Higher categories and observables for generalised Turaev-Viro models

Size: px
Start display at page:

Download "Higher categories and observables for generalised Turaev-Viro models"

Transcription

1 Hiher teories nd oservles or enerlised Turev-Viro models Septemer 21, 2010 CLP 7 Cteories, Loi nd Phsis, Birminhm Ctherine Meusurer, Deprtment Mthemtik, Universität Hmur work with John W Brrett (in proress)

2 Motivtion Turev-Viro invrint teories, invrints o 3-mniolds, representtion theor o Hop lers,... stte sum models o (3d) quntum rvit topoloil quntum ield theor onorml ield theor, hiher ue theor losed trinulted mniold omple numer invrint under hne o trinultion trinulted mniold with oundr mp etween Hilert spes ssoited with oundr omponents phsil interprettion (TQT, quntum rvit): trnsition mplitudes etween eometries prolem otinin oservles prtil results or speii ses / ontet o quntum rvit so r: no enerl results or ormlism underlin mthemtil strutures?

3 Contents 1. enerlised Turev Viro models 2. Ide: oservles rom hiher teories 3. Cteor dt or oservles: SphCt 4. Deinition o the model 5. Evlution nd oservles 6. Reltion to Reshetikhin-Turev-Witten invrints 7. Outlook nd onlusions

4 1. enerlised Turev-Viro models [Turev, Viro] [Brrett, Westur] invrints o pieewise liner mniolds rom representtion theor o U q (su(2)) t root o unit enerlistion to non-deenerte semisimple spheril teories non-deenerte semisimple spheril teories [Brrett, Westur] non-deenerte pivotl usion teor in whih tr L tr R monoidl teor with strit duls: monoidl teor (C,, e) α β α α β toether with ontrvrint strit tensor untor : C C op, 1 C pivotl: olletion o morphisms ɛ : e (oevlution) or ll ojets whih stis - (α 1 ) ɛ (1 α ) ɛ omptiilit with morphisms - ɛ z (1 ɛ z 1 ) ɛ omptiilit with tensor produt ɛ (1 ɛ ) (ɛ 1 )1 - α α* z α* α

5 spheril: riht- nd let- tre ree tr L (α) ɛ (1 α) ɛ tr R (α) ɛ (α 1 ) ɛ α α tr L (α) tr R (α) non-deenerte usion teor: - End(e) C - Hom(, ) inite-dimensionl vetor spe over - : C C C, : C C op re C-(i)liner - pirin Hom(, ) Hom(, ) C, (α, β) tr(α β) is non-deenerte - initeness: the set o isomorphism equivlene lsses o simple ojets is inite C J Hom(,) Hom(,) - semisimpliit: there eists set J o non-trivil simple ( End() C ) ojets suh tht Hom(, ) Hom(, ) Hom(, ) is vetor spe isomorphism J enerlise rep. theor o q-deormed universl envelopin lers t roots o unit uildin loks o (enerlised) Turev-Viro invrint

6 enerlised Turev-Viro model [Turev, Viro] [Brrett, Westur] invrints o pieewise liner 3-mniolds rom non-de. semisimple spheril teories inredients trinulted 3-mniold M non-deenerte inite semisimple spheril teories dt (lellin) oriented edes simple ojets (reversed ede dul ojet) oriented trinles morphisms etween simple ojets t oundr (reversed orienttion dul morphism) d δ β tetrhedron mplitude α oriented tetrhedr 6j smol γ { } : Hom(, ) Hom(, d) Hom(, ) Hom( d, ) C d α β γ δ tr (δ (γ 1) (1 β) α) γ α : α δ β mplitude o lelled trinultion lelled trinultion mplitude Z(M, l) oriented tetrhedr t { } t t t d t t t

7 Turev Viro invrint C(M) K v K irreps dim q () 2 Z(M, l) oriented tetrhedr t { } t t t d t t t mplitude or trinultion nd lellin q-dimension dim q () tr(id ) e sum over ssinments o simple ojets to edes l:e e Z(M, l) dim q ( e ) losed trinulted 3-mniold M omple numer C(M) deines invrint o pieewise liner 3-mniolds: trinultions relted inite sequenes o Phner moves C(M) invrint under Phner moves h d j i h,i,j,k k d k h k i d j h i d j 1-4 move orthoonlit o 6j smols 2-3 move Biedenhrn Elliot reltion or mniolds with oundr: C(M) depends onl on dt on oundr

