilizin te ollowin sown in Fi 5 ule Te pply < rules opertor Te wi new depend is node reursively on te or seleted lled is vrile Te wit orderin weits te terminl lso osee ˆ-ild Fiure onditions 6 nd We ssume ˆ0-ild ttre nd ve γ 6 6 β ], nd two γ[ enerl β DDs r 0 ], sown respetively in Fiure 6 Te pply opertor is reursively lled wit te terminl ˆ0 θv = v nd ˆ θv = θv onditions ˆ0 θv = v nd ˆ θv = θv 0-0 Fiure 8 Weit modiition durin q ule : < to mintin noniity o te resultin QD / [r+] [r+] [r0] [r0] p Fiure te te weits o 6: Opernds o te te root root node node nd nd ˆ ˆ -ede in in te te orrespondin or opertion ˆ ˆ -ild nd nd -ild, it it dds dds new new = γ Te result o pply opertor w node node to to te te [ [ r + r + ] ] [ [ r r 0 ] 0 ] new node to te resultin QDD,,, y y usin one one o o tree tree rules DD y rules provided in in Fiure 7 7 Assume tt tt te te ule 3: = usin one o te tree rules: i < ule, v = orrespondin vriles or or QDD nodes nd nd re re nd nd,, respetively Fiure Te 7 Te ules new new or node implementin node te q-pply opertor on two QDD s [ α r + α ] γ, w 0 = [ α r 0 ] γ I < ule, v = p, w = γ[ β enerted y y q-pply depends on on te te vrile orderin o o nd For nd terminl s s demonstrted onditions, in te in ollowin Fiure 7 7 reltions re used: w 0 = γ[ β r 0 ] I = ule 3, v = =, w = [ q α v v nd ˆ v v r + α ] γ[ β For For emple, suppose tt tt < < ule ule is is invoed, enertin new new node node in in te te resultin r QDD Sine only ssumes nd ˆ vlues, tese re te only possile terminl onditions w 0 = [α r 0 ] γ[ β r 0 ] Weit modiition / / or te pply r opertor to mintin ontinin vrile ule ule direts te te q-pply opertion to to reursively ll ll itsel o te resultin DD Ater reursive omputtion o te ˆ -ild nd -ild o, in order to mintin te noniity Fi 4 DDs or intermedite sinls o 3-input Tooli te sown in Fi, redrwn in In tis r r I v v 4 Opertions on DDs 0, ten tt node will e eliminted In iure, we ve q =, r = /r, nd r = / Suppose tt te DD or untion is iven 0 0 [r0] Fiure 5: sd o te resultin QDD, isomorpi su-rps re mered nd i te -ild nd te ˆ -ild o node re te sme nd te weit o te ˆ -ede is ddition, me QDD o nonil, te resultin w w weits or te nodes ˆ -ild nd -ild o Opernds or opertion = [r+] Te DD w0 w0 or = γ n e o ule 3 = Te new node or is or Te weits o ˆ-ild nd ˆ0 [ α r + α ] γ[ ule β r + < β Te ], new nd node [α or is r Te 0 ] weits γ[o β ˆ-ild r nd 0 ], respetively ˆ0-ild re [ α r + In enerl, or inry opertion op nd two BDDs o untions nd, te pply opertor omputes BDD or op [6] α ] γ, nd [ α r 0 ] γ, respetively Ater reursive omputtionβ o ], te nd ˆ-ild γ[ βnd r 0 ], ˆ0-ild respetively o, to mintin te noniity o t DD, isomorpi su-rps ule re3 mered = Te nd newi node teorˆ0-ild is ornd Te teweits ˆ-ild o ˆ-ild o ndnode ˆ0-ild re [ nd te weit o te ˆ-ede is α r + α 0 ] = γ[ I, ten β r + β tt ], nd [α node r will 0 ] γ[ e eliminted β r 0 ], respetively In ddition DD o nonil, te resultin weits or te ˆ-ild nd te ˆ0-ild o sould e m Ater reursive omputtion o te ˆ-ild nd ˆ0-ild o, to mintin te noniity o te resultin te metod illustrted indd, Fiure isomorpi 6 su-rps Fiure re 7 mered demonstrtes nd i te ˆ0-ild te ndresult te ˆ-ild o perormin o node re te ppl sme nd te weit o te ˆ-ede is on q nd r in Fiure 4 redrwn in Fiure 0 = I, ten tt node will e eliminted In ddition, 7 to otin r = q /r 3 to me To 0 [r0] 0-0 ule < Te new node or is Te weits o ˆ-ild nd ˆ0-ild re γ[ β r +

