GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

Size: px
Start display at page:

Download "GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames"

Transcription

1 Visuliing Quternions Andrew J. Hnson Computer Siene Deprtment Indin Universit Siggrph Tutoril GRAND PLAN I: Fundmentls of Quternions II: Visuliing Quternion Geometr III: Quternion Frmes IV: Clifford Algers I: Fundmentls of Quternions Motivtion D Frmes: Simple emple, omple numers. D Frmes: Rottions nd quternions. II: Visuliing Quternion Geometr The Spheril Projetion Trik: Visuliing unit vetors. Quternion Frmes Quternion Curves Quternion Splines III: Quternion Frmes Quternion Curves: generlie the Frenet Frme Quternion Frme Evolution Quternion Curve nd Surfe Optimition IV: Clifford Algers Clifford Algers: Generlie quternion struture to N-dimensions Refletions nd Rottions: New ws of looking t rottions Pin(N), Spin(N), O(N), nd SO(N)

2 Visuliing Quternions Prt I: Fundmentls of Quternions Andrew J. Hnson Indin Universit Prt I: OUTLINE Motivtion D Frmes: Simple emple, omple numers. D Frmes: Rottions nd quternions. 8 Motivtion Quternion methods re now ommonple in grphis. Quternions re ver geometri, ut we seldom ttempt to visulie their properties geometrill. Bsi Issues Bsi ft numer : Rottion mtries re Coordinte Frme Aes. Bsi ft numer : Rottion mtries form groups, whih hve geometri properties. Tht s going to e our jo tod! 9 Tsk vs Strteg Our tsk: Understnd Rottions. Rottions don t just t on geometr, rottions re geometr. Our strteg: the geometr should help us to visulie the properties of rottions. Simple Emple: D Rottions D rottions ) geometri origin for omple numers. Comple numers re speil suspe of quternions. Thus D rottions introdue us to quternions nd their geometri mening.

3 Frmes in D Frmes in D The tngent nd norml to D urve move ontinuousl long the urve: The tngent nd norml to D urve move ontinuousl long the urve: N^ T^ N^ T^ Frmes in D The tngent nd norml to D urve move ontinuousl long the urve: Frme Mtri in D This motion is desried t eh point (or time) the mtri: N^ T^ R () h ^T ^N i os, sin sin os : Another D Frme If we did not know out os + sin, we might represent the frme differentl, e.g., s: R (A; B) with the onstrint A + B. A,B B A : The Belt Trik: Is There Prolem? Demonstrtion: Rottions wnt to e douled to get k where ou strted. See: Hrt, Frnis, nd Kuffmn. 8

4 Hlf-Angle Trnsform: R () Hlf-Angle Trnsform: A Fi for the Prolem? os, sin, os sin os sin os, sin A Fi for the Prolem? Or, with os(), sin(), (i.e., A,, B ), we ould prmeterie s: R (; ) where orthonormlit implies,,, : 9 ( + ) whih redues k to +. Frme Evolution in D Hlf-Angle Trnsform: So the pir (; ) provides n odd doule-vlued prmeterition of the frme: h ^T ^N i,,, : where (; ) is preisel the sme frme s (,;,). Emine time-evolution of D frme (on our w to D): First in (t) oordintes: h i ^T ^N os, sin sin os Differentite to find frme equtions: _^T(t) + ^N : _^N(t),^T ; where (t) ddt is the urvture. Frme Evolution in (; ): Frme Evolution in D Rerrnge to mke vetor mtri: _^T(t) _^N(t) +(t),(t) ^T(t) ^N(t) Using the sis (^T; ^N) we hve Four equtions with Three onstrints from orthonormlit, for One true degree of freedom. Mjor Simplifition ours in (; ) oordintes!! _^T _, + _,

5 Frme Evolution in (; ): But this formul for _^T is just ^N, where or ^N,, ^N,,,, D Quternion Frmes! Rerrnging terms, oth _^T nd _^N eqns redue to _, _ + This is the squre root of frme equtions. D Quternions... So one eqution in the two quternion vriles (; ) with the onstrint + ontins oth the frme equtions _^T + ^N _^N,^T ) this is muh etter for omputer implementtion, et. Rottion s Comple Multiplition If we let ( + i) ep (i ) we see tht rottion is omple multiplition! Quternion Frmes in D re just omple numers, with Evolution Eqns derivtive of ep (i )! 8 This is the mirle: Rottion with no mtries! + i e i represents rottions more niel thn the mtries R(). ( +) + i )( + i) e i( A + ib where if we wnt the mtri, we write: R( )R()R( + ) A, B,AB AB A, B The Alger of D Rottions The lger orresponding to D rottions is es: just omple multiplition!! ( ; ) (; ) ( + i )( + i), + i( + ) (, ; + ) (A; B) 9