8 2. Ide: Oservles rom hiher teories phsil interprettion topoloil quntum ield theor, quntum rvit Turev-Viro model: quntum theor o Euliden 3d rvit with positive osmoloil onstnt interprettion o C(M) s stte sum (~ sttistil phsis models, disrete pth interl) M 2 M 1 question: oservles? dt t oundr M : phsil sttes (Hilert spe) Turev-Viro invrint: deines trnsition mplitudes, inner produt H M2 Hom(, ) lelled trinles () o M 2 H M1 Hom(, ) lelled trinles () o M 1 M M 1 M 2 nivel: oservles s untions o model dt nd dditionl prmeters epettion vlue insertion into stte sum O K v O(M, l)z(m, l) C(M) l:e e J e dim q ( e ) C(M) :HM 1 H M2 C φ ψ φ, ψ

9 prolem need dditionl dt / prmeters to deine oservles whih dt? prtil results: or U q (su(2)) inlusion o prtiles in spin om models Brrett, ri-isls, ri Mrtins reidel, Loupre, irirn, Livine... enerl pttern? enerl deinition? underlin mthemtil strutures? reltion to Reshetikhin-Turev-Witten invrints (invrints o oloured rion rphs)? ide: oservles rom hiher teories k m l phsil interprettion: oservles s deets in stte sum model α α d enerlised Turev-Viro model model vi luin individul lelled tetrhedr luin ondition: ojets nd morphisms on shred es mth ide: rel luin onditions in ontrolled w vi hiher teor theor

10 reled luin onditions ide: interpret spheril teor s 2-teor with sinle ojet onsider ssoited suteor o 2-Ct luin tetrhedr t es ojets nd morphisms on shred es relted untors : C C (1-morphisms in 2-Ct) k l () θ m (α) () () α β d luin tetrhedr round n ede onsisten ondition: or eh ede: pseudonturl trnsormtion etween ssoited untors ν : H (2-morphisms in 2-Ct) luin tetrhedr round verte onsisten ondition: or eh verte modiition etween ssoited pseudonturl trnsormtions Φ: σ τ µ ν id (3-morphisms in 2-Ct) M τ : L HM () H () H() L ν : H µ : L K K σ : M K

11 3. Cteor dt or oservles: SphCt need: omptiilit with model dt (non-deenerte semisimple spheril teor) untors, pseudonturl trnsormtions, modiitions orm r-teor with dulit opertions: SphCt SphCt otined rom r teor 2-Ct restrition to 2-teories with sinle ojet MonCt imposin omptiilit with struture o spheril teor SphCt ojets: spheril teories C (2-teories with sinle ojet) 1-morphisms: spheril untors : C D strit tensor untors etween spheril teories (α β) (α) (β) (e C )e D omptile with dulit (α ) (α) (ɛ )ɛ () rphil representtion: reions in 2d dirms () () () ()

12 2-morphisms spheril trnsormtions ν : etween spheril untors, : C D pseudonturl trnsormtions: ν () ν ojet ν o D toether with olletion o isomorphisms ν : ν () () ν tht re () () ν spheril ondition: ν () () ν () ν nturl ((α) 1 ν ) ν ν z (1 ν (α)) omptile with unit ν e 1 ν omptile with tensor produt ν z (1 () ν z ) (ν 1 (z) ) ν () () () () () () ν ν ν () ν () () () () ν () () ν () ν 3-morphisms modiitions Φ: ν µ etween spheril trnsormtions ν, µ : ν μ Φ ν () Φ μ () μ ν () Φ () μ μ morphisms Φ: ν µ tht ommute with morphisms ν,µ (1 () Φ) µ ν (Φ 1 () )

13 produt opertions r produt: omposition o spheril untors : C D : C E : D E omposition o spheril untors with spheril trnsormtions nd modiitions ν : H(ν) Hν : H H νk : K K ν H H (Hν) H(ν ) K K, : C D (νk) ν K() H(Φ) H : D E Φ K : B C H(μ) horizontl omposition o spheril trnsormtions nd modiitions µ, ν : π ν π µ : H ρ, π : H H (π µ) (π 1 µ ) (1 π µ ) Φ: ν µ Ψ Φ Ψ: π ρ Ψ Φ: π ν ρ µ ρ μ Ψ Φ (1 π Φ) (Ψ 1 µ ) (Ψ 1 ν ) (1 ρ Φ) μ (vertil) omposition o modiitions µ, ν, ρ : Φ: µ ρ Ψ: ν µ Φ Ψ ν μ Ψ Φ: ν ρ ρ