7 0 0 Opernds or opertion = [ r+ ] [ r 0] [ r+ ] [ r 0] ule : < Consider perormin q-pply q-pply to otin to otin q-pply q-pply tes tes two two QDD QDD nodes nodes nd nd s s ruments nd nd ompres te te orrespondin deision vriles o te o te nodes nodes Net, Net, ter ter inludin [ r+ ] [ r+ ] te te weits o te o te root root node node nd nd ˆ -ede ˆ -ede in te in te orrespondin ˆ -ild ˆ -ild nd nd -ild, -ild, it dds it dds new new ule : < A Adolli, M Seedi, M Pedrm 7 ule < Te new node or is Te weits o ˆ-ild nd ˆ0-ild re ule 3: = [ α r + α ] γ, nd [ α r 0 ] γ, respetively node node to te to te resultin QDD, QDD,, y, y usin usin one one o tree o tree rules rules provided in in Fiure Fiure 7 7 Assume tt tt te te [ r 0] [ r 0] orrespondin vriles or or QDD QDD nodes nodes nd nd re re nd nd,, respetively Fiure Te 7 Te ules new new or node implementin node te q-pply opertor on two QDD s enerted y y q-pply q-pply depends on on te te vrile orderin o o nd nd s s demonstrted in Fiure in Fiure 7 7 ule < Te new node or is Te weits o ˆ-ild nd ˆ0-ild re For terminl onditions, te ollowin reltions re used: v v γ[ β r + β ], nd γ[ β r 0 ], respetively nd ˆ v v For For emple, suppose tt tt < < ule ule is is invoed, enertin new new node node in te in te resultin QDD QDD Sine only ssumes nd ˆ vlues, tese re te only possile terminl onditions ontinin vrile ule ule direts direts te te q-pply q-pply opertion to to reursively ll ll itsel itsel ule 3 = Te new node or is or Te weits o ˆ-ild nd ˆ0-ild re [ α r + α ] Ater γ[ reursive βomputtion r + β o ], te nd ˆ -ild [α nd -ild r 0 o ], in γ[ order to mintin β r te 0 ], noniity respetively o te resultin QDD, isomorpi su-rps re mered nd i te -ild nd te ˆ -ild o r r node re te sme nd te weit o te ˆ -ede is r r 0 I, ten tt node vwill v e eliminted In 0 ddition, me QDD o nonil, te resultin w w w 0 w 0 weits or te nodes ˆ -ild nd -ild o re modiied s demonstrted in Fiure 8 to 0 Fiure 8 Weit modiition durin q-pply to mintin noniity o te resultin QDD Fi 5 Opernds or opertion = γ Te result o pply opertor wi dds new node to te resultin DD y usin [ [ r+ one r+ ] o ] te tree rules: [ [ i r 0] r < 0] ule, v =, w 6 = [ α r + α ] γ, w 0 = [ α r 0 ] γ I < ule, v =, w = γ[ β r + β ], w 0 = γ[ β r 0 ] I = ule 3, v = =, w = [ α r + α ] γ[ β r + β ], w 0 = [α r 0 ] γ[ β r 0 ] Weit modiition or te pply opertor to mintin noniity o te resultin DD [ [ r+ r+ ] ] [ [ r+ r+ ] ] [ [ r 0] r 0] [ [ r 0] r 0] Ater reursive omputtion o te ˆ-ild nd ˆ0-ild o, to mintin te noniity o te resultin DD, isomorpi su-rps re mered nd i te ˆ0-ild nd te ˆ-ild o node re te sme nd te weit o te ˆ-ede is 0 = I, ten tt node will e eliminted In ddition, to me DD o nonil, te resultin weits or te ˆ-ild nd te Fiure Fiure 7 ules 7 ules or or implementin te te q-pply q-pply opertor on two on two QDD s QDD s ˆ0-ild o sould e modiied y te metod illustrted in Fi 5 Fi 6 demonstrtes te result o perormin pply opertor on q nd r in Fi 4, redrwn in Fi 6, to otin r = q /r To onstrut DD or r, one needs to initilly pply ule 3 euse ot q nd r use s roots Aordinly, 6 6 w = [ ] /[ /r ] nd w 0 = /r To ontinue, onsider w nd note tt ot [ ] nd [ /r ] use 3 As result, pplyin ule 3 leds to w, = [ 0] /[ / + /] nd w,0 = [ ˆ0] /[ /] On te oter nd, pplyin ule 3 on w 0 leds to w 0, = [ ˆ0] /[ /] nd w 0,0 = [ 0] / sin terminl onditions results in w, =, w,0 =, w 0, =, nd w 0,0 = Sine w 0, = w 0,0 =, we n remove vrile s te ˆ0-ild o Te inl iure in Fi 6 is otined ter elimintin redundnt nodes nd edes 4 4 Funtionl Deomposition nd r-linerity Te prolem o relizin untion usin θ nd C θ opertors is equivlent to indin rottion-sed tored orm or, wi n e perormed y reursive i-deomposition 3 To understnd te DDs o [ ] nd [ /r ], rell DDs o nd r in Fi 6 nd use weits nd / or roots o nd r, respetively 4 Note tt te ommuttive property o mtri multiplition or θ mtries is ritil or te pply opertor Perormin pply s desried my not enerte te orret result or deision dirms wit non-ommuttive weits

8 re modiied s demonstrted in Fiure 8 to Fiure 9 demonstrtes te result o perormin q-pply opertion on q nd r ten rom Fiure 6 to otin r=q -/r It is noteworty tt te ommuttive property o mtri multiplition or mtries is ritil i tere or eists te rottion q-pply vlue, to enerte i te orret result ie, q / / In te reminder o tis pper, wen epressin untion s v, v,, v, it is impliitly r Net we present numer o ey results r = q -/ r deision vrile v i Te weit o te ˆ -ede o n i will e i v n Also no ede oriintin rom nodes ove n j ie, nodes wit n deision vrile v j, j<i will end t node elow n i ie, node wit deision vrile v j, j>i Fiure 9 An emple o perormin q-pply on two QDD s 44 QDD-sed Funtionl Deomposition nd te Notion o Q-Linerity Fiure 0 A enerl QDD Fi 6 An emple o perormin pply opertor on two DDs In te irst ll o te struture pplywit opertor, q-liner As mentioned erlier, te prolem o relizin untion,, usin nd ontrolled- vriles v+ w vn = [ ] /[ /r ] nd w 0 = /r Te inl iure is otined ter elimintin8 redundnt nodes nd edes A enerl DD struture wit r-liner vriles v +,, v n opertors is equivlent to indin quntum tored orm or te untion, wi n in turn e perormed y reursive i-deomposition o We reer te reder to Li et l [37] nd Krplus o [38] or review o prior wor relted to untionl deomposition in enerl, nd ideomposition untions in prtiulr nd nd vlue γ su tt = γ Deinition 4 ottion-sed i-deomposition i-deomposition in sort o is deined s indin Deinition: We usequntum i-omposition i-deomposition o iven o is untion deined s indin to onstrut untions nd = nd γ vlue Susequently, nd re reursively i-deomposed, wi will eventully result in tored orm o Te i-deomposition su tt loritm were only is ssumes sed on vlues te notion nd ˆ o r-linerity n ssumed tt depends on ll vriles v, v,, vn ie, is not invrint wit respet to ny vrile mon v, v,, vn Deinition: For iven untion v, v,, v, v, v,, v, vrile v i will e lled q-liner v,,, v,, vi, vi vn vlues, i i i n, su tt or every vlue ssinment to v v,, v, v,, v, ten or e vrile v i, +<i<n, tere is only one QDD node, n i, wit vi i vi, i i n : i, were we deine perormin q-pply s desried my not v i vi v v, v,, vi,ˆ, vi,, vn nd enerte te orret result or deision dirms wit 8 eversile Loi Syntesis y Quntum ottion Gtes v, v,, vi,, vi,, vn v A vrile will e lled q- weits tt re not ommuttive nonliner i it is not q-liner v Lemm : Consider untion v, v,, vn wit vrile orderin v r v v n I nd only i vriles v, v,, vn re q- liner ie, or e v i, +<i<n, tere is i tt or ll Deinition 5 For untion v,, v i, v i, v i+,, v n, vrile v i is r-liner i tere eists rottion vlue θ i su tt or every vlue ssinment to v,, v i, v i+,, v n : vi = θ i vi, were vi = v,, v i, ˆ, v i+,, v n nd vi = v,, v i, ˆ0, v i+,, v n A vrile is r-nonliner i it is not r-liner 7 Now we present numer o ey results v + Lemm Consider untion v, v,, v n wit vrile orderin v < v < < v n nd ssume tt + i n I e vrile v i is r-liner, ten tere is only one DD node n i or e r-liner deision vrile v i Te weit o te ˆ-ede o n i is θ i Proo Te proo is y indution on v n, v n, v n,, v + strtin rom v n Let v e te lowest indeed r-nonliner vrile ter wi v +, v +,, v n re r-liner vriles o From Lemm, or + j n we ve vj = θ j vj were θ j is ied independent o v, v,, v j, v j+,, v n vlues As illustrted in Fi 6, every pt rom te root node o te DD to te terminl node will eiter o trou n internl node wit deision vrile v or it will sip ny su node nd diretly o te sinle DD node wit deision vrile v + For te ltter se, v = 0 v = v nd or ny ormer se v = α i v or some vs ll v,, v, v +,, v n Additionlly, te numer o dierent rottion nles e, α, α in Fi 6 or vrile v is equl to te numer o internl nodes wit deision vrile v in te DD v+ v+ v

