!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Size: px
Start display at page:

Download "!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors"

Transcription

1 How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb Interaction, Instability and Transport!"#$%&. Kanpur, 1857.

2 How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory 4.5K Heavy Fermion S.C NpAl2Pd5

3 How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory Local Moment 4.5K Heavy Fermion S.C NpAl2Pd5

4 How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory composite pair 4.5K Heavy Fermion S.C NpAl2Pd5

5 Acknowledgments: Nature Physics 4, 643 (2008). arxiv: Rebecca Flint Maxim Dzero (U. Maryland).

6 Acknowledgments: Nature Physics 4, 643 (2008). arxiv: Rebecca Flint Maxim Dzero (U. Maryland). Scott Thomas (Rutgers) Pascoal Pagliuso & group (Unicamp) Joe Thompson (LANL) Filip Ronning (LANL) E. D. Bauer (LANL) Zachary Fisk (UCIrvine) Cigdem Capan (UCIrvine) Alexei Tsvelik (BNL) Natan Andrei (Rutgers) Hae Young Kee (Toronto) PRB 60, 3609, (1998).

7 Acknowledgments: Nature Physics 4, 643 (2008). arxiv: Rebecca Flint Maxim Dzero (U. Maryland). Scott Thomas (Rutgers) Pascoal Pagliuso & group (Unicamp) Joe Thompson (LANL) Filip Ronning (LANL) E. D. Bauer (LANL) Zachary Fisk (UCIrvine) Cigdem Capan (UCIrvine) Alexei Tsvelik (BNL) Natan Andrei (Rutgers) Hae Young Kee (Toronto) PRB 60, 3609, (1998).

8 Outline

9 Outline! The materials: Why the 115s are so special?

10 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model

11 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N

12 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram

13 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

14 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

15 Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Pauli Susceptibility Curie

16 Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie

17 Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie

18 Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie Spin Fluctuations

19 Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation Pauli T* ~ 100K, T C =.56K Susceptibility Curie Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations

20 Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Stage one: QP formation Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations Nodal SC Kohori 1988

21 Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Stage one: QP formation Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations Led to proposal that AFM spin fluctuations drive d-wave pairing Nodal SC Beal-Monod, Bourbonnais and Emery Scalapino, Loh and Hirsch Miyake, Schmitt-Rink, and Varma 1986 Kohori 1988

22 115 materials: a new family of superconductors In

23 115 materials: a new family of superconductors Oxides T c? YBa 2 Cu 3 O 7 92K In Ba K

24 115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? YBa 2 Cu 3 O 7 92K Mathur et al, Nature 394, 39 (1998) In Ba K 0.2K CeIn 3 96

25 115 materials: a new family of superconductors Ce Co Oxides 115 Intermetallics T c T c? YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba K 0.2K CeIn 3 96

26 115 materials: a new family of superconductors Ce Co Oxides 115 Intermetallics Tuson Park, (2007). CeRhIn 5 T c T c? YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba K 0.2K CeIn 3 96

27 115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? 18.5K PuCoGa 5 02 YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba K 0.2K CeIn 3 96

28 115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? 18.5K PuCoGa 5 02 NpAl 2 Pd 5 4.5K 07 YBa 2 Cu 3 O 7 92K 2K CeCoIn K Heavy Fermion S.C NpAl2Pd5 In D. Aoki et al., JPSJ 76 (2007) Ba K 0.2K CeIn 3 96

29 The 115s: local moments at T C NpPd 5 Al 2 T C = 4.5K Curie No Pauli paramagnetism ~1/3 R ln(2) Large condensation entropy Aoki et al 2007

30 The 115s: local moments at T C NpPd 5 Al 2 T C = 4.5K CeCoIn 5 T C = 2.3K Ce Co In ~1/3 R ln(2) ~1/3 R ln(2) Aoki et al 2007 Petrovic et al 2001

31 The 115s: local moments at T C Ce In NpPd 5 Al 2 T C = 4.5K CeCoIn 5 T C = 2.3K Co Follow spins below T C ~1/3 R ln(2) 1/3 R ln(2) 1/3 R ln(2) Knight Shift Aoki et al 2007 Petrovic et al 2001 Aoki et al 2007 Curro et al 2001

32 Curro et al 2001 The 115s: local moments at T C Above T C ~1/3 R ln(2) Curie Free local moments down to T C Aoki et al 2007 Below T C Knight Shift Spin singlet, nodal SC Spins pair and quench simultaneously Curro et al 2001 Sarrao and Thompson 2007 How are spins incorporated into the pair?

