Can superconductivity emerge out of a non Fermi liquid.

Size: px
Start display at page:

Download "Can superconductivity emerge out of a non Fermi liquid."

Transcription

1 Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003

2 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism

3 High Tc superconductors La2CuO4

4 Building blocks CuO2 layers

5 Phase diagram of the cuprates

6 Facts about high Tc superconductors Antiferromagnetism of parent compounds(e.g, YBCO6 and La2CuO4) d-wave symmetry of the superconductiving state An exchange of near antiferromagnetic spin fluctuations yields d-wave pairing (Scalapino, Pines, ) 2 ξ + ξ0 Tc ξ exp( ) ξ (c.f. McMillan for phonons)

7 Why there is still an interest in high Tc? Non-Fermi liquid behavior in the normal state Pseudogap

8 Fermi Liquid Self-energy Σ // 2 ( ω + ( πt ) 2 Resistivity Optical conductivity Specific heat (ω 2 log ω in D = ρ (T) T σ ( ω) ω C(T) T -2 2)

9 Optimally doped Bi2212 Σ '' ( ω) ω, not ω 2

10 Self-energy vs frequency and T Linearity at large w w/t scaling

11 Superconducting state BCS theory Photoemission intensity I(ω) normal state I(ω) superconducting state k k F k k F 0 ω 0 ω The superconducting gap vanishes at Tc

12 Photoemission intensity in high Tc In a The gap does not vanishes at Tc.

13 STM Pseudogap di/dv 300 K Bi 2 Sr 2 CaCu 2 O 8 (Tc = 82 K) 85 K 4.2 K Ch.Renner et al. PRL 80, 149 (1998) ARPES IR:1/ τ(ω) (π,0) (π,π) 170 K 85 K 10 K H.Ding et al Nature 382, 51 (1996) cm -1 1/τ(ω), cm K K A.Puchkov et al PRL 77, 3212 (1996) Raman 300 K 85 K 10 K G.Blumberg et al. Science 278, 1427 (1997)

14 Pseudogap: in-plane scattering rate 1/τ(ω), [cm] YBa 2 Cu 3 O 6.6 T c = 59 K 300 K 65 K 10 K 2 1/τ(ω) = ω p Re 1 σ(ω) σ 1 (ω), (Ωcm) T* K K 1000 ρ(t), µωcm T, K 10 K cm -1 cm -1

15 Pseudogap in the tunneling data for Bi2212 underdoped overdoped

16 Strong coupling theories for the cuprates Two different approaches depending on the point of departure doping of a quantum antiferromagnet (Mott insulator + interactions) strong coupling spin fluctuation theory (Fermi liquid + interactions) Another approach - Marginal Fermi liquid phenomenology

17 The real issue is whether superconductivity, pseudogap and Non-Fermi liquid physics are all low energy phenomena On one hand the upper scale for a Fermi liquid is E F ~1eV the effective interaction U ~1-2 ev comparable On the other hand the superconducting gap ~ E F the pseudogap temperature T * ~ E F non-fermi liquid behavior up to 3 T ~10 K All these scales are at least order of magnitude smaller than E F

18 Let's see what the low-energy approach gives us Questions: is there a non FL behavior? is there a superconductivity? is there a pseudogap? is there a secondary critical point?

19 SPIN-FERMION MODEL Describes the interaction between electrons and their own collective spin degrees of freedom Ingredients: electrons near the Fermi surface low-energy collective spin excitations a residual coupling between electrons and collective modes Inputs: Fermi velocity spin correlation length spin-fermion coupling

20 The model has two typical energy scales -- effective interaction -- internal energy scale The ratio of the two determines the dimensionless coupling constant λ 2 = ω 2 /4 ωsf Perturbative expansion in 2D holds in powers of Problem with perturbation theory: i.e., dimensionless coupling diverges at the quantum critical point. λ ξ λ λ 3 D ( for arbitrary D) Perturbation theory does not work in d=2 near the QCP

21 Back to the cuprates Near optimal doping, ωsf ~ 20 mev ω ~ mev NMR and neutrons resonance neutron peak λ ~ 1.5-2, ω ~ 10-15ω Even larger λ for underdoped cuprates sf For all relevant dopings, we are facing the strong coupling problem, and conventional weak coupling reasoning is unapplicable

