Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Size: px
Start display at page:

Download "Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots"

Transcription

1 International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha Dep. of Appl. Phys. The Univ. of Tokyo

2 Outline Micro-magnet technique for qubits and two qubit gates Two-qubit gate for controlling entanglement Fast Z-rotation and CPHASE Qubit transfer Multiple QDs array Electron transfer between between distant QDs Joint project with Dr. Bauerle and Munier, Grenoble

3 Double QD for Qubit Gates Individual two qubits M. Pioro-Ladrier et al. Nat. Phys. 2008; T. Obata et a. PRB 2010 Two qubit gate for controlling entanglement R. Brunner et al. PRL > = >, 1>= > Universal set of quantum gates Time control of spin rotation single qubit 0 1 Time control of spin exchange coupling entangled state 01 10

4 Qubit Hamiltonian Well-defined two states 0> and 1> Hybridization of two states H qubit = ( z /2)[ 0><0-1><1 ] + ( x (t)/2)[ 0><1 + 1><0 ] = + = ( z /2) z + ( x /2) x z Define two eigen states x Mix up two eigen states z 1> z /2 0> - z /2 0>= > 1>= >

5 0>= S> 1>= T 0 > S-T 0 Qubit Hamiltonian H qubit = (-J/2)[ S><S - T 0 ><T 0 ] + g B B nz [ S><T 0 + T 0 ><S ] = (-J/2) z + g B B z nuc x S> J Temporal J manipulation with inter-dot detuning: J >> B z nuc > > > = > z B nuc > = > J << B z nuc S> T 0 > T 0 >

6 Charge Qubit with a Tunnel-coupled Double QD 0 e 1 e E L E 0 E R Non-adiabatic 2t Microwave E 0 = (E L + E R )/2 = 0 E L =- /2, E R = /2 H = (-1/2)[ ( 0><0-1><1 )-2t( 0><1 + 1><0 )] =(-1/2)[ z +2t x ] where B 0 = (,0, ) and B AC =(2t,0,0) Fictitious magnetic fields for universal rotation z B 0 /ħ =ħ B 0 2t= ħ B 1 cos( t) y x B AC 2t/ħ

7 Single Spin Qubit with QD 0>= > 1>= > > Qubit concept = Electron spin resonance Loss and DiVincenzo PRA 1998 B = B 0 z + B 1 xcos t H ESR = -(1/2) ħ 0 z (1/2) ħ 1 x cos t B 1 B 0 E Zeeman =hf AC B AC > Apply ESR for single dot with a single electron using a local AC B 1 field Single spin qubits: (GaAs) Koppens et al. Science 2006 Nowack et al. Science 2007 Pioro-Ladriere, et al. Nat. Phys Obata et al. PRB 2010 Brunner et al. PRL 2011 (InAs) Nadj-Perge et al. Nature 2010

8 Qubit Hamiltonian for Spin Rotation Time evolution H qubit = (- z /2) z + (- x /2) x Larmor precession

9 Qubit Gates ROTATION R x ( ) =2 f Rabi t z R z > R y ( ) = R x ( : t t- /2) =2 f Rabi t x y R z ( ) = R x ( /2)R y ( )R x ( /2) R x > R y NOT : R x ( ) HADAMARD : R x ( /2) Temporal detuning of E Zeeman 2 t f L ( E Zeeman =h f L )

10 Local AC B Field Driven by AC Current or AC Voltage AC current to on-chip coil ac B Our proposal : Micro-magnet technique Tokura et al. PRL 2006 DC B 0 ac I -magnet I AC = 1 ma B ac ~ 1 mt rotation: ~ 80 ns Koppens et al. Science 2006 B x (x) 0 e From voltage to B field Usig spin-orbit interaction Pioro-Ladriere et al. Nat. Phys B loc =(Exp) Oscillation of an electron under a stray field by ac voltage S Nowack et al. Science 2007