14 tensortor ρ H(ν) H or spheril trnsormtions ν :, invertile modiition σ ν,µ :(ρ) (Hν) (Kν) (ρ ) ρ : H K K H K K(ν) ρ ommutes with modiitions K ρ H K K(μ) H(μ) H(ν) H(Φ) ρ H ρ H K K(ν) K(Φ) K(μ) K H(ν) H ρ stisies enerlised YBE K(ρ) KN (μ) HM KM ν K(ρ) (μ) KM HM (μ) KN HM KM H(ρ) K(ρ) HN ν HM HN KN KN HM (μ) KN ν (μ) HN KN H(ρ) ν (μ) H(ρ)

15 dulit opertions dt rom SphCt to lel oriented edes nd es need dulit opertions or reversin orienttion strit untor o r teories *: SphCt SphCt vi dulit in spheril teor - trivil on spheril untors: - tion on spheril trnsormtions: ν : ν : (ν ) (ν ) - tion on modiitions: Φ: ν µ Φ : µ ν **1, ontrvrint with respet to horizontl nd vertil omposition spheril ondition morphisms ɛ deine modiition I ν :1 ν ν : e ν ν ν ν identities: restrition to: μ ν non-deenerte spheril teories invertile spheril untors H wek untor o r teories #: SphCt SphCt - tion on spheril untors: # 1 - tion on spheril trnsormtions ν : : ν # # ν # - tion on modiitions Φ: ν µ, ν, µ : : Φ # # Φ # ν ν ν ν ρ Φ Φ pirin o morphisms in spheril teories preserved tr D ( (α) (β)) tr C (α β) ontrvrint with respet to r produt nd horizontl omposition dirms: olds in plnes (invertiilit o untors olds nd usps re trivil!) omptiilit identit: # # 1 ν ρ ν

16 4. Deinition o the model dt or oservles oriented e (trinle) spheril untor : C C (reversed orienttion untor # ) µ H I oriented ede + hoie o djent tetrhedron spheril trnsormtion rom untors o djent es to identit µ : # HIJ # 1 C (reversed orienttion dul spheril trnsormtion µ :1 C # HIJ # ) J verte + hoie o miml tree ( li orderin o inident edes) μ2 μ3 μ4 + hoie o inident tetrhedron ( liner orderin o inident edes) μ1 μ5 modiition etween spheril trnsormtions o inident edes Φ: µ 1 (µ 2 1 )... (µ n n ) 1 1C μ7 μ6

17 prolem: how to inorporte dt or oservles into trinultion? ide reine trinultion: onsider 2nd derived omple (vi rentri sudivisions) rentri sudivision o tetrhedron 2nd derived omple o tetrhedron deomposition o M in polhedr ssoited with verties, edes, trinles nd tetrhedr tetrhedron e ede verte

18 Lellin with dt intrinsi dt oservle dt e j H ede tetrhedron () h α i (i) I J () μ () w n m ρ Ψ (h) j h α Θ μ i Σ z l k z spheril teor C SphCt model without oservles deines oservles e dt simple ojets,, in spheril teor C spheril trnsormtions 1 C 1 C (with simple ojets h,i,j) morphism α in spheril teor C spheril untor : C C ede dt spheril trnsormtion µ : H # I # J 1 C miml tree tetrhedron dt 4 modiitions verte dt modiition Φ: e v ρ Φ µ e id verte

19 5. Evlution nd oservles ormultion in terms o dirms dt ssined to polhedr dirms or SphCt nd spheril teor v w u () μ H() H () Φ t H() h h s z w w r α Θ j i j i h h v u t s w r z z tetrhedron: omposition lon shred edes losed strin dirm lelled tetrhedron t Z(t, l) C stte sum C(M, l Spht )K v lellins with intrinsi dt oriented tetrhedr t Z(t, l) oriented edes e dim q ( e )