22 What to do when λ? Phonons λ >> 1, λ vs /vf << 1 Spin fluctuations phonons are soft modes compared to electrons two couplings λ and Eliashberg theory (solvable exactly) spin fluctuations have the same velocity as electrons just one coupling no Migdal theorem λ v / v s F

23 (π,0) (π,π) Q h.s. (0,π) Fermi surface has hot spots - points separated by ( π, π ) A spin fluctuation can decay into a particle-hole pair. At strong coupling, spin fluctuations become diffusive and soft compared to electrons Self-generated Eliashberg theory - series in λ and log (1+ λ) analog of λ v /v s F Neglecting logs, we can solve the normal state exactly.

24 Eliashberg theory Fermionic and spin excitations vary at the same scale Fermi Liquid 0 sf => ω ξ -2 Quantum Critical Non-Fermi Liquid => ω ω sf Im Σ(ω) (arb. units) ω ω 1/2 ω 2 ω/ω sf => => Fermions: FL Spin excitations: static -1 χ ( q,ω) q 2 + ξ -2 Fermions: QC NFL Spin excitations: relaxational χ -1 ( q,ω) q 2 + iω/ω 1 G ( ω)~ ω sf

25

26 Pairing problem Spin-mediated pairing yields attraction in d-wave channel (Scalapino, Pines ) Which of the two scales, ω or ω sf determines the pairing instability? Temperature pairing of Fermi liquid quasiparticles only pairing of non-fermi liquid quasiparticles T ins order parameter fluctuations T ins AF T FL c AF AF T c q.c. point doping

27 Earlier reasoning : T c ~ ω sf only Fermi liquid regime is relevant, ω < ω sf effective coupling λeff = λ/(1+ λ) = O(1) pairing interaction decreases above ω sf 2 ξ + ξ0 Tc ξ exp( ) ξ (c.f. McMillan for phonons)

28 Can non-fermi liquid fermions contribute to the pairing? in a Fermi liquid regime, above ω sf, λ eff λeff = λ/(1+ λ) = O(1) remains constant up to ω A novel, universal, non BCS pairing problem: non-fermi liquid fermions gapless spin collective mode attaction in a d- wave channel

29 Analytical and numerical analysis: A linearized gap equation has a solution at T ins ~ ω 0.2 T/ω T ins 0.1 McMillan inverse coupling λ 1 T ins = 0.17 ω at λ =

30 The onset of the pairing instability

31 Do we have a true superconductor below T ins? The gap (T = 0) ~ Tins (2 (0)/Tins 4) 4 λ=2, T=0 Phase fluctuations are irrelevant (Fermi energy is the largest scale) What is unusual? Collective spin fluctuation modes at energies below the gap units of ω 0 ReZ(ω) ImZ(ω) Re (ω) Im (ω) ω/ω

32 Low energy spin fluctuations in a superconductor Normal state overdamped spin fluctuations at Superconducting state ω sf no low-energy decay due to fermionic gap spin fluctuations become propagating χ( ω) ~ 2 ω ωres (T = 0) 1 2 ω res ω 1/ 2 res ( ω ωsf ) ~ ~ ξ -1

33 Resonance peak in a d-wave superconductor

34 Q: For how long can coherent superconductivity survive? A: Up to T ~ ω c res Evidence: At T=0, longitudinal superconducting stiffness At T>0, ρ s (T) ω res T ρ s ~ ω The specific heat C(T) for a coherent state changes sign at res T ~ ω res Physics: χ( ω) ~ 2 ω 1 2 ω res attraction only up to ω res

35 Conclusions strong interaction between fermions and their own low-energy spin collective modes yields: non-fermi liquid, QC behavior in the normal state between a pairing instability at Tins ~ ω that yields a very small gain in the condensation enegy ω and ω sf a true superconductivity at Tc ~ ( ω ω 1/2 sf ) that scales with the resonance neutron frequency