33 Kondo effect and Heavy Fermions Review: cond-mat/ Nozieres 74

34 Kondo effect and Heavy Fermions Review: cond-mat/ H = Jσ (0) S J. Kondo 64 Nozieres 74

35 Kondo effect and Heavy Fermions Review: cond-mat/ H = Jσ (0) S T K F e F J J. Kondo 64 Nozieres 74

36 Kondo effect and Heavy Fermions Review: cond-mat/ χ T K 1 T K H = Jσ (0) S χ 1/T T K F e F J T K J. Kondo 64 T Nozieres 74

37 Kondo effect and Heavy Fermions Review: cond-mat/ χ T K 1 T K H = Jσ (0) S χ 1/T T K F e F J T K J. Kondo 64 T Nozieres 74

38 Kondo effect and Heavy Fermions Review: cond-mat/

39 Kondo effect and Heavy Fermions Review: cond-mat/ PuCoGa 5 H = Jσ (0) S

40 Kondo effect and Heavy Fermions Review: cond-mat/ PuCoGa 5 H = Jσ (0) S Directly Curie PM to SC

41 Kondo effect and Heavy Fermions Review: cond-mat/ PuCoGa 5 H = Jσ (0) S S.C. Directly Curie PM to SC

42 Kondo effect and Heavy Fermions Review: cond-mat/ PuCoGa 5 H = Jσ (0) S S.C. How do spins quench and form pairs?

43 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

44 Cotunneling and composite fermions

45 Cotunneling and composite fermions van der Wiel et al, Science (2000)

46 Cotunneling and composite fermions van der Wiel et al, Science (2000) + T>>TK: Coulomb Blockade

47 Cotunneling and composite fermions van der Wiel et al, Science (2000) T<<TK

48 Cotunneling and composite fermions van der Wiel et al, Science (2000) T<<TK

49 Cotunneling and composite fermions van der Wiel et al, Science (2000) Cotunneling (Glazman +Pustilnik) (quantum dots) f = c S T<<TK

50 Cotunneling and composite fermions Cotunneling Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy electron = (electron x spinflip) f = c S

51 Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S

52 Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S Ψ = c 1 c 2 S +

53 Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S Ψ = c 1 c 2 S + Abrahams, Balatsky, Scalapino, Schrieffer 1995

54 Two-channel model for composite pairing.

55 The Two Channel Kondo Model Wannier functions at site j:

56 The Two Channel Kondo Model Wannier functions at site j:! Both {

57 The Two Channel Kondo Model Wannier functions at site j:! Both {

58 The Two Channel Kondo Model Wannier functions at site j:! Both {

59 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

60 Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 T/TK FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

61 Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

62 Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK Avoided in the lattice by composite pairing. FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

63 Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK Avoided in the lattice by composite pairing. FL1 - - FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

64 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

65 H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

66 S[ψ] So how can we solve this τ,x model? ψ(x, τ) Wild quantum fluctuations! H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

67 Method: symplectic large N Flint & Coleman ʼ08 PRB 79, (2009) S[ψ] So how can we solve this τ,x model? ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

68 Method: symplectic large N Flint & Coleman ʼ08 PRB 79, (2009) S[ψ] τ,x Large N limit ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

69 Method: symplectic large N Flint & Coleman ʼ08 PRB 79, (2009) S[ψ] τ,x Large N limit ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

70 S[ψ] τ,x Large N limit 1 N eff ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

71 S[ψ] τ,x Large N limit 1 N eff ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

72 S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

73 S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk? S ba (j) c k e ik x j

74 Symplectic N (large N + time reversal symmetry) R. Flint and PC 08 S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk? S ba (j) c k e ik x j

75 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ).

76 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ) Hybridization.

77 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing

78 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing H I [V f + ( fσ 2 )]ψ + H.c + N V V + J K.

79 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry Reflects the neutrality of the spin Pairing can be gauged away N= 2: Affleck, Zou, Hsu and Anderson 1988 H I [V f + ( fσ 2 )]ψ + H.c + N V V + J K.