6 The Geometr of D Rottions (; ) with + is point on the unit irle, lso written S. Rottions re just omple multiplition, nd tke ou round the unit irle like this: The Geometr of D Rottions (; ) with + is point on the unit irle, lso written S. Rottions re just omple multiplition, nd tke ou round the unit irle like this: ( -, + ) (, ) ( -, + ) (, ) + / (,) / (,) + / (,) / (,) The Geometr of D Rottions (; ) with + is point on the unit irle, lso written S. Rottions re just omple multiplition, nd tke ou round the unit irle like this: ( -, + ) + (, ) / / (,) (,) Quternion Frmes In D, repet our trik: tke squre root of the frme, ut now use quternions: Write down the D frme. Write s doule-vlued qudrti form. Rewrite linerl in the new vriles. The Geometr of D Rottions The Geometr of D Rottions We egin with si ft: Euler theorem: ever D frme n e written s spinning out fied is ^n, the eigenvetor of the rottion mtri: n ^ We egin with si ft: Euler theorem: ever D frme n e written s spinning out fied is ^n, the eigenvetor of the rottion mtri: n ^

7 The Geometr of D Rottions We egin with si ft: Euler theorem: ever D frme n e written s spinning out fied is ^n, the eigenvetor of the rottion mtri: n ^ Quternion Frmes... Mtri giving D rottion out is ^n: R (; ^n) + (n ) (, ) n n (, ), sn n n (, ) + sn n n (, ) + sn + (n ) (, ) n n (, ), sn n n (, ), sn n n (, ) + sn + (n ) (, ) where os, s sin, nd ^n ^n. 8 Quternion Frme Prmeters To find nd is ^n, givenn rottion mtri or frme M, we need two steps: ) solve for. TrM + os M, M t,n sin +n sin +n sin,n sin,n sin +n sin Quternions nd Rottions Some set of es n e hosen s the identit mtri: ) solve for ^n s long s. 9 Quternions nd Rottions Quternions nd Rottions An ritrr set of es forms the olumns of n orthogonl rottion mtri: An ritrr set of es forms the olumns of n orthogonl rottion mtri:

8 Quternions nd Rottions Quternions nd Rottions An ritrr set of es forms the olumns of n orthogonl rottion mtri: An ritrr set of es forms the olumns of n orthogonl rottion mtri: Quternions nd Rottions B Euler s theorem, tht mtri hs n eigenvetor ^n, nd so is representle s single rottion out ^n pplied to the identit: Rottions nd Qudrti Polnomils Rememer R (),,,? Wht if we tr mtri R insted of? q + q, q, q q q, q q q q + q q q q + q q q, q + q, q q q, q q q q, q q q q + q q q, q, q + q ^ n Hint: set q q or n other (i j) pir to see fmilir sight! Quternions nd Rottions Wh does this mtri prmeterie rottion? Beuse Columns of R (q ; q ; q ; q ) re orthogonl: ol i ol j for i j Wht is LENGTH of -vetor olumn? ol i ol i (q + q + q + q ) Quternions nd Rottions... So if we require q + q + q + q, orthonormlit is ssured nd R (q ; q ; q ; q ) is rottion. This implies q is point on -sphere in D. NOTE: q ),q gives sme R (). 8

9 Quternions nd Rottions... HOW does q (q ; q) represent rottions? Quternions nd Rottions... LOOK t R (; ^n)? R (q ; q ; q ; q ) NOTICE: Choosing q(; ^n) (os ; ^n sin ) WHAT hppens if ou do TWO rottions? EXAMINE the tion of two rottions R(q )R(q) R(Q) EXPRESS in qudrti forms in q nd LOOK FOR n nlog of omple multiplition: mkes the R eqution n IDENTITY. 9 Quternions nd Rottions... RESULT: the following multiplition rule q q Q ields etl the orret rottion mtri R(Q): Q h q q i Q h q q i Q h q q i Q h q q i q q, q q, q q, q q q q + q q + q q, q q q q + q q + q q, q q q q + q q + q q, q q Alger of Quternions D Rottions! D rottion mtries re represented omple multiplition D rottion mtries re represented quternion multiplition This is Quternion Multiplition. Algeri D/D Rottions Therefore in D, the D omple multiplition ( ; ) (; ) (, ; + ) is repled D quternion multiplition: q q (q q q, qq, qq, qq ; q + q q + q q, q q ; q q + qq + qq, qq ; q q + q q + q q, q q ) Alger of Quternions... The is esier to rememer dividing it into the slr piee q nd the vetor piee ~q: q q (q q, q ~ ~q; q ~q + q q ~ + q ~ ~q)