36 Collaborators Artem Abanov (UW/LANL) Boris Altshuler (Princeton) Sasha Finkelstein (Weizmann) R. Haslinger (UW/LANL) J. Schmalian (Iowa) E. Yuzbashuan (Princeton)

37 PSEUDOGAP: a-axis resistivity 3 T* Resistivity, mωcm Temperature, K

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Universität Tübingen Lehrstuhl für Theoretische Festkörperphysik Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6 Thomas Dahm Institut für Theoretische Physik Universität Tübingen

More information

Temperature crossovers in cuprates

Temperature crossovers in cuprates J. Phys.: Condens. Matter 8 (1996) 10017 10036. Printed in the UK Temperature crossovers in cuprates Andrey V Chubukov, David Pines and Branko P Stojković Department of Physics, University of Wisconsin,

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

The NMR Probe of High-T c Materials

The NMR Probe of High-T c Materials R.E. Walstedt The NMR Probe of High-T c Materials 4y Springer Contents Introduction 1 1.1 The Basic Phenomenology of High-T c. Materials 1 1.2 Carrier Doping and the Master Phase Diagram 2 1.3 The NMR

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Recent Advances in High-Temperature Superconductivity

Recent Advances in High-Temperature Superconductivity Recent Advances in High-Temperature Superconductivity Nai-Chang Yeh After more than 15 years of intense research since the discovery of high-temperature superconductivity [1], many interesting physical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ 67 Chapter 4 Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ 1 4.1 Introduction The proximity of cuprate superconductors to the Mott insulating phase gives rise to novel superconducting behavior enriched

More information

Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors. T. Domański

Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors. T. Domański Wrocław, 2 Oct. 2014 Residual Meissner effect and other pre-pairing phenomena in the cuprate superconductors T. Domański M. Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999 arxiv:cond-mat/9905219v1 [cond-mat.supr-con] 14 May 1999 The pseudogap in high temperature superconductors: an experimental survey Tom Timusk and Bryan Statt Department of Physics and Astronomy, McMaster

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

The pseudogap state in high-t c superconductors: an infrared study

The pseudogap state in high-t c superconductors: an infrared study J. Phys.: Condens. Matter 8 (1996) 149 182. Printed in the UK The pseudogap state in high-t c superconductors: an infrared study A V Puchkov, D N Basov and T Timusk Department of Physics and Astronomy,

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 26 Jul 2006 Doping dependent optical properties of Bi 2 Sr 2 CaCu 2 O 8+δ

arxiv:cond-mat/ v2 [cond-mat.supr-con] 26 Jul 2006 Doping dependent optical properties of Bi 2 Sr 2 CaCu 2 O 8+δ arxiv:cond-mat/67653v2 [cond-mat.supr-con] 26 Jul 26 Doping dependent optical properties of Bi 2 Sr 2 CaCu 2 O 8+δ J Hwang 1, T Timusk 1,2 and G D Gu 3 1 Department of Physics and Astronomy, McMaster University,

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

The pseudogap in high-temperature superconductors: an experimental survey

The pseudogap in high-temperature superconductors: an experimental survey Rep. Prog. Phys. 62 (1999) 61 122. Printed in the UK PII: S0034-4885(99)83774-9 The pseudogap in high-temperature superconductors: an experimental survey Tom Timusk and Bryan Statt Department of Physics

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Electron Doped Cuprates

Electron Doped Cuprates Electron Doped Cuprates Daniela Lindner High temperature superconductivity in the copper-oxide ceramics obtains upon hole or electron doping the parent Mott insulating material. While the pairing symmetry

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Superconductivity from repulsion

Superconductivity from repulsion Superconductivity from repulsion Andrey Chubukov University of Minnesota University of Virginia Feb. 0, 07 Superconductivity: Zero-resistance state of interacting electrons A superconductor expels a magnetic

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology 63 Chapter 4 Vortex Checkerboard There is no need to invoke alternative order parameters to explain observed DOS modulations in optimally doped Bi 2 Sr 2 CaCu 2 O 8+δ. To continue the search for interesting

More information

arxiv:cond-mat/ v1 8 Mar 1995

arxiv:cond-mat/ v1 8 Mar 1995 Model of C-Axis Resistivity of High-T c Cuprates Yuyao Zha, S. L. Cooper and David Pines Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801 arxiv:cond-mat/9503044v1