11 Spin Qubit with a Micromagnet Technique

12 Local B Field Generation by SO Effect y [010] [110] x [100] [ 110] E ac B ext H spin = H Zeeman + H SO H Zeeman = (1/2)g B B ext H SO = (-p y x + p x y ) + (-p x x +p y y ) Rashba Dresselhaus l SO -1 =m*/( + )h for B ext, E ac //[110] =m*/( - )h for B ext, E ac //[110] f Rabi =(g B B eff )/2h E ac B eff Levitov and Rashba, PRB 2003 Golovach et al. PRB 2006

13 Spin Qubit Using SO Effect : GaAs QD [110] Nowack et al. Science 2007 f Rabi E ac B ext Rabi oscillations f Rabi E ac E ac increase B ext

14 Micro-magnet for Spin Qubit with Quantum Dot x B ext Stray field magnet B 0 Simulation 300 nm M Co = 1.8 T M 70 nm 80 nm z Out-of plane B x (z) f ac ~T/ m B ac = B 1 xcos2 f ac In-plane B z = excess local Zeeman field 10 to50 mt/0.1 m B 0 = B ext + B z f ESR B x (mt) dot 1 dot b SL z ( m) 0.3 m b SL ~ 0.6 T/ m (saturation) 90 nm

15 Addressing Two Individual Spin Qubits To manipulate more spins in a multiple QD: Local DC B 0 + Local AC B AC B ext = B ESR B z1 =B ESR B z2 ESR at two different B ext Local Zeeman field B 0 =B ext + B z g B B ESR =hf MW MW In-plane stray field B z at each dot depends on the micro-magnet geometry M M M M

16 ESR/Qubit Readout using Pauli Effect Formation of a triplet state blocks electron transition Pauli spin blockade Ono and ST, Science 2002 PRL 2004 I QPC E Zeeman = hf P-SB is lifted by spin flip most sensitive spin information detector QPC current External field

17 Two Spin Qubits in Double Quantum Dot QPC charge sensing to detect to charge change in the double dot Left dot Right 1T CW EDSR Left spin B 0L Right spin Right dot 15 mt B 0R B 0R B 0L Left dot -17 dbm, f Rabi 0.85 MHz -18 dbm, f Rabi 0.75 MHz -19 dbm, f Rabi 0.70 MHz -21 dbm, f Rabi MHz T. Obata et al. PRB 2010 R. Brunner et al. PRL 2011

18 Rabi Frequencies vs. MW Field Rabi frequency ~ P MW 1/2 = E MW Left spin Right spin Brunner et al. PRL2010 Obata et al. PRB 2010

19 Entanglement Control

20 Temporal Operation of Spin Exchange Coupling Exchange = (-J/4) 1 2 H exc = (-J/4) 1 2 = -J(1/4)(I ) + (J/4)I = (-J/2)U SWAP + (J/4)I Time evolution exp[-ih exc t/ħ] = exp[iju SWAP t/2ħ]exp[-ijt/4ħ] = Icos(Jt/2ħ) + iu SWAP sin(jt/2ħ) = iu SWAP for Jt=h/2 U SWAP for Jt=h/4

21 How to control exchange coupling? S(0,2) S(1,1) S(0,2) (0,1) (1,2) (2,2) Detuning N 2 S(1,1) Detuning (2,1) S(1,1) (N 1,N 2 )=(0,0) (1,0) S(2,0) S(1,1) S(2,0) N 1

22 Two-electron States in Double QD Tokura et al. Springer 2009 Small detuning : J=4t 2 /U H Large detuning: J E triplet =0 S(2,0) S(0,2)-S(1,1) T(1,1) S(1,1) S(0,2) S(2,0)-S(1,1) T - T 0 (1,1) T + S(1,1), S(0,2) T +, T -, T 0 (1,1) Energy detuning = E 1 -E 2

23 Control of Pauli Blockade and Exchange Coupling K. Ono et al. Science 2002 Pauli spin blockade J = E triplet -E singlet S(0,2) S(0,2)-S(1,1) S(0,2) S(0,2)-S(1,1) (1,2) (0,1) (2,2) Detuning S(1,1) (2,1) Energy T 0 J~ 2t T - T + J>0 J S(1,1) J~0 T(1,1) (N 1,N 2 )=(0,0) (1,0) S(2,0) S(0,2) Detuning 0

