André-Marie Tremblay

Size: px
Start display at page:

Download "André-Marie Tremblay"

Transcription

1 André-Marie Tremblay CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS Sponsors:

2 Pairing vs antiferromagnetism in the cuprates 1. Motivation, model 2. The standard approach : - what it is - a qualitatively incorrect result - limitations of the approach 3. A non-perturbative approach (U > 0 and U < 0 ) - Proof that it works - How it works 4. Results: - Mechanism for pseudogap - Spectral weight rearrangement - Pairing in the repulsive model 5. Perspectives.

3 1. Motivation, model -Here, -W < U < W with (W = 8t) -Relevant for high Tc where U > W? - A question of threshold (and continuity) U SDW T δ - Importance of quantitative predictions - Location of QCP - No ferromagnetism - Effective U < 0 model may be not too strongly interacting - Suppose we find new quasiparticles in strong coupling. How do we study residual interactions? - Do we give up calculating Landau parameters? - How to predict when the theory is bad? - Standard method gives qualitatively incorrect results 3

4 2. The standard approach : - what it is (FLEX, self-consistent T-matrix...) Φ [G] = Σ [G] = δφ [G] / δg = Γ [G] = δσ [G] / δg = + 4

5 2. The standard approach : - what it is (FLEX, self-consistent T-matrix...) - Thermodynamically consistent: df/dµ = Tr[G] - Satisfies Luttinger theorem (Volume of Fermi surface at T = 0 preserved) - Satisfies Ward identities (conservation laws): G2(1,1;2,3) appropriately related to G(1,2) 5

6 2. The standard approach : - a qualitatively incorrect result ( π,0) Monte Carlo Many-Body (0,0) (0, π ) π π (, ) 4 2 π π 4 4 (, ) (, ) π 2 π 2 (0, π ) (0,0) ω/t Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). U = + 4 T = 0.2 n=1 8 X 8 Flex

7 T X T = 0 T n c E A(ω) k F I k ω k F A(ω) k F II ω E A(ω) k F III 2 k ω k F 2 99-aps/Explication... 7

8 2. The standard approach : - limitations of the approach - Integration over coupling constant of potential energy does not give back the starting Free energy. - The Pauli principle in its simplest form is not satisfied (It is used in defining the Hubbard model in the first place) - There is an infinite number of conserving approximations (How do we pick up the diagrams?) - Inconsistency: Strongly frequency-dependent self-energy, constant vertex No Migdal theorem, so vertex corrections should be included 8

9 Singular Σ (k F,ikn) U T 4 N X q 1 Uspχ sp (q, 0) ikn ² k+q Σ (k F +q,ikn) Σ (ikn) = 2 ikn Σ (ikn) ReΣ R (ω) = ω 2 ω 2 ω θ ( ω 2 ) ³ ω /2 ImΣ R (ω) = 1 2 θ (2 ω ) ³ 4 2 ω 2 1/2 9 Non Fermi-liquid but not singular at ω = 0 Vilk, et al. J. Phys. I France, 7, 1309 (1997).

10 2. The standard approach : - problem... - We do not know how to properly solve even the «standard model» for heavy fermions (Coleman). - Lee-Rice-Anderson simpler approach seems qualitatively better, why? - GW approach to improve band structure calculations? 10

11 3. An approach for both U > 0 and U < 0 - Proofs that it works Notes: -F.L. parameters -Self also Fermi-liquid 0.4 n = 0.20 n = 0.45 (b) (c) U = 8 2 n = 0.20 n = 0.45 n = 1.0 U = (0,0) (π,0) q (π,π) (0,0) 0 q QMC + cal.: Vilk et al. P.R. B 49, (1994) 11 n S ch (q) n S sp (q) n = 0.26 n = 0.60 n = 0.94 (a) U = 4 n = 0.19 n = 0.33 n = 0.80 (d) U = 4 U > 0

12 Proofs U=4.0 n=0.87 Monte Carlo 8x8 (BWS) 1.5 8*8 (BW) 1.0 χ ( π,π sp,0) 0.5 This work FLEX no AL FLEX T Calc.: Vilk, et al. J. Phys. I France, 7, 1309 (1997). QMC: Bulut, Scalapino, White, P.R. B 50, 9623 (1994). U = + 4