20 evlution sum over lellins with intrinsi dt in interior usin identities (dirms) or SphCt nd or spheril teor stte sum or three-ll B 3 iven intrinsi dt on oundr oservle dt in interior nd on oundr evlution projetion o interior dt on oundr strin dirm or SphCt nd spheril teor z u v w h p r k s K H o t d stte sum or S 3 iven oservle dt in interior evlution projetion o interior dt on plne p o strin dirm or SphCt z invrint o rph in pieewise liner 3-mniold invrint under Phner moves whih do not involve edes deorted with oservle dt nd oundr u w r s t q

21 6. Reltion to Reshetikhin-Turev-Witten invrints Chern-Simons theor with ue roup H H (e: Euliden 3d rvit with Λ>0) TV invrints or U q (h) oservles: strin dirms or r teor ssoited with U q (h) quntistion C(M) TV C RT W (M) 2? RTW invrints or D(U q (h)) U q (h) U q (h) oservles: knot invrints or Drinel d doule D(U q (h)) question: reltion o oservles to RTW invrints (knot invrints)? reltion etween representtion teor o Hop ler A nd o Drinel d doule D(A) Hop ler A Drinel d doule onstrution qusitrinulr Hop ler D(A) in.dim.reps in.dim.reps monoidl teor C with duls enter onstrution rided monoidl teor with duls Z(C)

22 ide: onsider model with ll untors trivil Spht redues to enter Z(C) dirm omponents omposition ridin spheril trnsormtions ojets in Z(C) modiitions morphisms in Z(C) identities oservles z z z model with trivil untors on S 3 oservles: losed strin dirms or Z(C) i ll modiitions in dirm ridins link nd knot invrints or Z(C) otin RTW invrints or Z(C) s speil se rom TV model with oservles or C z Yn Bter Eqution z

23 7. Outlook nd onlusions oservles or enerlised Turev Viro models ide: rel luin onditions or tetrhedr deortion o model with dt rom r teor SphCt es spheril untors edes spheril trnsormtions verties modiitions deines invrints o rphs emedded in pieewise liner mniolds onsistent nd enerl notion o oservles or 3d stte sum models reover Witten-Reshetikhin-Turev invrints open questions pplitions to onrete ses ( U q (su(2)), inite roups,...) interprettion in ontet o quntum rvit (rvittionl intertion o point prtiles?)

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of Worsheet # th Nme:. Sole the folloing sstems of liner equtions. he proe tht the solutions forms suspe of ) ). Find the neessr nd suffiient onditions of ll onstnts for the eistene of solution to the sstem:.

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ.

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ. Cutkosky Rules from Outer Spe Humoldt Univ. E-mil: kreimer@physik.hu-erlin.de We overview reent results on the mthemtil foundtions of Cutkosky rules. We emphsize tht the two opertions of shrinking n internl

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

Qubit and Quantum Gates

Qubit and Quantum Gates Quit nd Quntum Gtes Shool on Quntum omputing @Ygmi Dy, Lesson 9:-:, Mrh, 5 Eisuke Ae Deprtment of Applied Physis nd Physio-Informtis, nd REST-JST, Keio University From lssil to quntum Informtion is physil

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

arxiv: v1 [math.ct] 8 Sep 2009

arxiv: v1 [math.ct] 8 Sep 2009 On the briding of n Ann-tegory rxiv:0909.1486v1 [mth.ct] 8 Sep 2009 September 8, 2009 NGUYEN TIEN QUANG nd DANG DINH HANH Dept. of Mthemtis, Hnoi Ntionl University of Edution, Viet Nm Emil: nguyenqung272002@gmil.om

More information

Algebra in a Category

Algebra in a Category Algebr in Ctegory Dniel Muret Otober 5, 2006 In the topos Sets we build lgebri strutures out o sets nd opertions (morphisms between sets) where the opertions re required to stisy vrious xioms. One we hve

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a. Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining

More information

Abstraction of Nondeterministic Automata Rong Su

Abstraction of Nondeterministic Automata Rong Su Astrtion of Nondeterministi Automt Rong Su My 6, 2010 TU/e Mehnil Engineering, Systems Engineering Group 1 Outline Motivtion Automton Astrtion Relevnt Properties Conlusions My 6, 2010 TU/e Mehnil Engineering,

