Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.


 Noah Thornton
 1 years ago
 Views:
Transcription
1 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we ll the tringle right tringle. In right tringle, the two sides of the tringle tht form the right ngle re lled the legs of the right tringle, nd the side of the tringle whih is opposite to the right ngle is lled the hypotenuse of the tringle. leg hypotenuse right ngle leg Right Tringle We re now redy to stte: The Pythgoren Theorem. In tringle whih hs sides of lengths, nd, if the sides of length nd form right ngle, then side lengths stisfy the following eqution: = 2. In words, the Pythgoren Theorem sys The squre of the hypotenuse is equl to the sum of the squres of the other two sides.
2 28 There re mny different explntions of why the Pythgoren Theorem is true. These explntions re lled proofs of the Pythgoren Theorem nd we will give them more ttention lter in this lesson. 1 Here we fous on pplitions of the Pythgoren Theorem. We now present three smple pplitions of the Pythgoren Theorem. In eh pplition, we will use the Pythgoren Theorem to find the unknown side length. When performing these lultions, we will py reful ttention to the units in whih the given dt is presented, nd we will oey the two Clultion Rules stted in Lesson 1. Applition m =? 3.3 m In the tringle shown ove, the lengths of two sides re given to the nerest tenth of meter. In this sitution Clultion Rule 2 tells us tht our finl nswer for side length should e expressed to the nerest tenth of meter. Aording to the Pythgoren Theorem: Hene, Using poket lultor, we find tht 2 = (3.3) 2 + (4.4) 2. = (3.3) 2 + (4.4) 2. (3.3) 2 + (4.4) 2 = 5.5 meters. In this lultion, we re fortunte. The nswer produed y the lultor requires no rounding. Hene, the solution to this prolem is: 1 Here re four wesites tht present vriety of proofs of the Pythgoren Theorem: The first site displys n esily understood nimted proof. The seond site ontins 43 different proofs. The third site views the proof in the first site from more sophistited perspetive tht revels the proof to e one of fmily of similr proofs. The fourth site gives rief history of the Theorem, speultion out how it ws disovered, nd referenes to other interesting sites.
3 29 = 5.5 m to the nerest tenth of meter. Applition 2. =? 19 in 8 in In the tringle shown ove, the lengths of two sides re given to the nerest inh. Thus, ording to Clultion Rule 2, our finl nswer for side length should e expressed to the nerest inh. Here, the Pythgoren Theorem implies tht Hene, Therefore, Using poket lultor, we find tht = = = 19 2 " " 8 2 = We round to the nerest inh, to otin the solution to this prolem: = 17 in to the nerest inh. Applition 3. =? = 1342 miles = 1980 miles to the nerest 10 miles In the tringle pitured ove, the lest urte mesurement is in units of 10 miles. Therefore, Clultion Rule 2 stipultes tht our finl nswer should e in units of 10 miles (even though one of the lengths is given in 1 mile units). The Pythgoren Theorem implies tht =
4 30 Notie tht we do not round the numer 1342 to 1340 even though our finl nswer must e in units of 10 miles. Here we re oeying Clultion Rule 1 whih tells us tht to preserve ury we should not do ny rounding until the end of the lultion. Hene, Using poket lultor, we find tht = " " = We round to the nerest 10 miles to otin the solution to this prolem: = 1460 miles to the nerest 10 miles. Ativity 1. Different groups should work on prolems ) nd ) elow nd report their solutions to the lss. The lss should disuss ny disrepnies in the solutions. In eh prolem, find the unknown side length. Be sure to oey the two Clultion Rules. ) ) m =? =? 14 in 8.6 m 9.2 in Next we present n illustrtion of how the Clultion Rules sve us from error. Suppose we re given right tringle in whih oth legs mesure.1 m to the nerest tenth of entimeter. Let us lulte the length of the hypotenuse of this right tringle. Clultion Rule 2 instruts us to ompute the length of the hypotenuse in units of tenths of entimeter. Aording to the Pythgoren Theorem the length of the hypotenuse is (.1) 2 + (.1) 2 = =.02 =.1414? 0.1 m 0.1 m