13 T X T mf U=4 n=1 Monte Carlo 4x4 8 6x6 8x8 10x10 S sp (π,π) 12x12 ξ ~exp ( CT ( )/ T) 4 ξ = T Calc.: Vilk et al. P.R. B 49, (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989). O ( N = ) A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, (1996)

14 Proofs... ( π,0) Monte Carlo Many-Body (0,0) (0, π ) π π (, ) 4 2 π π 4 4 (, ) (, ) π 2 π 2 (0, π ) (0,0) ω/t Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). U = + 4 Flex

15 Proofs Monte Carlo Many-Body Σ (s) FLEX a) b) c) U = + 4 L=4 L=6 L=8 0.5 L= G(τ) A(ω) β/2 β Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

16 Proofs... Other approach DCA C.Hushcrof, M. Jarrell et al. P.R.L 86, 139 (2001).

17 Moving to the attractive case... Calc. : Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) QMC : Moreo, Scalapino, White, P.R. B. 45, 7544 (1992) Proofs... U =

18 Proofs... U = - 4 Calc. : Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) QMC : Trivedi and Randeria, P.R. L. 75, 312 (1995) 2 nd order perturbation theory S.C. T-matrix 18

19 Proofs T = 0.25, n = 0.8, U = -4 QMC Many-Body N( ω ) A(k, ω ) 1.2 (a) 0.8 (b) G(k, τ ) G(k, τ ) (a) (b) T = 0.25, n = 0.8, U = QMC Many Body ω T = 0.2, n=0.8, U = -4 QMC Many-Body ω τ (c) (d) τ 0.2 (c) 0.4 (d) T = 0.2, n=0.8, U = -4 QMC -0.4 Many-Body Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) 19 Σ k U = - 4

20 3. An approach for both U > 0 and U < 0 - How it works 20

21 General results (Dyson equation) : 1, 1 G 1,2 U , 1 G 1,1 U n 1 n 1 Hartree-Fock approximation H 1, 1 G H H 1,2 UG 1,1 G H 1,2. Step one of our approximation 1 1, 1 G 1 1,2 AG 1 1, 1 G 1 1, 2 A U n n n n.

22 Find n n from (a) fluctuation-dissipation theorem (b)pauli principle Usp 1 1 n n. U n n G 1 G 1 n n 2 n n 2 n n T 0 q N q 1 1 U 2 sp 0 q n 2 n n T 0 q N q 1 1 U 2 ch 0 q n 2 n n n 2.

23 A better approximation for single-particle properties (Ruckenstein) = Σ 2 = Y.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995). Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996); N.B.: No Migdal theorem 23

24 Improved self-energy (step (2)) 2 k sym Un U 8 T N q 3Usp sp 1 1 q Uch ch q 1 G k q. Consistency check 1 Tr 2 G 1 lim T k G 1 k e ik n U n n. N k

25 Results of the analogous procedure for U < 0 Upp = U h(1 n )n i h1 n ihn i. (5) χ (1) p (q) = χ (1) 0 (q) 1+Uppχ (1) (6) 0 (q) T N X q χ (1) p (q)exp( iqn0 )=h i = hn n i. (7) Σ (1) ' U 2 U pp (1 n) 2 (8) Σ (2) σ (k) =Un σ U T N X q Uppχ (1) p (q)g (1) σ (q k) (9) 25

26 SatisÞes Pauli principle and generalization of f sum rule Z dω Dh ie π Im χ(1) (q, ω) = Dh q (0), q (0) ie =1 n ; q (10) Z dω π ω Im χ(1) (q, ω) = 1 X ³ε N k + ε k+q ³1 2 D E n k (11) k µ 2 µ (1) U (1 n) ; q (12) 2 Internal accuracy check (For both U>0 and U<0). 1 2 Tr h Σ (2) G (1)i T = lim τ 0 N X k Σ (2) σ (k) G (1) σ (k) e ik D nτ = U Check : Tr h Σ (2) G (1)i Tr h Σ (2) G (2)i n n E 26

27 4. Results: - Mechanism for pseudogap U = (analogous to U > 0 ) : Vilk et al. Europhys. Lett. 33, 159 (1996) Pines, Schmalian (98) - Enter the renormalized-classical regime. N.B. d = 2 Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) 29 27

28 4. Results: - Mechanism for pseudogap U = Pairing correlation length larger than single-particle thermal de Broglie wavelength (vf / T) ξ 1.3 ξ th Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) 28