9 A Adolli, M Seedi, M Pedrm 9 Aloritm tor : I ll vriles re r-liner, ten return te orrespondin sde epression or : Find te lowest indeed r-nonliner vrile v ter wi v +, v +,, v n re r-liner 3: Bi-deompose usin v s = γ were,, nd γ re iven in Teorem 4: eturn [tor ] γ[tor] Deinition 6 Te deree o r-nonlinerity o vrile v, r-dev i, is m were m is te numer o dierent rottion nles α i inludin 0 i ny tt v = α i v or some v,, v, v +,, v n For r-liner vriles te deree o r-nonlinerity is zero As n emple, onsider te DD o r in Fi 6 nd note tt r-de = s tere re two rottion nles ie, 0 nd or Similrly, r-de = 0 nd is r-liner Lemm Let m denote te numer o internl nodes wit deision vrile v I ll pts rom te root node o te DD to te terminl node o trou n internl node wit deision vrile v, r-deqv = m ; oterwise r-dev = m Proo Te proo ollows rom onsiderin te enerl struture o DDs nd te deinition o r-nonlinerity Teorem Consider untion v, v,, v n wit vrile orderin v < v < < v n Deine su tt i v = α v ten = ˆ; oterwise = ˆ0 Assume tt v +, v +,, v n re r-liner vriles o nd v is r-nonliner vrile o wit r- dev = m Additionlly, or e vlue ssinment to vriles v,, v, v +,, v n suppose etly one o te ollowin m reltions olds: v = α v, v = α v,, v = α m v We ve I n e i-deomposed s = γ were = v, γ = α α /, = γ II is untion o v, v,, v, ie, is invrint wit respet to v +, v +,, v n III v is r-liner vrile o I is untion o v, v,, v n nd v +, v +,, v n re r-liner vriles o r-dev in is m Proo We initilly prove tt untion is invrint wit respet to v +, v +,, v n, ie, vi = vi or + i n Sine v i is r-liner, tere eists θ i su tt or ll v,, v i, v i+,, v n vlues, vi = θ i vi wi results in viv = θ i viv nd viv = θ i viv From te deinition o we ve: I viv = α viv, ten vi = ˆ, else vi = ˆ0 I viv = α viv, ten vi = ˆ, else vi = ˆ0 Cominin tese reltions proves vi = vi : viv = α viv θ i viv = α + θ i viv viv = α viv

10 0 eversile Loi Syntesis y Quntum ottion Gtes Sine = v, is lso invrint wit respet to v +, v +,, v n prt II Moreover v = nd v = wi results in v = v, ie, v in is r-liner prt III Te irst sentene o prt I is ler rom te deinition o = γ As or te seond one, note tt v +, v +,, v n re r-liner vriles o Additionlly, is invrint wit respet to v +, v +,, v n Puttin tese ts toeter proves prt I Now we prove r-dev m in = γ For e vlue ssinment to vriles v, v,, v, v +,, v n etly one o te ollowin m reltions olds: v = α v, v = α v,, v = α m v For e o te ove ses, we emine te reltion etween v nd v : v = α v : By deinition = ˆ nd we ve: v = ˆ γ v = γ v v = γ v v = [ ˆ] γ v = v = α v = α + γ v, γ = α α / v = α+α v v = α v : By deinition = ˆ0 nd we ve: v = ˆ0 γ v = v v = [ ˆ0] γ v = γ v = γ + α v, γ = α α / v = α+α v v = α i v, 3 i m: By deinition = ˆ0 nd v = γ + α i v Te irst two ses result in te sme reltion etween v nd v s v = α+α v Te reminin m ses result in t most m dierent reltions etween v nd v Tereore, te totl numer o dierent reltions etween v nd v is m Aordinly, r-dev in is m prt Finlly, rom = γ it ollows tt γ = γ [ γ] Consider = v nd ssume = ˆ or = ˆ0 wi leds to = v ˆ = v or = v ˆ0 = v Altoeter or ot v = ˆ nd v = ˆ0, we ve γ [ γ] = Hene, n e i-deomposed s = γ prt I sin te proposed i-deomposition ppro, n e i-deomposed into = γ were nd re temselves reursively i-deomposed until rottion-sed tored orm is otined Teorem Te proposed i-deomposition ppro lwys results in sde epression or iven untion Proo Followin te deinitions iven in Teorem or = γ, sine is invrint o v +, v +,, v n nd v in is r-liner nd r-dev in is m, te reursion will inlly stop t terminl ses were nd/or ve diretly relizle DDs ll vriles re r-liner in te untions nd tey ve rottion-sed sde epressions orrespondin to DDs wit in struture 5 5 As result o Lemm, in untion wit in strutured DD, ll vriles re r-liner