24 Quantum Gate Operation with Double QD Pauli spin blockade J = E triplet -E singlet S(0,2) S(0,2)-S(1,1) Use for initialize and readout Energy T 0 J~ 2t T - T + J>0 J switch for entanglement control J~0 Spin rotation at J=0 S(1,1) (2,1) Exchange control at J 0 S(0,2) 0 Detuning

25 Concurrence of Two Qubit Entanglement Magic basis: Bell states Hill and Wooters PRL

26 Two-qubit Gate to Control and Detect Single State Initialization > > /2 rotation Exchange control Preparation > > with J=0 Exchange operation J ex = ħ ex with finite J ex = /2 for SWAP = for SWAP ex cos ex sin ex exp ex 1 Readout of S 0 using Pauli effect Change of charge state from (1,1) to (0.2) What we measure is P: (1,1) to (0,2) P:(1,1) (0,2) Concurrence= sin2 ex Hill and Wooters, PRL ex / SWAP

27 Controlled Manipulation of the Two Spin Exchange exc :SWAP 2 > = (1/2)(T + - T - - 2S 0 ) R. Brunner et al. PRL 2011 Single weight: P bright ( ex ) 1/2 : simple product SWAP 2 > = SWAP 2n 2 > = T + 1 [(2+i)T+ -it - +i 2S 0 )] 2 3/2 1/4: partially entangled 0 : simple product 0 P:(1,1) (0,2)=P(S 0 ) Concurrence ex / SWAP

28 R. Brunner et al. PRL 2011 Exchange + Spin rotation Probability of finding the singlet in the output 2 > Calculation of concurrence using parameters derived from experiments SWAP fidelity ~ 98% Rabi fidelity ~ 50%

29 CNOT with rotations of 1 spin and SWAP/SWAP 1/2 Loss & DiVincenzo, PRA 1998 Quantum circuit for CNOT > > > > H z z z H > > > > Input Control-PHASE Output z R z > Rotation about z R z (θ) = XR y (θ) X = Y R x ( θ) Y Preparation of 4 logical basis states X 2 +SWAP x R x y R y >

30 Connection between Distant Qubit Systems Multiple qubit system in multiple QDs Connection between distant quantum systems with qubit state transfer a > + b > Photons:Quantum cryptography, communication

31 Inhomogenous B Field Induced by Micro-magnet Multiple quantum dots in an inhomogeneous Zeeman field 150 nm 13 bits 2DEG depth -1 m 1 m 200 nm 50 nm T. Takakura et al. APL 2011

32 Electron Transfer by Surface Acoustic Wave (SAW) IDT piezoelectric (GaAs) 2ef SAW 1 nsec for 3 m << spin T 2 I = ef SAW

33 SAW Induced Electron Transport d d Gate electrode Energy I = nef

34 Single Electron Transfer between Distant QDs QD 3 m QD Electron loading in source QD Source QD Charge states of two QDs probed by two QPC charge sensors Detector QD High I QPC Low I QPC

35 Single Electron Transfer between Distant QDs Taking out an electron in SAW Source QD Detector QD High I QPC High I QPC

36 Single Electron Transfer between Distant QDs Putting an electron in SAW onto detector QD Source QD Detector QD Low I QPC High I QPC

37 Single Electron Transfer between Distant QDs 16m-D 2 3 Before SAW SAW > 94 % SAW Before SAW After SAW After SAW Before SAW Before SAW After SAW After SAW Transfer time < T 2 * (=25 nsec )

38 McNeil et al. Nature 477, 439 (2011)

39 Summary Developed a micro-magnet technique for making single spin qubits, which is applicable to non-magnetic material systems, i.e. Si, C-based. Realized a two-qubit gate of combined spin rotation and exchange control, which enables control and detect the partial entanglement. Proposed micro-magnet techniques to implement fast z-rotation and CPHASE. Proposed a SAW technique of transferring qubit state between distant QDs.