29 Mechanism for pseudogap formation in the attractive model: U = - 4 d = 2 is crucial Even part of the pair susceptibility at q = 0, for different temperatures T=1/3 T=1/4 T=1/ ω Allen, et al. P.R. L 83, 4128 (1999) 29

30 Mechanism for pseudogap in RC regime k,ik n Un U 4 N T Upp pp q, q Large correlation length limit cl k, ikn UT dd q d q ikn k q 1 ikn k. q v k Analytic continuation R cl k F, ik n UT dd q d q i. q v F

31 Imaginary part: compare Fermi liquid, limt 0 R kf,0 0 R kf,0 T d d 1 q vf 1 T 2 q 2 vf 3 d d 2 th Why leads to pseudogap A k, 2 R k R 2 R 2

32 4. Results: - Spectral weight rearrangement U = Pseudogap appears first in total density of states - Fills in instead of opening up - Rearrangement over huge frequency scale compared with either T or T. ( T ~ 0.03, T ~ 0.2, ω 1 ) Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) 32

33 4. Results: - Crossover diagram U = - 4 Kyung, Allen,A.M.S.T. P.R.B 64, /1-15 (2001) 33

34 4. Results: - Pairing in the repulsive model Historical reminder: Spin fluctuation induced d-wave superconductivity U/t = 4 D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch P.R. B 34, (1986). Béal Monod, Bourbonnais, Emery P.R. B. 34, 7716 (1986). Miyake, Schmitt Rink, and Varma P.R. B 34, (1986) Kohn, Luttinger, P.R.L. 15, 524 (1965). Bickers, Scalapino, White P.R.L 62, 961 (1989).

35 χdx 2 -y 2 d x 2 -y 2-wave susceptibility for 6x6 lattice U = 0 U = 4 U = 6 U = 8 U = δ β Landry, A.-M.S.T. unpublished

36 0.7 U = 0, β = 4 L = U = 4 β = 4 β = 3 β = 2 β = 1 χd Doping QMC: symbols. Solid lines analytical. Kyung, Landry, A.-M.S.T.

37 d G = G GG 1 G 1 G ~ d G s =

38 U = 4, β = Full susceptibility, L=32 Susceptibility without vertex, L=32 Full susceptibility, L= Doping x χd

39 Analogous procedure for attractive case can be used to compute particle-hole properties (Spin and charge susceptibilities) U=-4, n=0.2, N=12X12 (Fig.1 in the paper) χsp (T) Self-consistent T-matrix Crossing 0.02 QMC Temperature

40 5. Perspectives H tx c i, i,j, Phenomenological model cj, h. c J S i S j 1 4 n inj i,j i, c i, ci,. Computation of local correlation function from the mean-field solution HMF k, k c k, c k, 4Jmm Jd d d Jy y F 0 Compute dynamical susceptibilities with renormalized vertices obtained from T N pp q e i m0 d 0 2. q pp k 1 4 V effvpp T N q Compute single-particle properties from d k d q k 2 pp q G 0 q k.

41 T=0 order parameters From paramagnetic self-energy: B. Kyung, P.R.B. 64, (2001). Opening of pseudogap (RC regime) From dynamical susceptibility, ξ sc = 4

42 Pseudogap and total gap B. Kyung, P.R.B. 64, (2001). Kyung and A.-M.S.T. unpublished t/j = 3, J = 125 mev

43 Properties of the condensate

44 Some speculations Weak - coupling T AF fluctuations T pseudogap S.C. δ quasi d = 2 S.C.? d = 3 AF δ

45 Strong-coupling T AF pseudogap δ Strong-coupling quasi d = 2 T AF S.C.? δ Strong-coupling d = 3

46 Michel Barrette Elix David Sénéchal A.-M.T. Mehdi Bozzo-Rey Alain Veilleux

47 Steve Allen François Lemay David Poulin Liang Chen Yury Vilk Bumsoo Kyung Samuel Moukouri Hugo Touchette

48 Claude Bourbonnais R. Côté D. Sénéchal Sébastien Roy Alexandre Blais Jean-Séastien Landry A-M.T. Bumsoo Kyung

Many-body theory versus simulations for the pseudogap in the Hubbard model

Many-body theory versus simulations for the pseudogap in the Hubbard model PHYSICAL REVIEW B VOLUME 61, NUMBER 12 15 MARCH 2000-II Many-body theory versus simulations for the pseudogap in the Hubbard model S. Moukouri, * S. Allen, F. Lemay, B. Kyung, and D. Poulin Département