5 31 Hene, rounded to the nerest tenth of entimeter, the length of the hypotenuse of this right tringle is.1 m. During this omputtion, we oeyed oth Clultions Rules 1 nd 2. We didn t round during the lultion, ut we rounded t the end of the lultion to mke our nswer hve the sme degree of ury s the dt given t the eginning of the prolem. Suppose we hd disoeyed Clultion Rule 1 y rounding the quntity.02 to the nerest tenth of entimeter efore we ompleted the lultion y tking squre root. This would hnge.02 to.0. Then the lultion would eome: (.1) 2 + (.1) 2 = =.02.0 = 0. We would thus rrive t the onlusion tht the length of the hypotenuse of this right tringle is 0 m to the nerest tenth of entimeter. Sine the legs of this tringle re.1 m eh nd sine the hypotenuse of right tringle is lwys longer thn its legs, this is n surd onlusion. Morl: Don t rek the two Clultion Rules. Notie tht we hve not used the onept of signifint figures in the preeding pplitions of the Pythgoren Theorem. In Lesson 1 we hd dvised the use of signifint figures in lultions involving multiplition or division prtiulrly when input dt is expressed in different units. Pythgoren Theorem lultions involve squring whih is form of multiplition. So it is not unresonle to think tht it would e pproprite to use signifint figures in these lultions. However, the method of signifint figures is only rule of thum to void inury whih doesn t lwys produe optimlly urte results. It turns out tht Pythgoren Theorem pplitions re lultions in whih the method of signifint figures sometimes retes inury. So we dvise not using signifint figures in these kinds of lultions. We illustrte how the use of signifint figures n introdue inury y reexmining Applition 2 ove. In pplition 2 we onsider right tringle in whih the hypotenuse hs length 19 inhes nd one leg hs length 8 inhes, oth to the nerest inh. We wnt to estimte the length of the other leg. Clultion yields = =? 19 in 8 in , figure whih must e rounded ppropritely. Beuse the input dt for this prolem ws given to the nerest inh, we rounded to the nerest inh to get =
6 32 17 inhes. However, if we were to use the method of signifint figures, then euse one of the input dt 8 inhes hs only one signifint figure, we would onsequently round to one signifint figure, otining = 20 inhes. This estimte is oviously inorret euse the length of leg must lwys e less thn the length of the hypotenuse whih is 19 inhes. To get more preise ide out the inury of the estimte = 20 inhes, we perform n intervl nlysis on this prolem. Let represent the length of the leg whih is 8 inhes to the nerest inh, nd let represent the length of the hypotenuse 19 inhes to the nerest inh. Then nd tully lie in the following rnges: nd Sine = 2 " 2, then the smllest possile vlue of is nd the lrgest possile vlue of is Thus, lies in the rnge = " = = " = This rnge omfortly ontins our originl estimte, = 17. However, the estimte = 20 otin y using signifint figures lies well outside this rnge. The length of this rnge is = Hene, the estimte = 20 lies frther ove the upper end, 18, of the rnge thn the entire length of the rnge! Thus, the use of signifint figures in this lultion introdues signifint mount of inury. Morl: Don t use signifint figures in Pythgoren Theorem lultions. A Brief Review of Similr Tringles Two tringles T nd T re similr if there is orrespondene etween the sides of T nd the sides of T nd there is rel numer r > 0 lled sle ftor suh tht the length of eh side of T is equl to r times the length of the orresponding side of T. In the figure on the next pge, suppose tht tringle T with side lengths, nd is similr to tringle T with side lengths, nd so tht the side of T of length orresponds to the side of T of length, the side of T of length orresponds to the side of T of length nd the side of T of length orresponds to the side of T of length. Then there is sle ftor r > 0 suh tht = r, = r nd = r.