80 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry Reflects the neutrality of the spin Pairing can be gauged away N= 2: Affleck, Zou, Hsu and Anderson 1988 H I [V f + ( fσ 2 )]ψ + H.c. = f V = f Ṽ + N V V + J K.

81 The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry N= 2: Affleck, Zou, Hsu and Anderson 1988 Reflects the neutrality of the spin Pairing can be gauged away -recovering results of SU(N) large N.

82 The 2-channel model:

83 The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V J 1 V2 V J 2

84 The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V J 1 V2 V J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V J 1 J 2

85 The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V J 1 V2 V J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V J 1 J 2 The gauge-invariant cross term formation of composite pairs V 1 2 V 2 1 describe the overscreened S ψ 1 σ 2 σ ψ 2 V 1 2 V 2 1 PC, Kee, Andrei & Tsvelik. (97)

86 The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V J 1 V2 V J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V J 1 J 2 The gauge-invariant cross term formation of composite pairs V 1 2 V 2 1 describe the overscreened S ψ 1 σ 2 σ ψ 2 V 1 2 V 2 1 k k PC, Kee, Andrei & Tsvelik. (97) V 1 γ 1 (k) 2 γ 2 ( k) eff (k) V 1 2 γ 1 (k)γ 2 (k) k k 2 γ 2 (k) V 1 γ 1 ( k) resonant Andreev scattering.

87 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

88 The Phase Diagram 1 V 1 " 0 # 2 " 0 V 1! 2 " !

89 The Phase Diagram 1 Heavy Fermi Liquid One Heavy Fermi Liquid Two V 1 " 0 # 2 " 0 - V 1! 2 " !

90 Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C

91 But how to unify magnetically mediated pairing and composite pairing in the Ce 115s?

92 But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

93 But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

94 But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

95 But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing Composite pairing

96 The Two channel Kondo-Heisenberg Model Two channel Kondo Model Heisenberg Model

97 The Two channel Kondo-Heisenberg Model

98 The Two channel Kondo-Heisenberg Model

99 The Two channel Kondo-Heisenberg Model - Spin liquid state

100 The Two channel Kondo-Heisenberg Model = - - Spin liquid state d-wave Anderson 1973 Baskaran, Zou and Anderson 1987

101 The Two channel Kondo-Heisenberg Model Spin liquid state d-wave Anderson 1973 Baskaran, Zou and Anderson 1987

102 The Two channel Kondo-Heisenberg Model - V V 1 -

103 The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs + - V V 1 -

104 The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs Inheriting d-wave nature from the antiferromagnetism - V V 1 - +

105 The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs Inheriting d-wave nature from the antiferromagnetism - V V Two band version of RVB pairing - - Anderson 1987 Andrei and Coleman 1989 Miyake, Schmitt-Rink, Varma 1986

106 The Two channel Kondo-Heisenberg Model Spin Liquid # H V 1 # H Heavy Fermi Liquid V 1 Superconductor - - Andrei and Coleman 1989

107 The Phase Diagram Magnetic pairing V 1 # H " 0

108 The Phase Diagram Composite pairing V 1 # 2 " 0

109 The Phase Diagram Decoupled magnetic and composite pairing V 1 # H +V 1 # 2 " 0

110 The Phase Diagram Hybrid pairing V 1 # 2 # H " 0

111 The Phase Diagram Composite and d-wave pairing mutually reinforce. Hybrid pairing V 1 # 2 # H " 0

112 Landau Theory

113 Comparision to the Ce 115s Sarrao and Thompson 2007

114 Comparision to the Ce 115s Chemical pressure traces a path through phase space Sarrao and Thompson 2007

115 Comparision to the Ce 115s Chemical pressure traces a path through phase space CeCoIn 5 CeIrIn 5 CeRhIn 5 Sarrao and Thompson 2007

116 Comparision to the Ce 115s Chemical pressure traces a path through phase space? Sarrao and Thompson 2007

117 Comparision to the Ce 115s Chemical pressure traces a path through phase space Sarrao and Thompson 2007

118 Experimental implications! Valence shift (#n f ) associated with Kondo physics Gunnarsson and Schonhammer 1983

119 Experimental implications! Valence shift (#n f ) associated with Kondo physics! Sharp valence shift of opposite sign expected at T C! Observable in core level spectroscopy n f 1 X-ray 0 T C T K T Gunnarsson and Schonhammer 1983