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Pairing fluctuations and pseudogaps in the attractive Hubbard model

Pairing fluctuations and pseudogaps in the attractive Hubbard model PHYSICAL REVIEW B, VOLUME 64, 075116 Pairing fluctuations and pseudogaps in the attractive Hubbard model B. Kyung, 1 S. Allen, 1 and A.-M. S. Tremblay 1,2 1 Département de Physique and Centre de Recherche

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997 Non-perturbative many-body approach to the Hubbard model and single-particle pseudogap. arxiv:cond-mat/9702188v3 [cond-mat.str-el] 11 Dec 1997 Y.M. Vilk Materials Science Division, Bldg. 223, 9700 S. Case

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap J. Phys. I France 7 (1997) 1309 1368 NOVEMBER 1997, PAGE 1309 Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap Y.M. Vilk ( 1,2 ) and A.-M.S. Tremblay ( 2, ) ( 1 )

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article LOW TEMPERATURE PHYSICS VOLUME 32, NUMBER 4-5 APRIL-MAY 2006 Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article A.-M. S. Tremblay,

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Walter Metzner, Max-Planck-Institute for Solid State Research 1. Introduction 2. Functional RG for Fermi

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005 Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model arxiv:cond-mat/0504529v2 [cond-mat.supr-con] 1 Dec 2005 T.A. Maier, 1 M. Jarrell, 2 T.C. Schulthess, 1 P. R. C. Kent, 3 and

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

!#$%& IIT Kanpur. !#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport!"#$%&. Kanpur, 1857. How spins become

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Superconductivity from repulsion

Superconductivity from repulsion Superconductivity from repulsion Andrey Chubukov University of Minnesota University of Virginia Feb. 0, 07 Superconductivity: Zero-resistance state of interacting electrons A superconductor expels a magnetic

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 5 Dec 2003

arxiv:cond-mat/ v2 [cond-mat.str-el] 5 Dec 2003 Weak ferromagnetism and other instabilities of the two-dimensional t-t Hubbard model at Van Hove fillings arxiv:cond-mat/3696v [cond-mat.str-el] 5 Dec 3 V. Hankevych,, B. Kyung, and A.-M. S. Tremblay,3

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons

Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons PHYSICAL REVIEW B VOLUME 53, NUMBER JUNE 996-I Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons Anne-Marie Daré, Y. M. Vilk, and A.-M. S. Tremblay

More information

DT I JAN S S"= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF

DT I JAN S S= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF ' DT I,, Final Report: ONR Grant N00014-91-J-1143 Unclassified: For General Distribution LECTF JAN 2 8 1993 Steven R. White, UC Irvine c Summary Over the last two years, we have used several different

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

The NMR Probe of High-T c Materials

The NMR Probe of High-T c Materials R.E. Walstedt The NMR Probe of High-T c Materials 4y Springer Contents Introduction 1 1.1 The Basic Phenomenology of High-T c. Materials 1 1.2 Carrier Doping and the Master Phase Diagram 2 1.3 The NMR

More information

arxiv:cond-mat/ v1 26 Jan 1994

arxiv:cond-mat/ v1 26 Jan 1994 Hartree Fock and RPA studies of the Hubbard model arxiv:cond-mat/9401057v1 26 Jan 1994 F. Guinea 1, E. Louis 2 and J. A. Vergés 1 1 Instituto de Ciencia de Materiales. Consejo Superior de Investigaciones

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model

Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model PHYSICAL REVIEW B, VOLUME 63, 125116 Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model Thereza Paiva* and R. T. Scalettar

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Landau-Fermi liquid theory

Landau-Fermi liquid theory Landau- 1 Chennai Mathematical Institute April 25, 2011 1 Final year project under Prof. K. Narayan, CMI Interacting fermion system I Basic properties of metals (heat capacity, susceptibility,...) were

More information

The Hubbard Model In Condensed Matter and AMO systems

The Hubbard Model In Condensed Matter and AMO systems The Hubbard Model In Condensed Matter and AMO systems Transition Metal Oxides The Fermion Hubbard Model Transition Metal Oxides - The Whole Story High Temperature Superconductors Monte Carlo and Quantum

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Parquet approximation for the 4 Ã 4 Hubbard cluster