7 33 T T We oserve tht in this sitution, the similrity of tringles T nd T n e expressed without expliitly mentioning the sle ftor r. This is euse the rtios ", " nd re ll equl to the sle ftor r. Hene the three equtions " = r, = r nd = r n e expressed without mentioning the sle ftor r y writing the equtions " = " = ". Furthermore, y rossmultiplying these equtions n e trnsformed into the equtions = ", = " nd = ". Thus, the similrity of tringles T nd T n e expressed y ny one of the following three different fmilies of similrity equtions: 1) = r, = r nd = r. 2) " = " = ". 3) = ", = " nd = ". In two of these fmilies of similrity equtions, the sle ftor doesn t pper. The importnt lesson for student onfronted with prolem involving similr tringles is: the student should use the fmily of similrity equtions tht provides the most help with the solving the prolem t hnd. The knk of hoosing the most helpful fmily of similrity equtions to solve prtiulr similr tringles prolem is prt of the rt of prolem solving. We mke seond oservtion out this sitution. The lengths, nd of the sides of tringle T must ll e expressed in the sme units. Similrly, the lengths, nd of the sides of tringle T must ll e expressed in the sme units. However,
8 34, nd n e expressed in different units from, nd! The three fmilies of similrity equtions will vlidly express the similrity of tringles T nd T even if the side lengths of T re mesured in different units thn the side lengths of T. There is no need to onvert the side lengths of T nd T to ommon units of mesure to use the similrity equtions. We will solve prolem elow whih illustrtes this oservtion; in this prolem the side lengths of T re expressed in inhes, the side lengths of T re expressed in entimeters, nd the prolem is solved without ever onverting to ommon unit of mesure. Aording to our definition, the similrity of two tringles depends on the rtios of side lengths of the two tringles. There is surprising nd useful geometri ft (or theorem) tht whih llows us to detet the similrity of two tringles, not from the lengths of their sides, ut insted from the mesures of their ngles. This theorem, whih we ll the Angle Theorem for Similr Tringles sys tht if two ngles in tringle T hve the sme mesure (i.e. size) s two ngles in tringle T, then tringles T nd T re similr. We stte this theorem more preisely: The Angle Theorem for Similr Tringles. Suppose T is tringle with side lengths, nd nd T is tringle with side lengths, nd. If the ngle in tringle T tht is opposite the side of length hs the sme mesure s the ngle in tringle T tht is opposite the side of length, nd the ngle in tringle T tht is opposite the side of length hs the sme mesure s the ngle in tringle T tht is opposite the side of length, then tringles T nd T re similr, nd, in prtiulr, there is sle ftor r > 0 suh tht = r, = r nd = r. (Then, of ourse, the other two fmilies of similrity equtions lso hold: " = " = " nd = ", = " nd = ".) T T We will now show how pply this theorem together with the two Clultion Rules to solve prolem. In the figure on the next pge, suppose two ngles in the tringle T on the left hve the sme mesures s two ngles in the tringle T on the
9 35 right (s indited). The lengths of two sides of T nd one side of T re given. Find the side length leled in tringle T in entimeters. =? 13 inhes T T 18 inhes 6.89 m Beuse two ngles in T hve the sme mesures s two ngles in T, the Angle Theorem for Similr Tringles implies tht T nd T re similr in suh wy tht the following eqution holds. Solving this eqution for, we get " 6.89 = = 6.89 x Using lultor, we evlute the expression on the right side of this eqution. Following Clultion Rule 1, we don t round t ny point during this lultion. For exmple, we don t lulte the frtion 13/18 nd round it efore multiplying y This lultion gives us: = Hving ompleted this lultion, we round the finl nswer following Clultion Rule 2. This lultion is n pproprite ple to use signifint figures, euse the input dt is expressed in different units (inhes nd entimeters) nd the lultion involves division. Our vlue for n e no more urte thn the lest urte input. Sine the two inputs 13 inhes nd 18 inhes hve only two signifint figures, then we should round our vlue for to hve only two signifint figures. This gives us: = 5.0 entimeters (to the nerest tenth of entimeter). Oserve tht the side lengths of T re expressed in inhes, the side lengths of T re expressed in entimeters, nd the prolem is solved without onverting the lengths to ommon unit of mesure.