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY MD THREE DIMENSIONAL GEOMETRY CA CB C Coordintes of point in spe There re infinite numer of points in spe We wnt to identif eh nd ever point of spe with the help of three mutull perpendiulr oordintes es

More information

There are two 2 twist-spun trefoils

There are two 2 twist-spun trefoils There re two twist-spun trefoils Colin Rourke Brin Snderson Mthemtis Institute, Universit of Wrwik Coventr, CV4 7AL, UK Emil: pr@mths.wrwik..uk nd js@mths.wrwik..uk URL: http://www.mths.wrwik..uk/~pr/

More information

C. Aydın*, M. Bayar and A. H. Yılmaz Physics Department, Karadeniz Technical University, 61080, Trabzon, Turkey.

C. Aydın*, M. Bayar and A. H. Yılmaz Physics Department, Karadeniz Technical University, 61080, Trabzon, Turkey. γ nd γ ouplin onstnts in three point QCD sum rules C. Aydın*,. Byr nd A. H. Yılmz Physis Deprtment, Krdeniz Tehnil University, 68, Trbzon, Turkey * oskun@ktu.edu.tr hkny@ktu.edu.tr The ouplin onstnt o

More information

arxiv: v1 [math.gt] 31 Jan 2008

arxiv: v1 [math.gt] 31 Jan 2008 COMMENSURATORS OF CUSPED HYPERBOLIC MANIFOLDS OLIVER GOODMAN, DAMIAN HEARD, AND CRAIG HODGSON rxiv:8.85v [mth.gt] Jn 8 Astrt. This pper desries generl lgorithm for finding the ommensurtor of non-rithmeti

More information

REVERSIBLE LOGIC SYNTHESIS BY QUANTUM ROTATION GATES

REVERSIBLE LOGIC SYNTHESIS BY QUANTUM ROTATION GATES Quntum Inormtion nd Computtion, ol, No N YYYY 000-000 inton Press EESIBLE LOGIC SYNTHESIS BY QANTM OTATION GATES AFSHIN ABDOLLAHI, MEHDI SAEEDI, MASSOD PEDAM Deprtment o Eletril Enineerin, niversity o

More information

1 Introdution Ever sine the seminl ppers [] nd [W], mthemtiins nd physiists hve een interested in the prolem of onstrution of topologil quntum eld the

1 Introdution Ever sine the seminl ppers [] nd [W], mthemtiins nd physiists hve een interested in the prolem of onstrution of topologil quntum eld the Stte-Sum Invrints of 4-Mnifolds, I Louis rne Deprtment of Mthemtis Knss Stte University Mnhttn, KS 66506 Louis H Kumn Deprtment of Mthemtis, Sttistis nd omputer Siene University of Illinois t higo 851

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Lecture Summaries for Multivariable Integral Calculus M52B

Lecture Summaries for Multivariable Integral Calculus M52B These leture summries my lso be viewed online by liking the L ion t the top right of ny leture sreen. Leture Summries for Multivrible Integrl Clulus M52B Chpter nd setion numbers refer to the 6th edition.

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

After the completion of this section the student should recall

After the completion of this section the student should recall Chapter I MTH FUNDMENTLS I. Sets, Numbers, Coordinates, Funtions ugust 30, 08 3 I. SETS, NUMERS, COORDINTES, FUNCTIONS Objetives: fter the ompletion of this setion the student should reall - the definition

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS Homology, Homotopy nd Applitions, vol. 8(2), 2006, pp.115 131 DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS JOHN TERILLA nd THOMAS TRADLER (ommunited y Jim Stsheff) Astrt We develop the deformtion

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames Visuliing Quternions Andrew J. Hnson Computer Siene Deprtment Indin Universit Siggrph Tutoril GRAND PLAN I: Fundmentls of Quternions II: Visuliing Quternion Geometr III: Quternion Frmes IV: Clifford Algers

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

HOMEWORK FOR CLASS XII ( )

HOMEWORK FOR CLASS XII ( ) HOMEWORK FOR CLASS XII 8-9 Show tht the reltion R on the set Z of ll integers defined R,, Z,, is, divisile,, is n equivlene reltion on Z Let f: R R e defined if f if Is f one-one nd onto if If f, g : R

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

Translation symmetry, Space groups, Bloch functions, Fermi energy

Translation symmetry, Space groups, Bloch functions, Fermi energy 9/7/4 Trnsltion symmetry, Spe groups, Bloh funtions, Fermi energy Roerto Orlndo Diprtimento di Chimi Università di Torino Vi ietro Giuri 5, 6 Torino, Itly roerto.orlndo@unito.it Outline The rystllogrphi

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

Unit-VII: Linear Algebra-I. To show what are the matrices, why they are useful, how they are classified as various types and how they are solved.