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot R. Brunner 1,2, Y.-S. Shin 1, T. Obata 1,3, M. Pioro-Ladrière 4, T. Kubo 5, K. Yoshida 1, T. Taniyama

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Qubits by electron spins in quantum dot system Basic theory

Qubits by electron spins in quantum dot system Basic theory > α θ Summer school of FIRST/Q-cybanetics Chinen, Okinawa, Aug. 21, 2010 > Qubits by electron spins in quantum dot system Basic theory Yasuhiro Tokura NTT Basic Research Laboratories FIRST project, theory

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field 1 Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Spin-orbit qubit in a semiconductor nanowire

Spin-orbit qubit in a semiconductor nanowire 1 Spin-orbit qubit in a semiconductor nanowire S. Nadj-Perge 1*, S. M. Frolov 1*, E. P. A. M. Bakkers 1,2 and L. P. Kouwenhoven 1 1 Kavli Institute of Nanoscience, Delft University of Technology, 2600

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots The Harvard community has made this article openly available. Please share how this access benefits you. Your story

More information

Coherent Control of a Single Electron Spin with Electric Fields

Coherent Control of a Single Electron Spin with Electric Fields Coherent Control of a Single Electron Spin with Electric Fields Presented by Charulata Barge Graduate student Zumbühl Group Department of Physics, University of Basel Date:- 9-11-2007 Friday Group Meeting

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Fast Electrical Control of Single Electron Spins in Quantum. Dots with Vanishing Influence from Nuclear Spins

Fast Electrical Control of Single Electron Spins in Quantum. Dots with Vanishing Influence from Nuclear Spins Fast Electrical Control of Single Electron Spins in Quantum Dots with Vanishing Influence from Nuclear Spins J. Yoneda, 1,2 T. Otsuka, 1,2 T. Nakajima, 1,2 T. Takakura, 1 T. Obata, 1 M. Pioro-Ladrière,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/ Electrical control of spin relaxation in a quantum dot S. Amasha et al., condmat/07071656 Spin relaxation In a magnetic field, spin states are split b the Zeeman energ = g µ B B Provides a two-level sstem

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fast spin information transfer between distant quantum dots using individual electrons B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, T. Meunier* Content

More information

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots Introduction Resonant Cooling of Nuclear Spins in Quantum Dots Mark Rudner Massachusetts Institute of Technology For related details see: M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007);

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Semiconductor few-electron quantum dots as spin qubits

Semiconductor few-electron quantum dots as spin qubits 36 Semiconductor few-electron quantum dots as spin qubits J. M. ELZERMAN, R. HANSON, L. H. WILLEMS VAN BEVEREN, L. M. K. VANDERSYPEN, AND L. P. KOUWENHOVEN Kavli Institute of Nanoscience Delft and ERATO

More information

III III a IIOI DID III DID IIO III lull OO lll0 ll uii lli

III III a IIOI DID III DID IIO III lull OO lll0 ll uii lli III III a IIOI DID III DID IIO 1101 010 110 III lull OO lll0 ll uii lli US oi^^_.m,,.i ^,) United States (12) Patent Application Publication Pioro-Ladriere et al. (43) Pub. Date: Oct.Eb^301u (54) ELECTRONIC

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Quantum Computing with Semiconductor Quantum Dots

Quantum Computing with Semiconductor Quantum Dots X 5 Quantum Computing with Semiconductor Quantum Dots Carola Meyer Institut für Festkörperforschung (IFF-9) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 The Loss-DiVincenzo proposal 2 3 Read-out

More information

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Authors: A. Noiri 1,2, T. Takakura 1, T. Obata 1, T. Otsuka 1,2,3, T. Nakajima 1,2, J. Yoneda 1,2, and S. Tarucha 1,2 Affiliations:

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta 1, A. C. Johnson 1, J. M. Taylor 1, E. A. Laird 1, A. Yacoby, M. D. Lukin 1, C. M. Marcus 1, M. P. Hanson 3, A.