10 36 Ativity 2. Eh group should work on the prolem stted elow nd report its solution to the lss. The lss should disuss ny disrepnies in the solutions. Be sure to oey the two Clultion Rules. As indited in the figure elow, two ngles in the tringle T on the left hve the sme mesures s two ngles in the tringle T on the right. The lengths of one side of T nd two sides of T re given. Find the side length leled in tringle T in inhes. 1.3 feet 1.83 feet 6.45 inhes =? T T
11 37 A Proof of the Pythgoren Theorem Ativity 3. Groups should work on the following prolem. This tivity is designed to led you to proof of the Pythgoren Theorem. Suppose you re given the tringle shown here whih hs sides of length, nd suh tht the sides of length nd form right ngle. The following tivity is designed to led you to proof of the eqution = 2. Below re two squres of the sme re, eh with sides of length +. We ll the squre on the left Big Squre 1 nd the squre on the right Big Squre 2. Big Squre 1 Big Squre 2 On the next pge re 11 figures: 8 opies of the ove tringle together with 3 squres, one of whih hs sides of length, nother of whih hs sides of length, nd the third of whih hs sides of length. Photoopy this pge onto stiffer pper if possile. Cut out the 11 figures in the photoopy nd rrnge them so tht they extly over the Big Squres 1 nd 2 without overlpping. Furthermore, over Big Squre 1
12 38 with 4 tringles nd the two squres of side lengths nd, nd over Big Squre 2 with 4 tringles nd the squre of side length. Compre the sum of the res of the figures overing Big Squre 1 to the sum of the res of the figures overing Big Squre 2. From this omprison, prove the eqution = 2.
13 39 Homework Prolem 1. This prolem hs prts ) through k). In prts ) through h), find the unknown side lengths. Be sure to oey the two Clultion Rules in ll prts of the prolem. ) ) 15.0 m =? =? 5.05 in 8.0 m 3.03 in ) d).01 km.02 km =? =? = 25 m = 60 m to the nerest 10m e) f) 3.5 ft 3.70 ft m x =? z =? m g) h) =?.5 m mi =?.16 m mi
14 40 i) The distne from the enter of the Erth to the enter of the Sun is 93,000,000 miles to the nerest 100,000 miles. The rdius of the Erth is 4000 miles to the nerest 100 miles. P is point on the surfe of the Erth with the property tht the line joining the enter of the Erth to P is perpendiulr to the line joining the enters of the Erth nd the Sun. How fr is P from the enter of the Sun? P 4000 mi? Sun Erth 93,000,000 mi j) A ldder lens ginst wll. The foot of the ldder is 3 feet 5 1 / 4 inhes from the ottom of the wll to the nerest qurter of n inh. The ldder is 12 feet long to the nerest inh. How high ove the ground is the top of the ldder? k) On piee of grph pper drw the x nd y xes nd lel units on these xes so tht you n plot the points A = (17,2), B = (2,19) nd C = (3,11) on the piee of pper. Clulte the perimeter of the tringle with verties A, B nd C to the nerest tenth of unit. Homework Prolem 2. In prts ) nd ) of this prolem, two ngles in the tringle on the left hve the sme mesures s two ngles in the tringle on the right (s indited). Find the unknown side lengths. Be sure to oey the two Clultion Rules. ) 2.7 in 237 mi =? 320 mi
15 41 ) 75 feet =? 98 feet.0583 m Homework Prolem 3. ) Refer to Ativity 3. Write out nd hnd in detiled nd reful explntion (i.e., proof) of why = 2. You my use fts out res of squres nd tringles in your proof. ) Adpt this rgument to the tringle with sides of length x, y nd z shown elow. In other words, drw two squres of side x + y nd sudivide them into squres nd tringles so tht the proof desried ove for the tringle with side lengths, nd n e modified to yield proof tht x 2 + y 2 = z 2. z y x Homework Prolem 4. The gol of this prolem is lso to led you to proof of the Pythgoren Theorem. This proof is different from the one presented in Ativity 3. Agin suppose you re given the tringle shown here whih hs sides of length, nd suh tht the sides of length nd form right ngle.