10 Quternions nd Rottions Another mirle: let us generlie the D eqution Quternions nd Rottions... How? We set + i e i q (q ; q ; q ; q ) q + iq + jq + kq e (I^n) Then if we tke i j k,, nd i j k (li), quternion multiplition rule is utomti! ) q q + iq + jq + kq is the stndrd representtion for quternion, nd we n lso use Puli mtries in ple of (i; j; k) if we wnt. with q os() nd ~q ^n sin() nd I (i; j; k). Ke to Quternion Intuition Fundmentl Intuition: We know q os(); ~q ^n sin() We lso know tht n oordinte frme M newritten s M R(; ^n). Therefore ~q points etl long the is we hve to rotte round to go from identit I to M, nd the length of ~q tells us how muh to rotte. Summrie Quternion Properties Unit four-vetor. Tke q (q ; q ; q ; q ) (q ; ~q) to oe onstrint q q. Multiplition rule. The quternion produt q nd p is q p (q p, ~q ~p; q ~p + p ~q + ~q ~p), or, lterntivel, [q p] [q p] [q p] [q p] q p, q p, q p, q p q p + q p + q p, q p q p + q p + q p, q p q p + q p + q p, q p 8 Quternion Summr... Quternion Summr... Rottion Correspondene. The unit quternions q nd,q orrespond to single D rottion R : q + q, q, q q q, q q q q + q q q q + q q q, q + q, q q q, q q q q, q q q q + q q q, q, q + q Rottion Correspondene. Let q (os ; ^n sin ) ; with ^n unit -vetor, ^n ^n. Then R(; ^n) is usul D rottion in the plne? to ^n. Inversion. An mtri R n e inverted for q up to sign. Crefull tret singulrities! Cn hoose sign, e.g., lol onsisten, to get ontinuous frmes. 9

11 SUMMARY Comple numers represent D frmes. Comple multiplition represents D rottion. Quternions represent D frmes. Quternion multiplition represents D rottion.

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

The Ellipse. is larger than the other.

The Ellipse. is larger than the other. The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)

More information

Introduction to Algebra - Part 2

Introduction to Algebra - Part 2 Alger Module A Introduction to Alger - Prt Copright This puliction The Northern Alert Institute of Technolog 00. All Rights Reserved. LAST REVISED Oct., 008 Introduction to Alger - Prt Sttement of Prerequisite

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

] dx (3) = [15x] 2 0

] dx (3) = [15x] 2 0 Leture 6. Double Integrls nd Volume on etngle Welome to Cl IV!!!! These notes re designed to be redble nd desribe the w I will eplin the mteril in lss. Hopefull the re thorough, but it s good ide to hve

More information

y z A left-handed system can be rotated to look like the following. z

y z A left-handed system can be rotated to look like the following. z Chpter 2 Crtesin Coördintes The djetive Crtesin bove refers to René Desrtes (1596 1650), who ws the first to oördintise the plne s ordered pirs of rel numbers, whih provided the first sstemti link between

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

Ellipses. The second type of conic is called an ellipse.

Ellipses. The second type of conic is called an ellipse. Ellipses The seond type of oni is lled n ellipse. Definition of Ellipse An ellipse is the set of ll points (, y) in plne, the sum of whose distnes from two distint fied points (foi) is onstnt. (, y) d

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a. Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

Reflection Property of a Hyperbola

Reflection Property of a Hyperbola Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY MD THREE DIMENSIONAL GEOMETRY CA CB C Coordintes of point in spe There re infinite numer of points in spe We wnt to identif eh nd ever point of spe with the help of three mutull perpendiulr oordintes es

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of Worsheet # th Nme:. Sole the folloing sstems of liner equtions. he proe tht the solutions forms suspe of ) ). Find the neessr nd suffiient onditions of ll onstnts for the eistene of solution to the sstem:.