Unit-VII: Linear Algebra-I. To show what are the matrices, why they are useful, how they are classified as various types and how they are solved. Unit-VII: Liner lger-i Purpose of lession : To show wht re the mtries, wh the re useful, how the re lssified s vrious tpes nd how the re solved. Introdution: Mtries is powerful tool of modern Mthemtis

More information

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering Petri Nets Ree Alreht Seminr: Automt Theory Chir of Softwre Engeneering Overview 1. Motivtion: Why not just using finite utomt for everything? Wht re Petri Nets nd when do we use them? 2. Introdution:

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Automata for Analyzing and Querying Compressed Documents

Automata for Analyzing and Querying Compressed Documents Automt or Anlyzin nd Queryin Compressed Douments Brr Fil, Siv Annthrmn To ite this version: Brr Fil, Siv Annthrmn. Automt or Anlyzin nd Queryin Compressed Douments. Projet PRV (du LIFO), CATz. Rpport de

More information

Lecture 10 :Kac-Moody algebras

Lecture 10 :Kac-Moody algebras Lecture 10 :Kc-Moody lgebrs 1 Non-liner sigm model The ction: where: S 0 = 1 4 d xtr ( µ g 1 µ g) - positive dimensionless coupling constnt g(x) - mtrix bosonic field living on the group mnifold G ssocited

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

MUTATION PAIRS AND TRIANGULATED QUOTIENTS

MUTATION PAIRS AND TRIANGULATED QUOTIENTS MUTATION PAIRS AND TRIANGULATED QUOTIENTS ENGQIANG LIN AND MINXIONG WANG rxi:1401.02751 [mth.ct] 1 Jn 2014 Astrt. We define muttion pir in pseudo-trinulted teory. We proe tht under ertin onditions, for

More information

Polarimetric Target Detector by the use of the Polarisation Fork

Polarimetric Target Detector by the use of the Polarisation Fork Polrimetri rget Detetor y the use of the Polristion For Armndo Mrino¹ hne R Cloude² Iin H Woodhouse¹ ¹he University of Edinurgh, Edinurgh Erth Oservtory (EEO), UK ²AEL Consultnts, Edinurgh, UK POLinAR009

More information

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Automatic Synthesis of New Behaviors from a Library of Available Behaviors Automti Synthesis of New Behviors from Lirry of Aville Behviors Giuseppe De Giomo Università di Rom L Spienz, Rom, Itly degiomo@dis.unirom1.it Sestin Srdin RMIT University, Melourne, Austrli ssrdin@s.rmit.edu.u

More information

VECTOR ALGEBRA. Syllabus :

VECTOR ALGEBRA. Syllabus : MV VECTOR ALGEBRA Syllus : Vetors nd Slrs, ddition of vetors, omponent of vetor, omponents of vetor in two dimensions nd three dimensionl spe, slr nd vetor produts, slr nd vetor triple produt. Einstein

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

arxiv: v1 [math.gr] 11 Jan 2019

arxiv: v1 [math.gr] 11 Jan 2019 The Generlized Dehn Property does not imply liner isoperimetri inequlity Owen Bker nd Timothy Riley rxiv:1901.03767v1 [mth.gr] 11 Jn 2019 Jnury 15, 2019 Astrt The Dehn property for omplex is tht every

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence CS344: Introduction to Artiicil Intelligence Lecture: 22-23 Herbrnd s Theorem roving stisibilit o logic ormule using semntic trees rom Smbolic logic nd mechnicl theorem proving B Runk ilni Under the guidnce

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

Data Structures and Algorithm. Xiaoqing Zheng

Data Structures and Algorithm. Xiaoqing Zheng Dt Strutures nd Algorithm Xioqing Zheng zhengxq@fudn.edu.n String mthing prolem Pttern P ours with shift s in text T (or, equivlently, tht pttern P ours eginning t position s + in text T) if T[s +... s