16 42 ) In the figure elow, we eret three squres on the sides of this tringle. One squre hs side length, the seond hs side length, nd the third hs side length. The squre of side length is sudivided y dotted lines. Photoopy this digrm onto stiffer pper if possile. Cut out the squre of side length nd ut it prt long the dotted lines to otin five piees. Show tht the five piees n e rrnged to over the two squres of side lengths nd with no overlp. Argue tht this proves = 2. ) Adpt this rgument to the tringle with sides of length x, y nd z shown elow. In other words, eret 3 squres on the sides of this tringle nd show how to sudivide the squre of side length z into five piees tht will extly over the two squres of side lengths x nd y. z y x
17 43 Homework Prolem 5. This prolem leds to yet nother proof of the Pythgoren Theorem. This proof is similr to the previous one. Agin strt with the tringle shown here with side lengths, nd nd right ngle etween the sides of length nd. ) Agin, in the figure elow, we eret three squres on the sides of this tringle. This time the ig squre with side length is sudivided y four dotted line segments. These dotted line segments re determined y the rule tht they re either horizontl or vertil nd one endpoint of eh dotted line segment is the midpoint of side of the ig squre. Agin, photoopy this digrm onto stiffer pper if possile, nd ut the ig squre prt long the dotted line segments to otin five piees, nd show tht the five piees n e rrnged to over the two smller squres with no overlp. Argue tht this proves = 2.
18 44 ) Adpt this rgument to the tringle with sides of length x, y nd z shown elow. z y x Homework Prolem 6. The gol of this prolem is to led you to proof of the Pythgoren Theorem tht ws known to the nient Chinese out 1000 BC. (Pythgors lived out 500 BC.) Suppose you re given the tringle T shown here whih hs sides of length, nd suh tht the sides of length nd form right ngle. T ) Consider the following two figures. The figure on the left is squre whih hs sides of length. The figure on the right is the union of two squres, one of whih hs sides of length nd the other of whih hs sides of length. Eh figure is sudivided y dotted lines into 5 piees: 4 opies of the originl tringle T nd squre. Compre the sum of the res of the piees mking up the squre on the left one with the sum of the res of the piees mking up the figure on the right. Try to derive the eqution = 2. (Hint: Eh figure ontins 4 tringles nd squre. How long re the sides of these squres?) T T T T T T T T
19 45 ) Adpt this rgument to the tringle with sides of length x, y nd z shown elow. z y x
20 46
1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the
More informationPYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:
PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for rightngled tringles
More informationTHE PYTHAGOREAN THEOREM
THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most wellknown nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this
More informationSection 1.3 Triangles
Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior
More informationActivities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions
MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd
More information12.4 Similarity in Right Triangles
Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right
More informationMaintaining Mathematical Proficiency
Nme Dte hpter 9 Mintining Mthemtil Profiieny Simplify the epression. 1. 500. 189 3. 5 4. 4 3 5. 11 5 6. 8 Solve the proportion. 9 3 14 7. = 8. = 9. 1 7 5 4 = 4 10. 0 6 = 11. 7 4 10 = 1. 5 9 15 3 = 5 +
More informationPart I: Study the theorem statement.
Nme 1 Nme 2 Nme 3 A STUDY OF PYTHAGORAS THEOREM Instrutions: Together in groups of 2 or 3, fill out the following worksheet. You my lift nswers from the reding, or nswer on your own. Turn in one pket for
More informationHS PreAlgebra Notes Unit 9: Roots, Real Numbers and The Pythagorean Theorem
HS PreAlger Notes Unit 9: Roots, Rel Numers nd The Pythgoren Theorem Roots nd Cue Roots Syllus Ojetive 5.4: The student will find or pproximte squre roots of numers to 4. CCSS 8.EE.: Evlute squre roots
More informationNumbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point
GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply
More informationMath Lesson 45 The Law of Cosines
Mth1060 Lesson 45 The Lw of osines Solve using Lw of Sines. 1 17 11 5 15 13 SS SSS Every pir of loops will hve unknowns. Every pir of loops will hve unknowns. We need nother eqution. h Drop nd ltitude
More informationProject 6: Minigoals Towards Simplifying and Rewriting Expressions
MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy
More informationEllipses. The second type of conic is called an ellipse.
Ellipses The seond type of oni is lled n ellipse. Definition of Ellipse An ellipse is the set of ll points (, y) in plne, the sum of whose distnes from two distint fied points (foi) is onstnt. (, y) d
More informationPythagoras Theorem. Pythagoras Theorem. Curriculum Ready ACMMG: 222, 245.