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

8.3 THE HYPERBOLA OBJECTIVES

8.3 THE HYPERBOLA OBJECTIVES 8.3 THE HYPERBOLA OBJECTIVES 1. Define Hperol. Find the Stndrd Form of the Eqution of Hperol 3. Find the Trnsverse Ais 4. Find the Eentriit of Hperol 5. Find the Asmptotes of Hperol 6. Grph Hperol HPERBOLAS

More information

Section - 2 MORE PROPERTIES

Section - 2 MORE PROPERTIES LOCUS Section - MORE PROPERTES n section -, we delt with some sic properties tht definite integrls stisf. This section continues with the development of some more properties tht re not so trivil, nd, when

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Exercise sheet 6: Solutions

Exercise sheet 6: Solutions Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Chapter 3 Single Random Variables and Probability Distributions (Part 2) Chpter 3 Single Rndom Vriles nd Proilit Distriutions (Prt ) Contents Wht is Rndom Vrile? Proilit Distriution Functions Cumultive Distriution Function Proilit Densit Function Common Rndom Vriles nd their

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

M344 - ADVANCED ENGINEERING MATHEMATICS

M344 - ADVANCED ENGINEERING MATHEMATICS M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

m A 1 1 A ! and AC 6

m A 1 1 A ! and AC 6 REVIEW SET A Using sle of m represents units, sketh vetor to represent: NON-CALCULATOR n eroplne tking off t n ngle of 8 ± to runw with speed of 6 ms displement of m in north-esterl diretion. Simplif:

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

5.4. The Fundamental Theorem of Calculus. 356 Chapter 5: Integration. Mean Value Theorem for Definite Integrals

5.4. The Fundamental Theorem of Calculus. 356 Chapter 5: Integration. Mean Value Theorem for Definite Integrals 56 Chter 5: Integrtion 5.4 The Fundmentl Theorem of Clculus HISTORICA BIOGRAPHY Sir Isc Newton (64 77) In this section we resent the Fundmentl Theorem of Clculus, which is the centrl theorem of integrl

More information

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms Core Logrithms nd eponentils Setion : Introdution to logrithms Notes nd Emples These notes ontin subsetions on Indies nd logrithms The lws of logrithms Eponentil funtions This is n emple resoure from MEI

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Believethatyoucandoitandyouar. Mathematics. ngascannotdoonlynotyetbelieve thatyoucandoitandyouarehalfw. Algebra

Believethatyoucandoitandyouar. Mathematics. ngascannotdoonlynotyetbelieve thatyoucandoitandyouarehalfw. Algebra Believethtoucndoitndour ehlfwtherethereisnosuchthi Mthemtics ngscnnotdoonlnotetbelieve thtoucndoitndourehlfw Alger therethereisnosuchthingsc nnotdoonlnotetbelievethto Stge 6 ucndoitndourehlfwther S Cooper

More information

Fundamentals of Linear Algebra

Fundamentals of Linear Algebra -7/8-797 Mchine Lerning for Signl rocessing Fundmentls of Liner Alger Administrivi Registrtion: Anone on witlist still? Homework : Will e hnded out with clss Liner lger Clss - Sep Instructor: Bhiksh Rj

More information

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y LOCUS 50 Section - 4 NORMALS Consider n ellipse. We need to find the eqution of the norml to this ellipse t given point P on it. In generl, we lso need to find wht condition must e stisfied if m c is to

More information

Forces on curved surfaces Buoyant force Stability of floating and submerged bodies

Forces on curved surfaces Buoyant force Stability of floating and submerged bodies Stti Surfe ores Stti Surfe ores 8m wter hinge? 4 m ores on plne res ores on urved surfes Buont fore Stbilit of floting nd submerged bodies ores on Plne res Two tpes of problems Horizontl surfes (pressure

More information

Chapters Five Notes SN AA U1C5

Chapters Five Notes SN AA U1C5 Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,

More information

MATHEMATICS AND STATISTICS 1.6

MATHEMATICS AND STATISTICS 1.6 MTHMTIS N STTISTIS 1.6 pply geometri resoning in solving prolems ternlly ssessed 4 redits S 91031 inding unknown ngles When finding the size of unknown ngles in figure, t lest two steps of resoning will

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences Lecture 6 epresenttions epresenttions TE52 - Electronics Fundmentls ugust 24 ern University of pplied ciences ev. c2d5c88 6. Integers () sign-nd-mgnitude representtion The set of integers contins the Nturl

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k The Double Integrl De nition of the Integrl Iterted integrls re used primrily s tool for omputing double integrls, where double integrl is n integrl of f (; y) over region : In this setion, we de ne double

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Parabola and Catenary Equations for Conductor Height Calculation

Parabola and Catenary Equations for Conductor Height Calculation ELECTROTEHNICĂ, ELECTRONICĂ, AUTOMATICĂ, 6 (), nr. 3 9 Prbol nd Ctenr Equtions for Condutor Height Clultion Alen HATIBOVIC Abstrt This pper presents new equtions for ondutor height lultion bsed on the