More information

Area of a Region Between Two Curves

Area of a Region Between Two Curves 6 CHAPTER 7 Applictions o Intertion Section 7 Are o Reion Between Two Curves Find the re o reion etween two curves usin intertion Find the re o reion etween intersectin curves usin intertion Descrie intertion

More information

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2 BOOLEAN METHODS Giovnni De Miheli Stnford University Boolen methods Exploit Boolen properties. { Don't re onditions. Minimiztion of the lol funtions. Slower lgorithms, etter qulity results. Externl don't

More information

Topologie en Meetkunde 2011 Lecturers: Marius Crainic and Ivan Struchiner

Topologie en Meetkunde 2011 Lecturers: Marius Crainic and Ivan Struchiner Topologie en Meetkunde 21 Leturers: Mrius Crini nd Ivn Struhiner CHAPTER 1 The Clssifition Prolem for Compt Surfes 1. Introdution In this Chpter we will introdue nd strt deling with the lssifition prolem

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

The Ellipse. is larger than the other.

The Ellipse. is larger than the other. The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Boolean Algebra cont. The digital abstraction

Boolean Algebra cont. The digital abstraction Boolen Alger ont The igitl strtion Theorem: Asorption Lw For every pir o elements B. + =. ( + ) = Proo: () Ientity Distriutivity Commuttivity Theorem: For ny B + = Ientity () ulity. Theorem: Assoitive

More information

Active Diagnosis. Serge Haddad. Vecos 16. October the 6th 2016

Active Diagnosis. Serge Haddad. Vecos 16. October the 6th 2016 Ative Dignosis Serge Hddd LSV, ENS Chn & CNRS & Inri, Frne Veos 16 Otoer the 6th 2016 joint work with Nthlie Bertrnd 2, Eri Fre 2, Sten Hr 1,2, Loï Hélouët 2, Trek Melliti 1, Sten Shwoon 1 (1) FSTTCS 2013

More information

The perverse t-structure

The perverse t-structure The perverse t-struture Milan Lopuhaä Marh 15, 2017 1 The perverse t-struture The goal of today is to define the perverse t-struture and perverse sheaves, and to show some properties of both. In his talk

More information

nd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme

nd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme Theory of Regions Eri Bdouel nd Philippe Drondeu Iris, Cmpus de Beulieu, F-35042 Rennes Cedex, Frne E-mil : feri.bdouel,philippe.drondeug@iris.fr Astrt. The synthesis prolem for nets onsists in deiding

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh Computtionl Biology Leture 8: Genome rerrngements, finding miml mthes Sd Mneimneh We hve seen how to rerrnge genome to otin nother one sed on reversls nd the knowledge of the preserved loks or genes. Now

More information

Consistent Probabilistic Social Choice

Consistent Probabilistic Social Choice Consistent Proilisti Soil Choie Felix Brndt (with F. Brndl nd H. G. Seedig) University of Oxford, Novemer 2015 Preliminries Finite set of lterntives A A is not fixed Liner preferene reltions L (A) Frtionl

More information

Virtual knot theory on a group

Virtual knot theory on a group Virtul knot theory on group Arnud Mortier To ite this version: Arnud Mortier. Virtul knot theory on group. 35 pges, 29 figures. 204. HAL Id: hl-00958872 https://hl.rhives-ouvertes.fr/hl-00958872

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

Memory Minimization for Tensor Contractions using Integer Linear Programming.

Memory Minimization for Tensor Contractions using Integer Linear Programming. Memory Minimiztion for Tensor Contrtions using Integer Liner Progrmming A. Allm 1, J. Rmnujm 1, G. Bumgrtner 2, nd P. Sdyppn 3 1 Deprtment of Eletril nd Computer Engineering, Louisin Stte University, USA

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

The quantal algebra and abstract equations of motion. Samir Lipovaca

The quantal algebra and abstract equations of motion. Samir Lipovaca Keywords: quantal, alebra, abstrat Te quantal alebra and abstrat equations o motion Samir Lipovaa slipovaa@aolom Abstrat: Te quantal alebra ombines lassial and quantum meanis into an abstrat struturally