11 A Adolli, M Seedi, M Pedrm Aloritm -tordd : Cne ll o te weits to 0 = I : Crete DD node v wit w = nd w 0 = I to te terminl node ie, ˆ0 3: ediret ll edes towrd n to node v nd me te weit o ll su edes 4: ediret ll edes towrd n, n 3,, n m to node v nd me te weit o ll su edes 0 5: Disrd nodes n, n 3,, n m 6: Mere isomorpi su-rps, eliminte nodes wit te sme ˆ0-ild nd ˆ-ild etly i te weit o te ˆ-ede is 0 = I pdte weits o te DD to me te DD o nonil Aloritm uses te proposed reursive i-deomposition ppro to enerte rottionsed tored orm or iven untion All steps in Aloritm n e diretly perormed on DDs I te DD o untion is in struture, we ve sde epression or Step For Step s depited in Fi 6 nd ordin to Lemm, identiyin v is equivlent to identiyin te lower in-struture prt o te DD As or Step 3, ordin to Lemm vlues α, α,, α m n e otined rom weits o te ˆ-edes o nodes wit deision vriles v Hene, γ = α α / is otined Let n i i m denote nodes wit deision vrile v nd ˆ-edes weit α i Strtin rom te DD o, one n perorm Aloritm to onstrut DD o Hvin te DDs or nd, te DD o = γ n e otined y usin te pply opertion As n emple o Aloritm, see DDs o s nd in Fi 8 nd Fi 9 were v = nd m = Tis emple is desried in detil in Setion 6 Te inl orm ter pply is = γ [ γ [ 3 γ 3 [ γ ˆ0 ] ] ] Note tt i untions sould lso e deomposed Te tor loritm is not optiml In prtiulr, n e rewritten s = p γ p [ p γ p [ p3 γ p3 [ p γ p ˆ0 ] ] ] were p, p,, p is permuttion o,,, Dierent permuttions o,,, my result in dierent numer o tes ter syntesis For emple, onsider te DDs o te output s in 4-input Tooli te, sown in Fi 8, or two dierent vrile orderins > > > d nd > > d > In Fi 8, d is r-liner However, none o te vriles in Fi 8 re r-liner Aordinly, te proposed ppro results in ewer tes or > > > d Te ormer se is urter disussed in Setion 6 Indeed, worin wit > > d > leds to s = / were = d is 4-input Tooli te treted on te lst quit or > > d > 5 Worin wit Aritrry Outputs For te input vetor, untion wit inry inputs nd outputs n e written s = ĝ γ [ ĝ γ [ [ĝ γ ˆ0 ] ] ] Sine untions ĝ i only te vlues ˆ0 nd ˆ, n lso e represented s = γ + γ + + γ ˆ0 were i vlues re eiter zero 0 or one 6 Deine γ = γ + γ + + γ wi leds to = γˆ0 Aordinly, te struture o te syntesized 6 To prove, ssin ritrry vlues ˆ0 nd ˆ to ĝ i terms nd onsider te resultin rottions y dierent γ i vlues