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov,

More information

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot E. Kawakami 1, P. Scarlino 1, D. R. Ward 2, F. R. Braakman 1,3, D. E. Savage 2, M. G. Lagally 2, Mark Friesen 2, S. N. Coppersmith

More information

II OI IIi

II OI IIi 111111111111111111111111111111111111111111111111111111111111111111111111 II OI IIi US008222629B2 (12) United States Patent Pioro-Ladriere et al. (10) Patent No.: US 8,222,629 B2 (45) Date of Patent: Jul.

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.160 Valley-spin blockade and spin resonance in carbon nanotubes Fei Pei, Edward A. Laird, Gary A. Steele, Leo P. Kouwenhoven Contents 1. Energy levels

More information

Driven coherent oscillations of a single electron spin in a quantum dot

Driven coherent oscillations of a single electron spin in a quantum dot Driven coherent oscillations of a single electron spin in a quantum dot F. H. L. Koppens 1, C. Buizert 1, K. J. Tielrooij 1, I. T. Vink 1, K. C. Nowack 1, T. Meunier 1, L. P. Kouwenhoven 1 & L. M. K. Vandersypen

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/114892/dc1 Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields K. C. Nowack, * F. H. L. Koppens, Yu. V. Nazarov, L. M. K.

More information

arxiv: v1 [cond-mat.mes-hall] 25 Feb 2016

arxiv: v1 [cond-mat.mes-hall] 25 Feb 2016 A fault-tolerant addressable spin qubit in a natural silicon quantum dot K. Takeda, 1 J. Kamioka, 2 T. Otsuka, 1 J. Yoneda, 1 T. Nakajima, 1 M.R. Delbecq, 1 S. Amaha, 1 G. Allison, 1 T. Kodera, 2 S. Oda,

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Nonlinear effects in electrically driven spin resonance

Nonlinear effects in electrically driven spin resonance Nonlinear effects in electrically driven spin resonance András Pályi Eötvös University udapest, Hungary with Gábor Széchenyi (Eötvös) Rabi frequency (a.u.).4.3... 4 6 8 amplitude of ac E-field (a.u.) G.

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Quantum Computing: the Majorana Fermion Solution. By: Ryan Sinclair. Physics 642 4/28/2016

Quantum Computing: the Majorana Fermion Solution. By: Ryan Sinclair. Physics 642 4/28/2016 Quantum Computing: the Majorana Fermion Solution By: Ryan Sinclair Physics 642 4/28/2016 Quantum Computation: The Majorana Fermion Solution Since the introduction of the Torpedo Data Computer during World

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear Pauli spin blockade in cotunneling transport through a double quantum dot H. W. Liu, 1,,3 T. Fujisawa, 1,4 T. Hayashi, 1 and Y. Hirayama 1, 1 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya,

More information

Quantum Computing with Electron Spins in Semiconductor Quantum Dots

Quantum Computing with Electron Spins in Semiconductor Quantum Dots Quantum Computing with Electron Spins in Semiconductor Quantum Dots Rajesh Poddar January 9, 7 Junior Paper submitted to the Department of Physics, Princeton University in partial fulfillment of the requirement

More information

AFRL-RI-RS-TR

AFRL-RI-RS-TR AFRL-RI-RS-TR-2015-013 HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Stability Diagram of a Few-Electron Triple Dot

Stability Diagram of a Few-Electron Triple Dot Stability Diagram of a Few-Electron Triple Dot L. Gaudreau Institute For Microstructural Sciences, NRC, Ottawa, Canada K1A 0R6 Régroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke,

More information

Photoelectric readout of electron spin qubits in diamond at room temperature

Photoelectric readout of electron spin qubits in diamond at room temperature Photoelectric readout of electron spin qubits in diamond at room temperature. Bourgeois,, M. Gulka, J. Hruby, M. Nesladek, Institute for Materials Research (IMO), Hasselt University, Belgium IMOMC division,

More information

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie Quantum Computation With Spins In Quantum Dots Fikeraddis Damtie June 10, 2013 1 Introduction Physical implementation of quantum computating has been an active area of research since the last couple of