120 Experimental implications! Valence shift (#n f ) associated with Kondo physics! Sharp valence shift of opposite sign expected at T C! Observable in core level spectroscopy 1 X-ray n f! Orbital Knight shift in NQR? 0 T T C T K

121 Conclusions! Spins quench as they pair in the 115s - -! Must be incorporated directly into the condensate! Two channel physics leads to composite pairs! First controlled mean field theory of heavy fermion superconductivity - Symplectic-N! Composite and magnetic pairing cooperate to enhance T C

122 Discussion: Thank You!

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s. 1957-2 Miniworkshop on Strong Correlations in Materials and Atom Traps 4-15 August 2008 Superconductivity, magnetism and criticality in the 115s. THOMPSON Joe David Los Alamos National Laboratory Materials

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Time reversal and the symplectic symmetry of the electron spin.

Time reversal and the symplectic symmetry of the electron spin. Time reversal and the symplectic symmetry of the electron spin. Rebecca Flint, M. Dzero and P. Coleman Center for Materials Theory, Rutgers University, Piscataway, NJ 08855, U.S.A. In the search for new

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy

Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy H.Z. Arham, W.K. Park, C.R. Hunt, LHG UIUC Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li,

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Qu-Transitions. P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010.

Qu-Transitions. P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-Transitions P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-Transitions Phase transitions in the quantum era P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010. Qu-era: revolutions always have a

More information

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response 2014/06/20 (fri) @NHSCP2014 Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response Department of Basic Science, The University of Tokyo JSPS Postdoctoral Fellow Shintaro

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Sunday, February 17, 13

Sunday, February 17, 13 Actinide Electron Physics: A new frontier of magnetism and superconductivity AAAS, E.Commission Boston Feb 17, 2013 Piers Coleman (Rutgers, USA, Royal Holloway, UK) Actinide Electron Physics: A new frontier

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004 Superconductivity in CeCoIn 5 x Sn x : Veil Over an Ordered State or Novel Quantum Critical Point? arxiv:cond-mat/0409559v1 [cond-mat.str-el] 21 Sep 2004 E. D. Bauer, C. Capan, F. Ronning, R. Movshovich,

More information

Phase diagrams of pressure-tuned Heavy Fermion Systems

Phase diagrams of pressure-tuned Heavy Fermion Systems Phase diagrams of pressure-tuned Heavy Fermion Systems G. Knebel, D. Aoki, R. Boursier, D. Braithwaite, J. Derr, Y. Haga, E. Hassinger, G. Lapertot, M.-A. Méasson, P.G. Niklowitz, A. Pourret, B. Salce,

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Optical conductivity of CeMIn 5 (M=Co, Rh, Ir)

Optical conductivity of CeMIn 5 (M=Co, Rh, Ir) Optical conductivity of CeMIn 5 (M=Co, Rh, Ir) F. P. Mena Material Science Center, University of Groningen, 9747 AG Groningen, The Netherlands D. van der Marel Département de Physique de la Matière Condensée,

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5. Florida State University, Tallahassee, FL Version Date: January 19, 2001

Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5. Florida State University, Tallahassee, FL Version Date: January 19, 2001 Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5 P.G. Pagliuso 1, C. Petrovic 1,2, R. Movshovich 1, D. Hall 2, M.F. Hundley 1, J.L. Sarrao 1, J.D. Thompson 1, and Z. Fisk 1,2 1 Los

More information

Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view

Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view Swapnil Patil* Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Comparison of the Crystal Structure of the Heavy-Fermion Materials

Comparison of the Crystal Structure of the Heavy-Fermion Materials Proceedings ICNS2001, supplement of Applied Physics A. Material Science & Processing Comparison of the Crystal Structure of the Heavy-Fermion Materials CeCoIn5,, CeRhIn5 and CeIrIn5 E. G. Moshopoulou 1*,

More information

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids Beyond Quasiparticles: New Paradigms for Quantum Fluids Aspen Center for Physics 14-17 June, 2014 Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion

More information

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K) Hidden order in URu 2 Si 2 : Rebecca Flint Iowa State University hybridization with a twist C/T (mj/mol K 2 ) T (K) P. Chandra, P. Coleman and R. Flint, arxiv: 1501.01281 (2015) P. Chandra, P. Coleman