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

HOMEWORK FOR CLASS XII ( )

HOMEWORK FOR CLASS XII ( ) HOMEWORK FOR CLASS XII 8-9 Show tht the reltion R on the set Z of ll integers defined R,, Z,, is, divisile,, is n equivlene reltion on Z Let f: R R e defined if f if Is f one-one nd onto if If f, g : R

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Final Exam Review. [Top Bottom]dx =

Final Exam Review. [Top Bottom]dx = Finl Exm Review Are Between Curves See 7.1 exmples 1, 2, 4, 5 nd exerises 1-33 (odd) The re of the region bounded by the urves y = f(x), y = g(x), nd the lines x = nd x = b, where f nd g re ontinuous nd

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing

More information

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x). Mth 15 Fettermn/DeSmet Gustfson/Finl Em Review 1) Let f( ) = 10 5. Find nd simplif f( ) nd then stte the domin of f(). ) Let f( ) = +. Find nd simplif f(1) nd then stte the domin of f(). ) Let f( ) = 8.

More information

Exploring parametric representation with the TI-84 Plus CE graphing calculator

Exploring parametric representation with the TI-84 Plus CE graphing calculator Exploring prmetric representtion with the TI-84 Plus CE grphing clcultor Richrd Prr Executive Director Rice University School Mthemtics Project rprr@rice.edu Alice Fisher Director of Director of Technology

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

4.6 Numerical Integration

4.6 Numerical Integration .6 Numericl Integrtion 5.6 Numericl Integrtion Approimte definite integrl using the Trpezoidl Rule. Approimte definite integrl using Simpson s Rule. Anlze the pproimte errors in the Trpezoidl Rule nd Simpson

More information

are coplanar. ˆ ˆ ˆ and iˆ

are coplanar. ˆ ˆ ˆ and iˆ SML QUSTION Clss XII Mthemtis Time llowed: hrs Mimum Mrks: Generl Instrutions: i ll questions re ompulsor ii The question pper onsists of 6 questions divided into three Setions, B nd C iii Question No

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Fundamentals of Linear Algebra

Fundamentals of Linear Algebra -7/8-797 Mchine Lerning for Signl Processing Fundmentls of Liner Alger Administrivi Registrtion: Anone on witlist still? Homewor : Will pper over weeend Liner lger Clss Aug Instructor: Bhish Rj -7/8-797

More information

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle. Mth 3329-Uniform Geometries Leture 06 1. Review of trigonometry While we re looking t Eulid s Elements, I d like to look t some si trigonometry. Figure 1. The Pythgoren theorem sttes tht if = 90, then

More information

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx CHAPTER 0 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS 0.. PARAMETRIC FUNCTIONS A) Recll tht for prmetric equtions,. B) If the equtions x f(t), nd y g(t) define y s twice-differentile function of x, then t

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts.

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts. Frtions equivlent frtions Equivlent frtions hve the sme vlue ut they hve ifferent enomintors. This mens they hve een ivie into ifferent numer of prts. Use the wll to fin the equivlent frtions: Wht frtions

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

Review Exercises for Chapter 4

Review Exercises for Chapter 4 _R.qd // : PM Pge CHAPTER Integrtion Review Eercises for Chpter In Eercises nd, use the grph of to sketch grph of f. To print n enlrged cop of the grph, go to the wesite www.mthgrphs.com... In Eercises

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most well-known nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Counting intersections of spirals on a torus

Counting intersections of spirals on a torus Counting intersections of spirls on torus 1 The problem Consider unit squre with opposite sides identified. For emple, if we leve the centre of the squre trveling long line of slope 2 (s shown in the first

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Relations between a dual unit vector and Frenet vectors of a dual curve

Relations between a dual unit vector and Frenet vectors of a dual curve Kuwit J. Si. 4 () pp. 59-69, 6 Burk Şhiner *, Mehmet Önder Dept. of Mthemtis, Mnis Cell Byr University, Murdiye, Mnis, 454, Turkey * Corresponding uthor: burk.shiner@bu.edu.tr Abstrt In this pper, we generlize

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Waveguide Circuit Analysis Using FDTD

Waveguide Circuit Analysis Using FDTD 11/1/16 EE 533 Eletromgneti nlsis Using Finite Differene Time Domin Leture # Wveguide Ciruit nlsis Using FDTD Leture These notes m ontin oprighted mteril obtined under fir use rules. Distribution of these

More information