More information

A Differential Approach to Inference in Bayesian Networks

A Differential Approach to Inference in Bayesian Networks Dierentil pproh to Inerene in Byesin Networks esented y Ynn Shen shenyn@mi.pitt.edu Outline Introdution Oeriew o lgorithms or inerene in Byesin networks (BN) oposed new pproh How to represent BN s multi-rite

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Vector Integration. Line integral: Let F ( x y,

Vector Integration. Line integral: Let F ( x y, Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion ble, eplin the flow of het in tr, nd put tellite in orbit.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Geometrically Realizing Nested Torus Links

Geometrically Realizing Nested Torus Links Geometrilly Relizing Nested Torus Links mie ry ugust 18, 2017 strt In this pper, we define nested torus links. We then go on to introdue ell deomposition of nested torus links. Using the ell deomposition

More information

arxiv: v4 [math.gt] 9 Jul 2018

arxiv: v4 [math.gt] 9 Jul 2018 VOLUME CONJECTURES FOR THE RESHETIKHIN-TURAEV AND THE TURAEV-VIRO INVARIANTS QINGTAO CHEN AND TIAN YANG rxiv:1503.02547v4 [mth.gt] 9 Jul 2018 ABSTRACT. We onsider the symptotis of the Turev-Viro nd the

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration www.boopr.om VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion

More information

AVL Trees. D Oisín Kidney. August 2, 2018

AVL Trees. D Oisín Kidney. August 2, 2018 AVL Trees D Oisín Kidne August 2, 2018 Astrt This is verified implementtion of AVL trees in Agd, tking ides primril from Conor MBride s pper How to Keep Your Neighours in Order [2] nd the Agd stndrd lirr

More information

Standard Trigonometric Functions

Standard Trigonometric Functions CRASH KINEMATICS For ngle A: opposite sine A = = hypotenuse djent osine A = = hypotenuse opposite tngent A = = djent For ngle B: opposite sine B = = hypotenuse djent osine B = = hypotenuse opposite tngent

More information

The Emission-Absorption of Energy analyzed by Quantum-Relativity. Abstract

The Emission-Absorption of Energy analyzed by Quantum-Relativity. Abstract The mission-absorption of nergy nlyzed by Quntum-Reltivity Alfred Bennun* & Néstor Ledesm** Abstrt The uslity horizon llows progressive quntifition, from n initil nk prtile, whih yields its energy s blk

More information

Construction and Properties of Adhesive and Weak Adhesive High-Level Replacement Categories

Construction and Properties of Adhesive and Weak Adhesive High-Level Replacement Categories ppl teor Struct (2008) 6:365 388 OI 0.007/s0485-007-906-3 onstruction nd Properties o dhesive nd Wek dhesive Hih-Level Replcement teories Ulrike Prne Hrtmut Ehri Leen Lmers Received: 8 July 2006 / ccepted:

More information

Übungen zur Theoretischen Physik Fa WS 17/18

Übungen zur Theoretischen Physik Fa WS 17/18 Krlsruher Institut für ehnologie Institut für heorie der Kondensierten Mterie Übungen zur heoretishen Physik F WS 17/18 Prof Dr A Shnirmn Bltt 4 PD Dr B Nrozhny Lösungsvorshlg 1 Nihtwehselwirkende Spins:

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

CLASS XII. AdjA A. x X. a etc. B d

CLASS XII. AdjA A. x X. a etc. B d CLASS XII The syllus is divided into three setions A B nd C Setion A is ompulsory for ll ndidtes Cndidtes will hve hoie of ttempting questions from either Setion B or Setion C There will e one pper of

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Génération aléatoire uniforme pour les réseaux d automates

Génération aléatoire uniforme pour les réseaux d automates Génértion létoire uniforme pour les réseux d utomtes Niols Bsset (Trvil ommun ve Mihèle Sori et Jen Miresse) Université lire de Bruxelles Journées Alé 2017 1/25 Motivtions (1/2) p q Automt re omni-present

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Reflection Property of a Hyperbola

Reflection Property of a Hyperbola Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

arxiv: v1 [math.co] 6 Jan 2019

arxiv: v1 [math.co] 6 Jan 2019 HOMOTOPY IN THE CATEGORY OF GRAPHS T. CHIH AND L. SCULL rxiv:1901.01619v1 [mth.co] 6 Jn 2019 Astrt. We develop theory of homotopy for grphs whih is internl to the tegory of grphs. Previous uthors hve ssoited

More information