Parquet approximation for the 4 Ã 4 Hubbard cluster Parquet approximation for the 4 Ã 4 Hubbard cluster S. X. Yang, 1 H. Fotso, 1 J. Liu, 1 T. A. Maier, 2,3 K. Tomko, 4 E. F. D Azevedo, 2 R. T. Scalettar, 5 T. Pruschke, 6 and M. Jarrell 1 1 Department of

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques ``Enseigner la recherche en train de se faire Chaire de Physique de la Matière Condensée Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques Antoine

More information

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Spin-charge

More information

Quantum Cluster Methods: An introduction

Quantum Cluster Methods: An introduction Quantum Cluster Methods: An introduction David Sénéchal Département de physique, Université de Sherbrooke International summer school on New trends in computational approaches for many-body systems May

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

A BCS Bose-Einstein crossover theory and its application to the cuprates

A BCS Bose-Einstein crossover theory and its application to the cuprates A BCS Bose-Einstein crossover theory and its application to the cuprates Qijin Chen, Ioan Kosztin, Boldizsár Jankó, and K. Levin Citation: AIP Conf. Proc. 483, 22 (1999); doi: 10.1063/1.59579 View online:

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

Quantum Cluster Methods

Quantum Cluster Methods Quantum Cluster Methods An introduction David Sénéchal Université de Sherbrooke Département de physique CIFAR - PITP International Summer School on Numerical Methods for Correlated Systems in Condensed

More information

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on?

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on? André-Marie Tremblay Collège de France, 9, 16, 23 et 30 mars 2015 17h00 à 18h30 Two pillars of Condensed Matter

More information

High Temperature Superconductivity - After 20 years, where are we at?

High Temperature Superconductivity - After 20 years, where are we at? High Temperature Superconductivity - After 20 years, where are we at? Michael Norman Materials Science Division Argonne National Laboratory Norman and Pepin, Rep. Prog. Phys. (2003) Norman, Pines, and

More information

Recent advances on Hubbard models using quantum cluster methods

Recent advances on Hubbard models using quantum cluster methods Recent advances on Hubbard models using quantum cluster methods David Sénéchal Département de physique Faculté des sciences Université de Sherbrooke 213 CAP Congress, Université de Montréal May 27, 213

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory B. Kyung, 1 G. Kotliar, 2 and A.-M. S. Tremblay 1 1 Département de physique and Regroupement québécois sur

More information

Specific heat of a fermionic atomic cloud in the bulk and in traps

Specific heat of a fermionic atomic cloud in the bulk and in traps Specific heat of a fermionic atomic cloud in the bulk and in traps Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski University of Washington, Seattle, WA Also in Warsaw Outline Some general remarks Path

More information

10 Strongly Correlated Superconductivity

10 Strongly Correlated Superconductivity 10 Strongly Correlated Superconductivity André-Marie S. Tremblay Département de physique Regroupement québécois sur les matériaux de pointe Canadian Institute for Advanced Research Sherbrooke, Québec J1K

More information

Extreme scale simulations of high-temperature superconductivity. Thomas C. Schulthess

Extreme scale simulations of high-temperature superconductivity. Thomas C. Schulthess Extreme scale simulations of high-temperature superconductivity Thomas C. Schulthess T [K] Superconductivity: a state of matter with zero electrical resistivity Heike Kamerlingh Onnes (1853-1926) Discovery

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Temperature crossovers in cuprates

Temperature crossovers in cuprates J. Phys.: Condens. Matter 8 (1996) 10017 10036. Printed in the UK Temperature crossovers in cuprates Andrey V Chubukov, David Pines and Branko P Stojković Department of Physics, University of Wisconsin,

More information

Numerical Studies of the 2D Hubbard Model

Numerical Studies of the 2D Hubbard Model arxiv:cond-mat/0610710v1 [cond-mat.str-el] 25 Oct 2006 Numerical Studies of the 2D Hubbard Model D.J. Scalapino Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA Abstract

More information

a-. 2m ar, MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU EQUATIONS IN THE THEORY OF SUPERCONDUCTIVITY {- _? (_? - iea (r) \) 2 + G (x x')

a-. 2m ar, MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU EQUATIONS IN THE THEORY OF SUPERCONDUCTIVITY {- _? (_? - iea (r) \) 2 + G (x x') SOVIET PHYSICS JETP VOLUME 36(9), NUMBER 6 DECEMBER, 1959 MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU EQUATIONS IN THE THEORY OF SUPERCONDUCTIVITY L. P. GOR'KOV Institute for Physical Problems, Academy

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information