Pythgors Theorem Pythgors Theorem Curriulum Redy ACMMG:, 45 www.mthletis.om Fill in these spes with ny other interesting fts you n find out Pythgors. In the world of Mthemtis, Pythgors is legend. He lived
More informationCHENG Chun Chor Litwin The Hong Kong Institute of Education
PEhing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using
More information= x x 2 = 25 2
9.1 Wrm Up Solve the eqution. 1. 4 2 + 3 2 = x 2 2. 13 2 + x 2 = 25 2 3. 3 2 2 + x 2 = 5 2 2 4. 5 2 + x 2 = 12 2 Mrh 7, 2016 Geometry 9.1 The Pythgoren Theorem 1 Geometry 9.1 The Pythgoren Theorem 9.1
More informationA Study on the Properties of Rational Triangles
Interntionl Journl of Mthemtis Reserh. ISSN 09765840 Volume 6, Numer (04), pp. 89 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn
More informationComparing the Preimage and Image of a Dilation
hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) nglengle Similrity Theorem (.2) SideSideSide Similrity
More informationTrigonometry Revision Sheet Q5 of Paper 2
Trigonometry Revision Sheet Q of Pper The Bsis  The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.
More information9.1 Day 1 Warm Up. Solve the equation = x x 2 = March 1, 2017 Geometry 9.1 The Pythagorean Theorem 1
9.1 Dy 1 Wrm Up Solve the eqution. 1. 4 2 + 3 2 = x 2 2. 13 2 + x 2 = 25 2 3. 3 2 2 + x 2 = 5 2 2 4. 5 2 + x 2 = 12 2 Mrh 1, 2017 Geometry 9.1 The Pythgoren Theorem 1 9.1 Dy 2 Wrm Up Use the Pythgoren
More informationProving the Pythagorean Theorem
Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or
More informationGM1 Consolidation Worksheet
Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up
More informationPYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS
PYTHGORS THEOREM,TRIGONOMETRY,ERINGS ND THREE DIMENSIONL PROLEMS 1.1 PYTHGORS THEOREM: 1. The Pythgors Theorem sttes tht the squre of the hypotenuse is equl to the sum of the squres of the other two sides
More informationLESSON 11: TRIANGLE FORMULAE
. THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.
More information6.5 Improper integrals
Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =
More informationNon Right Angled Triangles
Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in nonright ngled tringles. This unit
More informationLogarithms LOGARITHMS.
Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the
More informationIntermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths
Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t
More information3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.
3 ngle Geometry MEP Prtie ook S3 3.1 Mesuring ngles 1. Using protrtor, mesure the mrked ngles. () () (d) (e) (f) 2. Drw ngles with the following sizes. () 22 () 75 120 (d) 90 (e) 153 (f) 45 (g) 180 (h)
More informationTrigonometry and Constructive Geometry
Trigonometry nd Construtive Geometry Trining prolems for M2 2018 term 1 Ted Szylowie tedszy@gmil.om 1 Leling geometril figures 1. Prtie writing Greek letters. αβγδɛθλµπψ 2. Lel the sides, ngles nd verties
More informationAP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals
AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into
More informationPythagoras theorem and surds
HPTER Mesurement nd Geometry Pythgors theorem nd surds In IEEM Mthemtis Yer 8, you lernt out the remrkle reltionship etween the lengths of the sides of rightngled tringle. This result is known s Pythgors
More informationGreen s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e
Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let
More information5. Every rational number have either terminating or repeating (recurring) decimal representation.
CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd
More informationLesson 8.1 Graphing Parametric Equations
Lesson 8.1 Grphing Prmetric Equtions 1. rete tle for ech pir of prmetric equtions with the given vlues of t.. x t 5. x t 3 c. x t 1 y t 1 y t 3 y t t t {, 1, 0, 1, } t {4,, 0,, 4} t {4, 0,, 4, 8}. Find
More informationThe Ellipse. is larger than the other.
The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)
More information1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE
ELEMENTARY ALGEBRA nd GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the exmples, work the prolems, then check your nswers t the end of ech topic. If you don t get the nswer given, check
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More information2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.