12 eversile Loi Syntesis y Quntum ottion Gtes \ G G ˆ0 \ γ Fiure : sdsd 8 tm n esily e enerlized to e pplile to m untions wose output vlues or ll possile sis vetors re on sinle ritrry irle C wit te oriin enter E point on irle C n e represented s ˆ were is vetor pssin tru te oriin nd diulr to irle C In ddition, is te quntum - rottion opertion round te vetor nd ˆ0 n e set point on te irle C Fiure 9 untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o nd te root node re in te orm o Notie tt te quntum iruit syntesized y te q-tor loritm s te property tt or te sis input vetors, te vlues o ll l nd output sinls will lie on some irle, C inl tored orm resultin rom q-pply s te were is te input vetor Sine ons i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso resented s: were i vlues re rerded l vlues 0 nd ˆ Let s deine te rel vlued untion s quently, untion n e represented s Te struture o te syntesized iruit represented s Fiure 0 Note tt G is te inverse on o G wit rerd to X Y ˆ Z C Fiure 9 Blo spere representtion G G Fiure 0 Quntum iruit perormin 8 s its enter E point on irle C n e represented s were is vetor pssin tru te oriin nd perpendiulr to irle C In ddition, is te quntum - deree rottion opertion round te vetor nd ˆ0 n e set to ny point on te irle C Fiure 9 Su untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o edes nd te root node re in te orm o Notie tt te quntum iruit syntesized y usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to X Y ˆ C Fiure 9 Blo spere representtion Fiure 0 Quntum iruit perormin G G' ' Fiure : Blo spere representtion Quntum iruit perormin = [γ] ˆ0 Te inl tored orm resultin rom q-pply s te orm = γ [ γ [ [ γˆ0 ] ] ] were is te input vetor Sine untions i only te vlues ˆ0 nd ˆ or sis input vetors, it n e seen tt n lso e represented s = [γ + γ + + γ] ˆ0 were i vlues re rerded s rel vlues ˆ0 0 nd ˆ Lets deine te rel vlued untion γ s γ = γ + γ + + γ Consequently, untion n e represented s = [γ] ˆ0 Te struture o te syntesized iruit n e represented s Fiure Note tt G is te inverse untion o G wit rerd to Te rit portion o te iruit is needed only i it is required tt quits ssoited wit input lines mintin teir initil vlue To lriy te roles o G nd G, it will e eneiil to ompre tis iruit wit te tree-input multipleer iruit = s + s syntesized y te q-tor loritm in Fiure 3 I insted o ˆ0, noter quntum vlue q is used in tis iruit s te initil vlue or te input, ten te resultin iruit will implement te ollowin untion = [γ] q Now we enerlize te syntesis ppro or syntesizin quntum untions tt or iven sis input vetors enerte enerl quntum vlue = [ 0 ] T Beuse 0 + =, we my rewrite s = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, n e epressed s = e iδ zγθˆ0 were z is te rottion opertor round te Z is deined s zγ = [ e iγ/ 0 0 e iγ/ ] We n inore te term e iδ sine it s no oservle eets [] nd tereore we n eetively write = zγθˆ0 see Fiure 4 Tis onept n s s ˆ0 / / / / Fiure 3: Quntum tree-input multipleer 0 8 loritm n esily e enerlized to e pplile to quntum untions wose output vlues or ll possile sis input vetors re on sinle ritrry irle C wit te oriin s its enter E point on irle C n e represented s were is vetor pssin tru te oriin nd perpendiulr to irle C In ddition, is te quntum - deree rottion opertion round te vetor nd ˆ0 n e set to ny point on te irle C Fiure 9 Su untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o edes nd te root node re in te orm o Notie tt te quntum iruit syntesized y usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to X Y ˆ Z C Fiure 9 Blo spere representtion G G Fiure 0 Quntum iruit perormin \ G G ˆ0 \ γ Fiure : sdsd 8 loritm n esily e enerlized to e pplile to quntum untions wose output vlues or ll possile sis input vetors re on sinle ritrry irle C wit te oriin s its enter E point on irle C n e represented s were is vetor pssin tru te oriin nd perpendiulr to irle C In ddition, is te quntum - deree rottion opertion round te vetor nd ˆ0 n e set to ny point on te irle C Fiure 9 Su untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o edes nd te root node re in te orm o Notie tt te quntum iruit syntesized y usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to X Y ˆ Z C Fiure 9 Blo spere representtion G G Fiure 0 Quntum iruit perormin 8 usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to Fiure 0 Quntum iruit perormin G G' ' Fiure : Blo spere representtion Quntum iruit perormin = [γ] ˆ0 Te inl tored orm resultin rom q-pply s te orm = γ [ γ [ [ γ ˆ0 ] ] ] were is te input vetor Sine untions i only te vlues ˆ0 nd ˆ or sis input vetors, it n e seen tt n lso e represented s = [ γ + γ + + γ ] ˆ0 were i vlues re rerded s rel vlues ˆ0 0 nd ˆ Lets deine te rel vlued untion γ s γ = γ + γ + + γ Consequently, untion n e represented s = [γ] ˆ0 Te struture o te syntesized iruit n e represented s Fiure Note tt G is te inverse untion o G wit rerd to Te rit portion o te iruit is needed only i it is required tt quits ssoited wit input lines mintin teir initil vlue To lriy te roles o G nd G, it will e eneiil to ompre tis iruit wit te tree-input multipleer iruit = s + s syntesized y te q-tor loritm in Fiure 3 I insted o ˆ0, noter quntum vlue q is used in tis iruit s te initil vlue or te input, ten te resultin iruit will implement te ollowin untion = [γ] q Now we enerlize te syntesis ppro or syntesizin quntum untions tt or iven sis input vetors enerte enerl quntum vlue = [ 0 ] T Beuse 0 + =, we my rewrite s = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, n e epressed s = e iδ zγ θˆ0 were z is te rottion opertor round te Z is deined s zγ = [ e iγ/ 0 0 e iγ/ ] We n inore te term e iδ sine it s no oservle eets [] nd tereore we n eetively write = zγ θˆ0 see Fiure 4 Tis onept n s s ˆ0 / / / / Fiure 3: Quntum tree-input multipleer 0 Fiure : Blo spere representtion Quntum iruit perormin = [γ] ˆ0 s s ˆ0 / / / / Fiure : Quntum tree-input multipleer Te inl tored epression s te orm = ĝ γ [ ĝ γ [ [ĝ γ ˆ0 ] ] ] were is te input vetor Sine untions ĝ i only te vlues ˆ0 nd ˆ or sis input vetors, n lso e represented s = γ + γ + + γ ˆ0 were i vlues re eiter zero 0 or one 4 Deine untion γ s γ = γ + γ + + γ wi leds to = γˆ0 Aordinly, te struture o te syntesized iruit n e represented s Fiure In tis iure, G is iruit tt onstruts γ nd G is te inverse o G Note tt G sould e used only i one wnts to eep input lines unned To lriy te roles o G nd G, it will e eneiil to ompre tis iruit wit te tree-input multipleer iruit = s + s syntesized y te q-tor loritm in Fiure I insted o ˆ0, noter quntum vlue q is used in tis iruit s te initil vlue or te input, ten te resultin iruit will implement te ollowin untion = [γ] q Now we enerlize te syntesis ppro or syntesizin quntum untions tt or iven sis input vetors enerte enerl quntum vlue = [ 0 ] T Beuse 0 + =, we my rewrite s = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, n e epressed s = e iδ zγ θˆ0 were z is te rottion opertor round te Z is deined s zγ = [ e iγ/ 0 0 e iγ/ ] We n inore te term e iδ sine it s no oservle eets [] nd tereore we n