Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Size: px
Start display at page:

Download "Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction"

Transcription

1 Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb Webb PHYSICAL REVIEW B 93, (2016) Nordita, Multi-component and strongly-correlated superconductors, July 15, 2016

2 E.I. Rashba W. Kohn J. Luttinger under grads! Ethan Lake Caleb Webb

3 Condensed matter physics in 21 century: the age of spin-orbit spintronics topological insulators, Majorana fermions Kitaev s non-abelian spin liquid/toric code The key issue: spin-orbit + e-e interaction

4 Outline Spin-orbit + interaction: surprises in 1d Kohn-Luttinger (KL) mechanism in 2d magnetized gas KL in the presence of spin-orbit!!

5 Important: fully broken spin symmetry Eigenvalues Toy d=1 problem B=0: spin-orbit can be gauged away Eigenstates χ + and χ : orthogonal at the same k but not at the same energy spinors k < 0: clock-wise rotation of spins µ 1 2 k > 0: counterclock-wise rotation of spins

6 E-e interaction adds a new process: Cooper scattering (inter-band Josephson coupling) Cooper channel: spin non-conserving inter-subband pair tunneling possible due to Spin-Orbit only

7 SDW instability Easy limit: E F >> gµb >> αk F Free charge: Interacting spin: K c < 1 + Cooper process K s > 1 relevant! Strong-coupling limit: minimal Thus θ s is frozen, hence φ s fluctuates wildly - remember [φ,θ]=iδ(x-y). 2k F component of spin operators: but Ising order in the spin sector!

8 Spin chain with uniform DM term (J x R J x L) h z γ γ D x Rotate right (left) current by γ ( γ) (J x R J x L) Backscattering is modified

9 Magnetic field can now be absorbed Transverse to field (t) components oscillate So that The final Hamiltonian Cooper term

10 Phase diagram of Heisenberg+uniform DM chain e = J z J D 2 2J 2 Lesson:! ordered phases below this line are stabilized by spin-orbit+zeeman field + e-e interaction Gangadharaiah, Sun, OS, PRB 2008! Garate, Affleck 2010! Povarov et al, PRL 2011! Karimi, Affleck 2011! Smirnov et al 2015! Wen Jin, OS unpublished

11 Outline Spin-orbit + interaction: surprises in 1d Kohn-Luttinger (KL) mechanism in 2d magnetized gas KL in the presence of spin-orbit!!

12 Kohn-Luttinger mechanism: Superconductivity from repulsion NEW MECHANISM FOR SUPERCONDUCTIVITY* %. Kohn University of California, San Diego, La Jolla, California and J. M. Luttinger Columbia University, New York, New York (Received 16 August 1965) Attraction from Friedel oscillations U eff U eff (r) cos(2k F r) (2k F r) 3 r

13 More recent history

14 Hamiltonian Diagrams to U 2 order: k k k k k k k k U eff = + + k k k k k k k k k k k k + + p + k k k k k k p

15 Hamiltonian Diagrams to U 2 order: H I = Un " n # k k k k k k k k triplet channel U eff = + + k k k k k k k k k k k k + + p + k k k k k k p

16 k k U eff = k k p + k k p k k k k

17 Two dimensions: one-sided singularity s U2D e U 2 2kf 2 0 Re 1 q k q k k q apple 2k f always k F U e 2D =0 k

18 Zeeman field produces superconductivity k k k k k U eff = k k p p + k k k q Spin-up electrons experience effective attraction mediated by spin-down electrons! q Spin-down electrons remain in the normal state q apple 2k f,"! One-sided superconductivity 2k f,#

19 Outline Spin-orbit + interaction: surprises in 1d Kohn-Luttinger (KL) mechanism in 2d magnetized gas KL in the presence of spin-orbit!!

20 Basic solid state: spin-orbit interaction is unavoidable 2DEG E H SOC = α R (k x σ y k y σ x ) General set-up: arbitrary H but Zeeman energy >> Spin-orbit energy z y H quantization axis along the magnetic field 2DEG x

21

22 Expectations

23 1. Switch to band basis (spin is not conserved) E(k) = k2 2m 0 ~ H ~ + R (k x y k y x ) H k y H k y z y H 2DEG x k x +Q Q k x Q = m R sin chirality = ±1

24 2. Project the interaction into band basis keep U 2,U 2 R drop U 3,U 2 R Kohn Luttinger term

25 2. Project the interaction into band basis (via Schrieffer-Wolff transformation) Π < 0 KL process O(U 2 ) R 1 > 0 Repulsion O(Uα 2 R ) λ =1 λ =2 J<0 R 2 > 0 Josephson exchange Repuslion O(Uα 2 R ) O(Uα 2 R )

26 Mean-field order parameter dispersion Two solutions of self-consistent equations

27

28 Decoupled phase has lower energy Coupled phase suffers exponentially from intra-band repulsion R1,2

29 Pairing symmetry coupled chirality of the order parameter is opposite to that of the band decoupled chirality of the order parameter matches that of the band

30 Experimental probe: angle-sensitive specific heat z y H from the node of the order parameter 2DEG x

31 Unexpected bonus: finite-momentum pairing c.f. D. F. Agterberg and R. P. Kaur, 2007 Can be seen from 2-particle problem:

32 Conclusions d=1: spin-orbit stabilized phases d=2: spin-orbit only relieves degeneracy

33 Previous studies: no mag. field g eff 0.02 u 2 ν 2 2D g eff u 2 ν2d Θ j z = j z =4 j z = Θ Luyang Wang, Oskar Vafek Physica C 497, pp (2014)