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Doping-induced change of optical properties in underdoped cuprate superconductors

Doping-induced change of optical properties in underdoped cuprate superconductors J. Phys.: Condens. Matter 11 (1999) 239 264. Printed in the UK PII: S0953-8984(99)96100-3 Doping-induced change of optical properties in underdoped cuprate superconductors H L Liu, M A Quijada #, A M Zibold,

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Peng Cai 1, Wei Ruan 1, Yingying Peng, Cun Ye 1, Xintong Li 1, Zhenqi Hao 1, Xingjiang Zhou,5,

More information

Inhomogeneous spin and charge densities in d-wave superconductors

Inhomogeneous spin and charge densities in d-wave superconductors Inhomogeneous spin and charge densities in d-wave superconductors Arno P. Kampf Paris, June 2009 Collaborative Research Center SFB 484 Cooperative Phenomena in Solids: Metal-Insulator-Transitions and Ordering

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations Demystifying the Strange Metal in High-temperature Superconductors: Composite Excitations Thanks to: T.-P. Choy, R. G. Leigh, S. Chakraborty, S. Hong PRL, 99, 46404 (2007); PRB, 77, 14512 (2008); ibid,

More information

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

Citation PHYSICAL REVIEW LETTERS (2000), 85(   RightCopyright 2000 American Physical So Title Discriminating the superconducting Bi2Sr2CaCu2O8+delta by interlayer t Author(s) Suzuki, M; Watanabe, T Citation PHYSICAL REVIEW LETTERS (2), 85( Issue Date 2-11-27 URL http://hdl.handle.net/2433/39919

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000 Electronic Structure of La 2 x Sr x CuO 4 in the Vicinity of the Superconductor-Insulator Transition arxiv:cond-mat/99248v3 [cond-mat.supr-con] 23 May 2 A. Ino, C. Kim 2, M. Nakamura 3, T. Yoshida, T.

More information

Unusual magnetic excitations in a cuprate high-t c superconductor

Unusual magnetic excitations in a cuprate high-t c superconductor Unusual magnetic excitations in a cuprate high-t c superconductor Yuan Li Max Planck Institute for Solid State Research Stuttgart, Germany Collaborators University of Minnesota / Stanford University, USA

More information

A BCS Bose-Einstein crossover theory and its application to the cuprates

A BCS Bose-Einstein crossover theory and its application to the cuprates A BCS Bose-Einstein crossover theory and its application to the cuprates Qijin Chen, Ioan Kosztin, Boldizsár Jankó, and K. Levin Citation: AIP Conf. Proc. 483, 22 (1999); doi: 10.1063/1.59579 View online:

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors Effect of the magnetic resonance on the electronic spectra of high- c superconductors M. Eschrig 1, and M.. Norman 1 1 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Institut

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

arxiv:cond-mat/ v1 8 May 1997

arxiv:cond-mat/ v1 8 May 1997 Topological asymmetry in the damping-pairing contribution of electron-boson scattering arxiv:cond-mat/9705071v1 8 May 1997 G. Varelogiannis Institute of Electronic Structure and Laser Foundation for Research

More information

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties. Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties. J.R. Cooper, QM group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK e-mail jrc19@cam.ac.uk

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017 International Journal of Modern Physics B c World Scientific Publishing Company arxiv:1712.01624v1 [cond-mat.supr-con] 5 Dec 2017 How to pin down the pairing interaction for high T c superconductivity

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4 Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4 Thesis Akihiro Ino Department of Physics, University of Tokyo January 1999 Contents 1 Introduction 1 2 Backgrounds 5 2.1 High-T

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor 1 Chapter 1 Introduction Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor La 2 x Ba x CuO 4 in 1986, and the intriguing physics of cuprate superconductors

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

The phase diagram: the pseudogap regime. of T c.

The phase diagram: the pseudogap regime. of T c. PHYS598/2 A.J.Leggett Lecture 6 The phase diagram: the pseudogap regime 1 The phase diagram: the pseudogap regime. of T c. Systematics There is fairly general agreement that the identifiable phase transitions

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information