eetively write = zγ θˆ0 see Fiure 3 Tis onept n e demonstrted y usin te Blo spere representtion Note tt te quntum vlue zγ θˆ0 results rom θ rottion o ˆ0 round te X is ollowed y γ rottion round te Z is Te quntum iruit or = zγ θˆ0 n e syntesized s Syntesize = θˆ0 y usin te q-tor loritm Syntesize = zγˆ0 y usin te q-tor loritm Csde te resultin iruits s depited in Fiure 3 Te onstnt nill in te riteture o Fiure 3 is not lwys neessry For emple, te ontrolled rottion wit ontrol quit nd tret ˆ0 enertes s te seond output nd te 4 To prove, ssin ritrry vlues ˆ0 nd ˆ to ĝi nd onsider te resultin rottions y dierent γi vlues 0 8 loritm n esily e enerlized to e pplile to quntum untions wose output vlues or ll possile sis input vetors re on sinle ritrry irle C wit te oriin s its enter E point on irle C n e represented s were is vetor pssin tru te oriin nd perpendiulr to irle C In ddition, is te quntum - deree rottion opertion round te vetor nd ˆ0 n e set to ny point on te irle C Fiure 9 Su untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o edes nd te root node re in te orm o Notie tt te quntum iruit syntesized y usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to X Y ˆ Z C Fiure 9 Blo spere representtion G G Fiure 0 Quntum iruit perormin \ G G ˆ0 \ γ Fiure : sdsd 8 loritm n esily e enerlized to e pplile to quntum untions wose output vlues or ll possile sis input vetors re on sinle ritrry irle C wit te oriin s its enter E point on irle C n e represented s were is vetor pssin tru te oriin nd perpendiulr to irle C In ddition, is te quntum - deree rottion opertion round te vetor nd ˆ0 n e set to ny point on te irle C Fiure 9 Su untion n e represented wit QDD were te terminl node is ˆ0 nd te weits o edes nd te root node re in te orm o Notie tt te quntum iruit syntesized y usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to X Y ˆ Z C Fiure 9 Blo spere representtion G G Fiure 0 Quntum iruit perormin 8 usin te q-tor loritm s te property tt or te sis input vetors, te vlues o ll internl nd output sinls will lie on some irle, C Te inl tored orm resultin rom q-pply s te orm were is te input vetor Sine untions i only te vlues nd ˆ or sis input vetors, it n e seen tt n lso e represented s: were i vlues re rerded s rel vlues 0 nd ˆ Let s deine te rel vlued untion s Consequently, untion n e represented s Te struture o te syntesized iruit n e represented s Fiure 0 Note tt G is te inverse untion o G wit rerd to Fiure 0 Quntum iruit perormin G G' ' Fiure : Blo spere representtion Quntum iruit perormin = [γ Te inl tored orm resultin rom q-pply s te orm = γ [ γ were is te input vetor Sine untions i only te vlues ˆ0 nd ˆ or sis input vetor e seen tt n lso e represented s = [ γ + γ + + γ ] i vlues re rerded s rel vlues ˆ0 0 nd ˆ Lets deine te rel vlued γ s γ = γ + γ + + γ Consequently, untion n e repres = [γ] ˆ0 Te struture o te syntesized iruit n e represented s Fiure tt G is te inverse untion o G wit rerd to Te rit portion o te iruit is need i it is required tt quits ssoited wit input lines mintin teir initil vlue To l roles o G nd G, it will e eneiil to ompre tis iruit wit te tree-input multiplee = s + s syntesized y te q-tor loritm in Fiure 3 I insted o ˆ0, noter q vlue q is used in tis iruit s te initil vlue or te input, ten te resultin iruit will im te ollowin untion = [γ] q Now we enerlize te syntesis ppro or syntesizin quntum untions tt or iven vetors enerte enerl quntum vlue = [ 0 ] T Beuse 0 + we my rewrite s = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, epressed s = e iδ zγ θˆ0 were z is te rottion opertor round te deined s zγ = [ e iγ/ 0 0 e iγ/ ] We n inore te term e iδ sine it s no oservle nd tereore we n eetively write = zγ θˆ0 see Fiure 4 Tis on s s ˆ0 / / / / Fiure 3: Quntum tree-input multipleer 0 Fiure : Blo spere representtion Quntum iruit perormin = [γ] ˆ0 \ G G G G ˆ0 \ θ zγ Fiure : sd Te inl tored orm resultin rom q-pply s te orm = γ [ γ [ [ γˆ0 ] ] ] were is te input vetor Sine untions i only te vlues ˆ0 nd ˆ or sis input vetors, it n e seen tt n lso e represented s = [γ + γ + + γ] ˆ0 were i vlues re rerded s rel vlues ˆ0 0 nd ˆ Lets deine te rel vlued untion γ s γ = γ + γ + + γ Consequently, untion n e represented s = [γ] ˆ0 Te struture o te syntesized iruit n e represented s Fiure Note tt G is te inverse untion o G wit rerd to Te rit portion o te iruit is needed only i it is required tt quits ssoited wit input lines mintin teir initil vlue To lriy te roles o G nd G, it will e eneiil to ompre tis iruit wit te tree-input multipleer iruit = s + s syntesized y te q-tor loritm in Fiure 3 I insted o ˆ0, noter quntum vlue q is used in tis iruit s te initil vlue or te input, ten te resultin iruit will implement te ollowin untion = [γ] q Now we enerlize te syntesis ppro or syntesizin quntum untions tt or iven sis input vetors enerte enerl quntum vlue = [ 0 ] T Beuse 0 + =, we my rewrite s = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, n e epressed s = e iδ zγθˆ0 were z is te rottion opertor round te Z is deined s zγ = [ e iγ/ 0 0 e iγ/ ] We n inore te term e iδ sine it s no oservle eets [] nd tereore we n eetively write = zγθˆ0 see Fiure 4 Tis onept n s s ˆ0 / / / / Fiure 3: Quntum tree-input multipleer 0 Fi 7 Quntum iruit perormin = γˆ0 Quntum 3-input multipleer Dsed oes represent G, G, nd γ in Only rottion nles re reported or θ tes Quntum iruit perormin = zγ θˆ0 iruit n e represented s Fi 7 In tis iure, G is iruit tt onstruts γ nd G is te inverse o G Note tt G sould e used only i one wnts to eep input lines unned To lriy te roles o G nd G, see te 3-input multipleer iruit = s + s syntesized y te tor loritm in Fi 7 I insted o ˆ0, noter quntum vlue q is used in tis iruit s te initil vlue or te input, te resultin iruit implements = [γ] q Te onstnt nill reister in Fi 7 my not e neessry in some se For emple, te ontrolled rottion wit ontrol quit nd tret ˆ0 enertes s te seond output nd te use o te ontrolled rottion in tis se is unneessry ie, ˆ0 = Setion 6 sows severl emples Now onsider iven untion tt or iven sis input vetors enertes enerl vlue = [ 0 ] T Sine 0 + =, we my rewrite s: = e iδ [ e iγ/ os θ ie iγ/ sin θ ] T Hene, n e epressed s = e iδ z γ θˆ0 were z is te rottion opertor round te z is We n inore te lol pse e iδ sine it s no oservle eets [] Tereore, one n eetively write = z γ θˆ0 Note tt z γ θˆ0 results rom θ rottion o ˆ0 round te is ollowed y γ rottion round te z is in te Blo spere Te quntum iruit or = z γ θˆ0 n e syntesized s: Syntesize = θˆ0 y usin te tor loritm Syntesize = z γˆ0 y usin te tor loritm Csde te resultin iruits s depited in Fi 7 In tis iure, G nd G re or nd, respetively Aordinly, G nd G re te inverse iruits o G nd G 6 esults Multiple-ontrol Tooli te Consider 4-input Tooli te in Fi 8 nd te DD o te tret output in Fi 8 wit vrile orderin < < < d Comprin te DD o s wit te enerl DD struture in Fi 6 revels tt vrile orresponds to v Additionlly, r-de=, α = 0 nd α = wi result in γ = / Teorem 7 7 One my set α = nd α = 0 Tis omintion enertes dierent iruit wit te sme untionlity