Spin-orbit-induced spin-density wave in quantum wires and spin chains

Spin-orbit-induced spin-density wave in quantum wires and spin chains Spin-orbit-induced spin-density wave in quantum wires and spin chains Oleg Starykh, University of Utah Suhas Gangadharaiah, University of Basel Jianmin Sun, Indiana University also appears in quasi-1d

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah June 11, 2018 My other projects I d be glad to discuss at the workshop Topological phase of repulsively interacting quantum wire with SO coupling

More information

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Oleg Starykh, University of Utah Wen Jin (Univ of Waterloo, Canada) Yang-Hao Chan (IAMS, Taiwan) Hong-Chen Jiang (SLAC, SIMES) RIKEN

More information

Spinon spin resonance Electron spin resonance of spinon gas

Spinon spin resonance Electron spin resonance of spinon gas Spinon spin resonance Electron spin resonance of spinon gas Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow, Russia,

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow,

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Mean Field and Ginzburg-Landau Analysis of Two-Band Superconductors

Mean Field and Ginzburg-Landau Analysis of Two-Band Superconductors Mean Field and Ginzburg-Landau Analysis of Two-Band Superconductors Ethan Lae Dated: July 8, 15 We outline how to develop a mean-field theory for a generic two-band superconductor, and then apply our analysis

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Criticality in topologically ordered systems: a case study

Criticality in topologically ordered systems: a case study Criticality in topologically ordered systems: a case study Fiona Burnell Schulz & FJB 16 FJB 17? Phases and phase transitions ~ 194 s: Landau theory (Liquids vs crystals; magnets; etc.) Local order parameter

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Topological states of matter in correlated electron systems

Topological states of matter in correlated electron systems Seminar @ Tsinghua, Dec.5/2012 Topological states of matter in correlated electron systems Qiang-Hua Wang National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China Collaborators:Dunghai

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

MAJORANAFERMIONS IN CONDENSED MATTER PHYSICS

MAJORANAFERMIONS IN CONDENSED MATTER PHYSICS MAJORANAFERMIONS IN CONDENSED MATTER PHYSICS A. J. Leggett University of Illinois at Urbana Champaign based in part on joint work with Yiruo Lin Memorial meeting for Nobel Laureate Professor Abdus Salam

More information

Two-dimensional heavy fermions in Kondo topological insulators

Two-dimensional heavy fermions in Kondo topological insulators Two-dimensional heavy fermions in Kondo topological insulators Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University Rice University, August 28, 2014 Acknowledgments

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Non-centrosymmetric superconductivity

Non-centrosymmetric superconductivity Non-centrosymmetric superconductivity Huiqiu Yuan ( 袁辉球 ) Department of Physics, Zhejiang University 普陀 @ 拓扑, 2011.5.20-21 OUTLINE Introduction Mixture of superconducting pairing states in weak coupling

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Superconductivity from repulsion

Superconductivity from repulsion Superconductivity from repulsion Andrey Chubukov University of Minnesota University of Virginia Feb. 0, 07 Superconductivity: Zero-resistance state of interacting electrons A superconductor expels a magnetic

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 K. Miyake KISOKO, Osaka University Acknowledgements Y. Yoshioka JPSJ 78 (2009) 074701. K. Hoshihara JPSJ 74 2679 (2005) 2679. K. Ishida,

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Correlations and coherence in quantum systems Évora, Portugal, October 11 2012 Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Erik Eriksson (University of Gothenburg)

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Spatially anisotropic triangular antiferromagnet in magnetic field

Spatially anisotropic triangular antiferromagnet in magnetic field Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Novel topologies in superconducting junctions

Novel topologies in superconducting junctions Novel topologies in superconducting junctions Yuli V. Nazarov Delft University of Technology The Capri Spring School on Transport in Nanostructures 2018, Anacapri IT, April 15-22 2018 Overview of 3 lectures

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation V Contents Preface XI Physical Constants, Units, Mathematical Signs and Symbols 1 Introduction 1 1.1 Carbon Nanotubes 1 1.2 Theoretical Background 4 1.2.1 Metals and Conduction Electrons 4 1.2.2 Quantum

More information

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Gennady Y. Chitov Laurentian University Sudbury, Canada Talk at Washington University in St. Louis, October 20, 2016 Collaborators:

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

Key symmetries of superconductivity

Key symmetries of superconductivity Key symmetries of superconductivity Inversion and time reversal symmetry Sendai, March 2009 1 st GCOE International Symposium 3 He A 1 phase Manfred Sigrist, ETH Zürich UGe 2 paramagnetic CePt 3 Si ferromagnetic

More information

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Phys. Rev. B 88, 134510 (2013) Oskar Vafek National High Magnetic Field Laboratory and

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr 10.1149/05305.0203ecst The Electrochemical Society Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr Institute for

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Kai Sun Collaborator: Eduardo Fradkin Spontaneous Time-Reversal Symmetry Breaking Ferromagnetic T Non-ferromagnetic?

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

From single magnetic adatoms to coupled chains on a superconductor

From single magnetic adatoms to coupled chains on a superconductor From single magnetic adatoms to coupled chains on a superconductor Michael Ruby, Benjamin Heinrich, Yang Peng, Falko Pientka, Felix von Oppen, Katharina Franke Magnetic adatoms on a superconductor Sample

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Topological Phases in Floquet Systems

Topological Phases in Floquet Systems Rahul Roy University of California, Los Angeles June 2, 2016 arxiv:1602.08089, arxiv:1603.06944 Post-doc: Fenner Harper Outline 1 Introduction 2 Free Fermionic Systems 3 Interacting Systems in Class D

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information