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Kazu. Machida Okayama Univ collaborators M. Ichioka, T. Mizushima, H. Adachi, N. Nakai, Y. Tsutsumi Outline Phenomena related

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

RESUME DEPARTMENT OF PHYSICS AND ASTRONOMY IOWA STATE UNIVERSITY (2/12/2015)

RESUME DEPARTMENT OF PHYSICS AND ASTRONOMY IOWA STATE UNIVERSITY (2/12/2015) RESUME DEPARTMENT OF PHYSICS AND ASTRONOMY IOWA STATE UNIVERSITY (2/12/2015) REBECCA FLINT Assistant Professor B-base Grad. Faculty-Full ACADEMIC POSITIONS Assistant Professor Iowa State University, Ames,

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir) NHSCP214 ISSP, University of Tokyo, Kashiwa 214.6.25 Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 2 (T = Rh and Ir) Takahiro Onimaru 1 K. T. Matsumoto 1, N. Nagasawa 1, K. Wakiya 1,

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Quantum Criticality and Emergent Phases in Heavy Fermion Metals Quantum Criticality and Emergent Phases in Heavy Fermion Metals Qimiao Si Rice University Hangzhou Workshop on Quantum Matter, April 23, 2013 Jed Pixley, Jianda Wu, Emil Nica Rong Yu, Wenxin Ding (Rice

More information

arxiv:cond-mat/ v1 19 Aug 1992

arxiv:cond-mat/ v1 19 Aug 1992 Effect of Matrix Elements on the Pairing Kernel in Exchange Mediated Superconductors arxiv:cond-mat/9208013v1 19 Aug 1992 M. R. Norman Materials Science Division Argonne National Laboratory Argonne, IL

More information

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University Quantum Criticality in Heavy Fermion Metals Qimiao Si Rice University CM Seminar, Texas A&M U, College Station, Oct. 2, 2009 Pallab Goswami, Jed Pixley Seiji Yamamoto Stefan Kirchner Jian-Xin Zhu, Lijun

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Nuclear magnetic resonance in Kondo lattice systems

Nuclear magnetic resonance in Kondo lattice systems Reports on Progress in Physics REPORT ON PROGRESS Nuclear magnetic resonance in Kondo lattice systems To cite this article: Nicholas J Curro Rep. Prog. Phys. Manuscript version: Accepted Manuscript Accepted

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Superconducting state of quasiparticles with spin dependent mass and their

Superconducting state of quasiparticles with spin dependent mass and their Superconducting state of quasiparticles with spin dependent mass and their distinguishability for Cooper-pair state J. Spałek 1*, M. M. Maśka, M. Mierzejewski, and J. Kaczmarczyk 1 1 Marian Smoluchowski

More information

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Walter Metzner, Max-Planck-Institute for Solid State Research 1. Introduction 2. Functional RG for Fermi

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Two energy scales and slow crossover in YbAl 3

Two energy scales and slow crossover in YbAl 3 Two energy scales and slow crossover in YbAl 3 Jon Lawrence University of California, Irvine http://www.physics.uci.edu/~jmlawren/research.html YbAl 3 is an intermediate valence (IV) compound with a large

More information

experiment, phenomenology, and theory

experiment, phenomenology, and theory experiment, phenomenology, and theory David Pines @90 and SCES @60, October 18, 2014 Jörg Schmalian Institute for Theory of Condensed Matter (TKM) Institute for Solid State Physics (IFP) Karlsruhe Institute

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Knight Shift Measurements on Superconducting Sr 2 RuO 4 Knight Shift Measurements on Superconducting Sr 2 RuO 4 c b a Sr 2 RuO 4 Sr Ru O RuO 2 plane Layered Perovskite structure Maeno et al. Nature 372, 532 ( 94) K. Ishida A,B,. Murakawa, A. Mukuda, B Y. Kitaoka,

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 K. Miyake KISOKO, Osaka University Acknowledgements Y. Yoshioka JPSJ 78 (2009) 074701. K. Hoshihara JPSJ 74 2679 (2005) 2679. K. Ishida,

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor 1 Chapter 1 Introduction Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor La 2 x Ba x CuO 4 in 1986, and the intriguing physics of cuprate superconductors

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds magnetochemistry Article Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds Pedro Schlottmann Department of Physics, Florida State University, Tallahassee, FL 32306,

More information