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

MATHEMATICS PAPER & SOLUTION

MATHEMATICS PAPER & SOLUTION MATHEMATICS PAPER & SOLUTION Code: SS--Mtemtis Time : Hours M.M. 8 GENERAL INSTRUCTIONS TO THE EXAMINEES:. Cndidte must write first is / er Roll No. on te question pper ompulsorily.. All te questions re

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Qualitative analysis of complex modularized fault trees using binary decision diagrams

Qualitative analysis of complex modularized fault trees using binary decision diagrams Louhorouh University Institutionl Repository Qulittive nlysis o omplex modulrized ult trees usin inry deision dirms This item ws sumitted to Louhorouh University's Institutionl Repository y the/n uthor.

More information

The tangent line and the velocity problems. The derivative at a point and rates of change. , such as the graph shown below:

The tangent line and the velocity problems. The derivative at a point and rates of change. , such as the graph shown below: Cpter 3: Derivtives In tis cpter we will cover: 3 Te tnent line n te velocity problems Te erivtive t point n rtes o cne 3 Te erivtive s unction Dierentibility 3 Derivtives o constnt, power, polynomils

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Pythagorean Theorem and Trigonometry

Pythagorean Theorem and Trigonometry Ptgoren Teorem nd Trigonometr Te Ptgoren Teorem is nient, well-known, nd importnt. It s lrge numer of different proofs, inluding one disovered merin President Jmes. Grfield. Te we site ttp://www.ut-te-knot.org/ptgors/inde.stml

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Computer Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Section 2.1 Special Right Triangles

Section 2.1 Special Right Triangles Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Mjor: All Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

4.3 The Sine Law and the Cosine Law

4.3 The Sine Law and the Cosine Law 4.3 Te Sine Lw nd te osine Lw Te ee Tower is te tllest prt of nd s rliment uildings. ronze mst, wi flies te ndin flg, stnds on top of te ee Tower. From point 25 m from te foot of te tower, te ngle of elevtion

More information

A Differential Approach to Inference in Bayesian Networks

A Differential Approach to Inference in Bayesian Networks Dierentil pproh to Inerene in Byesin Networks esented y Ynn Shen shenyn@mi.pitt.edu Outline Introdution Oeriew o lgorithms or inerene in Byesin networks (BN) oposed new pproh How to represent BN s multi-rite

More information

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as Dte: 6.1 Lw of Sines Syllus Ojetie: 3.5 Te student will sole pplition prolems inoling tringles (Lw of Sines). Deriing te Lw of Sines: Consider te two tringles. C C In te ute tringle, sin In te otuse tringle,

More information

Qubit and Quantum Gates

Qubit and Quantum Gates Quit nd Quntum Gtes Shool on Quntum omputing @Ygmi Dy, Lesson 9:-:, Mrh, 5 Eisuke Ae Deprtment of Applied Physis nd Physio-Informtis, nd REST-JST, Keio University From lssil to quntum Informtion is physil

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Boolean Algebra cont. The digital abstraction

Boolean Algebra cont. The digital abstraction Boolen Alger ont The igitl strtion Theorem: Asorption Lw For every pir o elements B. + =. ( + ) = Proo: () Ientity Distriutivity Commuttivity Theorem: For ny B + = Ientity () ulity. Theorem: Assoitive

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

arxiv: v1 [quant-ph] 2 Apr 2007

arxiv: v1 [quant-ph] 2 Apr 2007 Towrds Miniml Resoures of Mesurement-sed Quntum Computtion riv:0704.00v1 [qunt-ph] Apr 007 1. Introdution Simon Perdrix PPS, CNRS - niversité Pris 7 E-mil: simon.perdrix@pps.jussieu.fr Astrt. We improve

More information

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames Visuliing Quternions Andrew J. Hnson Computer Siene Deprtment Indin Universit Siggrph Tutoril GRAND PLAN I: Fundmentls of Quternions II: Visuliing Quternion Geometr III: Quternion Frmes IV: Clifford Algers

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Topic 6b Finite Difference Approximations

Topic 6b Finite Difference Approximations /8/8 Course Instructor Dr. Rymond C. Rump Oice: A 7 Pone: (95) 747 6958 E Mil: rcrump@utep.edu Topic 6b Finite Dierence Approximtions EE 486/5 Computtionl Metods in EE Outline Wt re inite dierence pproximtions?

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

The tangent line and the velocity problems. The derivative at a point and rates of change. , such as the graph shown below:

The tangent line and the velocity problems. The derivative at a point and rates of change. , such as the graph shown below: Cpter : Derivtives In tis cpter we will cover: Te tnent line n te velocity problems Te erivtive t point n rtes o cne Te erivtive s unction Dierentibility Derivtives o constnt, power, polynomils n eponentil

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities Appendi Prtil dishrges. Reltionship Between Mesured nd Atul Dishrge Quntities A dishrging smple my e simply represented y the euilent iruit in Figure. The pplied lternting oltge V is inresed until the

More information

Timing-driven N-way Decomposition

Timing-driven N-way Decomposition Timin-driven N-wy Deomposition Dvid Bneres Univ. Oert de Ctluny Brelon, Spin Jordi Cortdell Univ. Politèni de Ctluny Brelon, Spin Mike Kishinevsky Strtei CAD L, Intel Corp. Hillsoro, OR USA ABSTRACT Loi