SECTION 81 11 CHAPTER 8 Setion 8 1. There re n infinite numer of possile tringles, ll similr, with three given ngles whose sum is 180. 4. If two ngles α nd β of tringle re known, the third ngle n e found
More informationIntroduction to Olympiad Inequalities
Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd AmGm inequlity 2. Elementry inequlities......................
More informationGeometry of the Circle  Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.
Geometry of the irle  hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion
More informationPythagoras Theorem. The area of the square on the hypotenuse is equal to the sum of the squares on the other two sides
Pythgors theorem nd trigonometry Pythgors Theorem The hypotenuse of rightngled tringle is the longest side The hypotenuse is lwys opposite the rightngle 2 = 2 + 2 or 2 = 22 or 2 = 22 The re of the
More informationSomething found at a salad bar
Nme PP Something found t sld r 4.7 Notes RIGHT TRINGLE hs extly one right ngle. To solve right tringle, you n use things like SOHHTO nd the Pythgoren Theorem. n OLIQUE TRINGLE hs no right ngles. To solve
More informationSection 2.1 Special Right Triangles
Se..1 Speil Rigt Tringles 49 Te 90 Tringle Setion.1 Speil Rigt Tringles Te 90 tringle (or just 06090) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem
More informationSECTION A STUDENT MATERIAL. Part 1. What and Why.?
SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are
More informationProportions: A ratio is the quotient of two numbers. For example, 2 3
Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)
More informationPlotting Ordered Pairs Using Integers
SAMPLE Plotting Ordered Pirs Using Integers Ple two elsti nds on geoord to form oordinte xes shown on the right to help you solve these prolems.. Wht letter of the lphet does eh set of pirs nme?. (, )
More information2.1 ANGLES AND THEIR MEASURE. y I
.1 ANGLES AND THEIR MEASURE Given two interseting lines or line segments, the mount of rottion out the point of intersetion (the vertex) required to ring one into orrespondene with the other is lled the
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationComputing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt
Computing dt with spredsheets Exmple: Computing tringulr numers nd their squre roots. Rell, we showed 1 ` 2 ` `n npn ` 1q{2. Enter the following into the orresponding ells: A1: n B1: tringle C1: sqrt A2:
More informationDiscrete Structures Lecture 11
Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.
More informationBridging the gap: GCSE AS Level
Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions
More informationReview Topic 14: Relationships between two numerical variables
Review Topi 14: Reltionships etween two numeril vriles Multiple hoie 1. Whih of the following stterplots est demonstrtes line of est fit? A B C D E 2. The regression line eqution for the following grph
More informationApril 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.
pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm
More informationCS 573 Automata Theory and Formal Languages
Nondeterminism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Nondeterministi Finite Automton with moves (NFA) An NFA is tuple
More informationMarch 26, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.
Mrh 26, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm D shown in the Figure Sine its digonls hve equl length,, the
More informationNONDETERMINISTIC FSA
Tw o types of nondeterminism: NONDETERMINISTIC FS () Multiple strtsttes; strtsttes S Q. The lnguge L(M) ={x:x tkes M from some strtstte to some finlstte nd ll of x is proessed}. The string x = is
More informationSimilar Right Triangles
Geometry V1.noteook Ferury 09, 2012 Similr Right Tringles Cn I identify similr tringles in right tringle with the ltitude? Cn I identify the proportions in right tringles? Cn I use the geometri mens theorems
More informationMatrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix
tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri
More informationChapter 8 Roots and Radicals
Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi
More information3.1 Review of Sine, Cosine and Tangent for Right Angles
Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,
More informationm m m m m m m m P m P m ( ) m m P( ) ( ). The oordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r
COORDINTE GEOMETR II I Qudrnt Qudrnt (.+) (++) X X    0  III IV Qudrnt  Qudrnt ()  (+) Region CRTESIN COORDINTE SSTEM : Retngulr Coordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr
More informationChapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
More informationPAIR OF LINEAR EQUATIONS IN TWO VARIABLES
PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,
More informationNaming the sides of a rightangled triangle
6.2 Wht is trigonometry? The word trigonometry is derived from the Greek words trigonon (tringle) nd metron (mesurement). Thus, it literlly mens to mesure tringle. Trigonometry dels with the reltionship
More informationCalculus Cheat Sheet. Integrals Definitions. where F( x ) is an antiderivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx
Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous AntiDerivtive : An ntiderivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.