More information

Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, Paris Cedex 05, France

Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, Paris Cedex 05, France Title: A fast quantum interface between spin qubits of different codes Authors: A. Noiri 1 *, T. Nakajima 1, J. Yoneda 1, M. R. Delbecq 1,2, P. Stano 1, T. Otsuka 1,3,4, K. Takeda 1, S. Amaha 1, G. Allison

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Flying qubits in semiconductors

Flying qubits in semiconductors FIRST 2011.8.13 Flying qubits in semiconductors Yasuhiro Tokura (NTT Basic Research Laboratories) Introduction -flying qubit- Topics Effect of statistics Entanglement generation and detection Single electron

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Title: Quantum CNOT Gate for Spins in Silicon

Title: Quantum CNOT Gate for Spins in Silicon Title: Quantum CNOT Gate for Spins in Silicon Authors: D. M. Zajac 1, A. J. Sigillito 1, M. Russ 2, F. Borjans 1, J. M. Taylor 3, G. Burkard 2, and J. R. Petta 1* Affiliations: 1 Department of Physics,

More information

and conversion to photons

and conversion to photons Semiconductor Physics Group Department of Physics Cavendish Laboratory, University of Cambridge Single-Electron Quantum Dots moving in Surface- Acoustic-Wave Minima: Electron Ping-Pong, and Quantum Coherence,

More information

N U C L E A R S P I N M E D I AT E D L A N D A U - Z E N E R T R A N S I T I O N S I N D O U B L E Q U A N T U M D O T S.

N U C L E A R S P I N M E D I AT E D L A N D A U - Z E N E R T R A N S I T I O N S I N D O U B L E Q U A N T U M D O T S. N U C L E A R S P I N M E D I AT E D L A N D A U - Z E N E R T R A N S I T I O N S I N D O U B L E Q U A N T U M D O T S christian dickel Master s Thesis in Physics presented to RWTH Aachen University

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Enhancement-mode quantum transistors for single electron spin

Enhancement-mode quantum transistors for single electron spin Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-1-2006 Enhancement-mode quantum transistors for single electron spin G. M. Jones B. H. Hu C. H. Yang M. J.

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University 1 Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University GaAs Experiments: David Reilly (Univ. Sydney) Edward Laird

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Review of quantum dots (mostly GaAs/AlGaAs), with many references: Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen,

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Magnetic field B B V

Magnetic field B B V 1 (a) T vv + S vv ± T vv spot-iii T v1v + T vv1 + E V 6 8 1 1 14 S v1v S vv1 1 T v1v T vv1 spot-ii E V 6 8 1 1 14 spot-i (b) S v1v1 ± T v1v1 14 T v1v1 ESR 6 8 1 1 14 V T v1v T vv1 Energy E E V 1 1 8 6

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature177 In this supplemental information, we detail experimental methods and describe some of the physics of the Si/SiGe-based double quantum dots (QDs). Basic experimental methods are further

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

INTRIQ. Coherent Manipulation of single nuclear spin

INTRIQ. Coherent Manipulation of single nuclear spin INTRIQ Coherent Manipulation of single nuclear spin Clément Godfrin Eva Dupont Ferrier Michel Pioro-Ladrière K. Ferhat (Inst. Néel) R. Ballou (Inst. Néel) M. Ruben (KIT) W. Wernsdorfer (KIT) F. Balestro

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Quantum Communication & Computation Using Spin Chains

Quantum Communication & Computation Using Spin Chains Quantum Communication & Computation Using Spin Chains Sougato Bose Institute for Quantum Information, Caltech & UCL, London Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/02057 (to appear

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Scalable Quantum Computing With Enhancement Quantum Dots

Scalable Quantum Computing With Enhancement Quantum Dots Scalable Quantum Computing With Enhancement Quantum Dots Y. B. Lyanda-Geller a, M. J. Yang b and C. H. Yang c a Department of Physics, Purdue University, West Lafayette, IN 47907 b Naval Research Laboratory,

More information