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Chapter 3 Single Random Variables and Probability Distributions (Part 2) Chpter 3 Single Rndom Vriles nd Proilit Distriutions (Prt ) Contents Wht is Rndom Vrile? Proilit Distriution Functions Cumultive Distriution Function Proilit Densit Function Common Rndom Vriles nd their

More information

PHY3101 Modern Physics Lecture Notes Relativity 2. Relativity 2

PHY3101 Modern Physics Lecture Notes Relativity 2. Relativity 2 PHY30 Modern Pysis eture Notes Reltiity Reltiity Dislimer: Tese leture notes re not ment to reple te ourse textbook. Te ontent my be inomplete or een inurte. Some topis my be unler. Tese notes re only

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE V.S. Gordeev, G.A. Myskov Russin Federl Nuler Center All-Russi Sientifi Reserh Institute of Experimentl Physis (RFNC-VNIIEF)

More information

Chapter 5 Worked Solutions to the Problems

Chapter 5 Worked Solutions to the Problems Mtemtis for Queenslnd, Yer Mtemtis, Grpis lultor ppro 00. Kiddy olger, Rex oggs, Rond Frger, Jon elwrd pter 5 Worked Solutions to te Problems Hints. Strt by writing formul for te re of tringle. Note tt

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

= state, a = reading and q j

= state, a = reading and q j 4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

WITH the development of the high-performance computer,

WITH the development of the high-performance computer, Hig-ury Alternting Differene Seme for te Fourt-order Diffusion Eqution Geyng Guo Sujun Lü Astrt In tis pper igly urte prllel differene seme for te fourt-order diffusion eqution is studied. Bsed on group

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2 BOOLEAN METHODS Giovnni De Miheli Stnford University Boolen methods Exploit Boolen properties. { Don't re onditions. Minimiztion of the lol funtions. Slower lgorithms, etter qulity results. Externl don't

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

6.1 Definition of the Riemann Integral

6.1 Definition of the Riemann Integral 6 The Riemnn Integrl 6. Deinition o the Riemnn Integrl Deinition 6.. Given n intervl [, b] with < b, prtition P o [, b] is inite set o points {x, x,..., x n } [, b], lled grid points, suh tht x =, x n

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences. Lecture 3 Ferury 6 ern University of pplied ciences ev. f57fc 3. We hve seen tht circuit cn hve multiple (n) inputs, e.g.,, C, We hve lso seen tht circuit cn hve multiple (m) outputs, e.g. X, Y,, ; or

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Exercise 3 Logic Control

Exercise 3 Logic Control Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most well-known nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this

More information

The quantal algebra and abstract equations of motion. Samir Lipovaca

The quantal algebra and abstract equations of motion. Samir Lipovaca Keywords: quantal, alebra, abstrat Te quantal alebra and abstrat equations o motion Samir Lipovaa slipovaa@aolom Abstrat: Te quantal alebra ombines lassial and quantum meanis into an abstrat struturally

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

A Transformation Based Algorithm for Reversible Logic Synthesis

A Transformation Based Algorithm for Reversible Logic Synthesis 2.1 A Trnsformtion Bsed Algorithm for Reversile Logi Synthesis D. Mihel Miller Dept. of Computer Siene University of Vitori Vitori BC V8W 3P6 Cnd mmiller@sr.uvi. Dmitri Mslov Fulty of Computer Siene University

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

Higher categories and observables for generalised Turaev-Viro models

Higher categories and observables for generalised Turaev-Viro models Hiher teories nd oservles or enerlised Turev-Viro models Septemer 21, 2010 CLP 7 Cteories, Loi nd Phsis, Birminhm Ctherine Meusurer, Deprtment Mthemtik, Universität Hmur work with John W Brrett (in proress)

More information

Foundations of Computer Science Comp109

Foundations of Computer Science Comp109 Reding Foundtions o Computer Siene Comp09 University o Liverpool Boris Konev konev@liverpool..uk http://www.s.liv..uk/~konev/comp09 Prt. Funtion Comp09 Foundtions o Computer Siene Disrete Mthemtis nd Its

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers John Riley 9 Otober 6 Eon 4A: Miroeonomi Theory Homework Answers Constnt returns to sle prodution funtion () If (,, q) S then 6 q () 4 We need to show tht (,, q) S 6( ) ( ) ( q) q [ q ] 4 4 4 4 4 4 Appeling

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon LIP Lortoire de l Informtique du Prllélisme Eole Normle Supérieure de Lyon Institut IMAG Unité de reherhe ssoiée u CNRS n 1398 One-wy Cellulr Automt on Cyley Grphs Zsuzsnn Rok Mrs 1993 Reserh Report N

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

Algebra in a Category

Algebra in a Category Algebr in Ctegory Dniel Muret Otober 5, 2006 In the topos Sets we build lgebri strutures out o sets nd opertions (morphisms between sets) where the opertions re required to stisy vrious xioms. One we hve

More information

CLRA20-10 SPECIFICATIONS

CLRA20-10 SPECIFICATIONS CLRA0-0 PRODUCT DATA FEATURES Proteted inst overlod nd blokin. Mintenne-free eletril tutor for rotry vlves. Cler position inditor. Diret mountin on rotry vlves. Mnul opertion. Lre wirin binet. Lon lifetime.

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behior Composition in the Presene of Filure Sestin Srdin RMIT Uniersity, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Uni. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re t

More information

Hardware Verification 2IMF20

Hardware Verification 2IMF20 Hrdwre Verifition 2IMF20 Julien Shmltz Leture 02: Boolen Funtions, ST, CEC Course ontent - Forml tools Temporl Logis (LTL, CTL) Domin Properties System Verilog ssertions demi & Industrils Proessors Networks

More information

Solutions - Homework 1 (Due date: September 9:30 am) Presentation and clarity are very important!

Solutions - Homework 1 (Due date: September 9:30 am) Presentation and clarity are very important! ECE-238L: Computer Logi Design Fll 23 Solutions - Homework (Due dte: Septemer 2th @ 9:3 m) Presenttion nd lrity re very importnt! PROBLEM (5 PTS) ) Simpliy the ollowing untions using ONLY Boolen Alger

More information