More informationSection 4.4. Green s Theorem
The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higherdimensionl nlogues) with the definite integrls
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationExercise sheet 6: Solutions
Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More informationReflection Property of a Hyperbola
Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the
More informationDate Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( )
UNIT 5 TRIGONOMETRI RTIOS Dte Lesson Text TOPI Homework pr. 4 5.1 (48) Trigonometry Review WS 5.1 # 3 5, 9 11, (1, 13)doso pr. 6 5. (49) Relted ngles omplete lesson shell & WS 5. pr. 30 5.3 (50) 5.3 5.4
More informationTrigonometric Functions
Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds
More information( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).
Mth 15 Fettermn/DeSmet Gustfson/Finl Em Review 1) Let f( ) = 10 5. Find nd simplif f( ) nd then stte the domin of f(). ) Let f( ) = +. Find nd simplif f(1) nd then stte the domin of f(). ) Let f( ) = 8.
More informationFormula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx
Fill in the Blnks for the Big Topis in Chpter 5: The Definite Integrl Estimting n integrl using Riemnn sum:. The Left rule uses the left endpoint of eh suintervl.. The Right rule uses the right endpoint
More informationILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS
ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu
More informationMCH T 111 Handout Triangle Review Page 1 of 3
Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:
More information2.4 Linear Inequalities and Interval Notation
.4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More informationList all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.
Mth Anlysis CP WS 4.X Section 4.4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether  is root of 0. Show
More informationQUADRATIC EQUATION. Contents
QUADRATIC EQUATION Contents Topi Pge No. Theory 004 Exerise  0509 Exerise  093 Exerise  3 45 Exerise  4 6 Answer Key 78 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,
More informationI1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3
2 The Prllel Circuit Electric Circuits: Figure 2 elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is
More information1.3 SCALARS AND VECTORS
Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd
More informationTrigonometry. Trigonometry. labelling conventions. Evaluation of areas of nonrightangled triangles using the formulas A = 1 ab sin (C )
8 8 Pythgors theorem 8 Pythgoren trids 8 Threedimensionl Pythgors theorem 8D Trigonometri rtios 8E The sine rule 8F miguous se of the sine rule 8G The osine rule 8H Speil tringles 8I re of tringles res
More informationThe University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS
The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their
More informationINTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable
INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd
More informationChapter Gauss Quadrature Rule of Integration
Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to
More informationSection 6: Area, Volume, and Average Value
Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find
More informationSymmetrical Components 1
Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedystte nlysis of high voltge trnsmission systems, we mke use of the perphse equivlent
More informationPolynomials. Polynomials. Curriculum Ready ACMNA:
Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression
More informationPart 4. Integration (with Proofs)
Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1
More informationA study of Pythagoras Theorem
CHAPTER 19 A study of Pythgors Theorem Reson is immortl, ll else mortl. Pythgors, Diogenes Lertius (Lives of Eminent Philosophers) Pythgors Theorem is proly the estknown mthemticl theorem. Even most nonmthemticins
More informationSTRAND J: TRANSFORMATIONS, VECTORS and MATRICES
Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors
More informationCS 491G Combinatorial Optimization Lecture Notes
CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,
More informationSurds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,
Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.
More information5Trigonometric UNCORRECTED PAGE PROOFS. ratios and their applications
5Trigonometri rtios nd their pplitions 5.1 Kik off with CS 5.2 Trigonometry of rightngled tringles 5.3 Elevtion, depression nd erings 5.4 The sine rule 5.5 The osine rule 5.6 rs, setors nd segments 5.7
More informationSect 10.2 Trigonometric Ratios
86 Sect 0. Trigonometric Rtios Objective : Understnding djcent, Hypotenuse, nd Opposite sides of n cute ngle in right tringle. In right tringle, the otenuse is lwys the longest side; it is the side opposite
More information