Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions

Size: px
Start display at page:

Download "Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions"

Transcription

1 Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Oleg Starykh, University of Utah Wen Jin (Univ of Waterloo, Canada) Yang-Hao Chan (IAMS, Taiwan) Hong-Chen Jiang (SLAC, SIMES) RIKEN condensed matter seminar, Nov.21, 2017

2 Outline Spin 1/2 chains with uniform DM interaction Electron spin resonance Phase diagram of the quantum model with orthogonal magnetic field Weakly coupled chains Conclusions

3 Dzyaloshinskii-Moriya (DM) interaction D M D ij S i S j Reduces symmetry to U(1) [rotations about D axis] Easy plane anisotropy (perp. to D) Promotes magnetic order Generically stabilizes incommensurate non-collinear (spiral) states

4 Cs2CuCl4: uniform Dzyaloshinskii-Moriya interaction ~D ij ~S i ~S j Focus on the in-chain DM: for a given chain (y,z) vector D is constant D y,z =( 1) y D c ĉ +( 1) z D a â

5 Spin chain material K2CuSO4Br2. Spin chain along a axis. Intra-chain exchange J=20.5K, Inter-chain exchange J =0.03K. Smirnov et al., Phys. Rev. B, 92,134417,

6 ESR - electron spin resonance Simple (in principle) and sensitive probe of magnetic anisotropies (and, also, q=0 probe: S = Σr Sr) I(h,w)= w 4L dte iwt h[s + (t),s ]i For SU(2) invariant chain in paramagnetic phase I(H,ω) ~ δ(ω-h) m(h) [Kohn s Th] Oshikawa, Affleck PRB 2002 eeman H along z, microwave radiation h polarized perpendicular to it. H=0

7 ESR data (Povarov and Smirnov, Kapitza Institute) Shift for H b Shift and splitting for H a, c H b H a Resonance line is significantly modified with lowering the temperature; modification is strongly anisotropic with respect to field. The lowest temperature T=1.3 К is still twice higher than ordering T N

8 Cs2CuCl4 ESR data: T=1.3 K Povarov et al, 2011 H along b-axis gb = 2.08 gap-like behavior for ν > 17 GHz 2p hn = p (g b µ B H) 2 + D 2 loss of intensity for ν < 17 GHz H along a-axis: splitting of the ESR line ga = 2.20

9 Continuum in magnetic field transverse structure factor Dender et al, PRL 1997 Oshikawa, Affleck, PRB (2002)

10 Explanation I: H along DM axis H = Â JS x,y,z S x+1,y,z D y,z S x,y,z S x+1,y,z gµ B H S x,y,z x,y,z chain uniform DM along the chain magnetic field! q Unitary rotation about z-axis S + (x)! S + (x)e i(d/j)x removes DM term from the Hamiltonian (to D 2 accuracy) boosts momentum to D/(J a0) = 0! q = D/(Ja 0 ) ) 2p hn R/L = gµ B H ± pd/2,s z (x)! S z (x) dotted lines: D=0 picture Oshikawa, Affleck 2002 rotated basis: q=0 original basis: q=d/j Chiral probe: ESR probes right- and leftmoving modes (spinons) independently

11 Spectrum shift due to the uniform DM Gangadharaiah, Sun, Starykh, PRB (2008) Spin transformation excludes DM interaction, but results in the spectrum shift by momentum D/J. This leads to two ESR peaks. Karimi, Affleck, PRB 2011

12 Explanation II: arbitrary orientation H = Field theory in terms of spin currents M 2pv 3 [( ~M R ) 2 +(~M L ) 2 ] vd J [Md R ML] d gµ B H[MR z + Mz L ] unperturbed chain uniform DM along the chain magnetic field BL Uniform DM produces internal momentum-dependent magnetic field along d-axis H BR -D +D Total field acting on right/left movers gµ B ~H ± hv~d/j Hence ESR signals at 2p hn R/L = gµ B ~H ± hv~d/j Polarization: for H=0 maximal absorption when microwave field hmw is perpendicular to the internal (DM) one. Hence hmw b is most effective. Povarov et al, PRL 2011 Gangadharaiah, Sun, OS, PRB 2008

13 Explanation III: arbitrary orientation General orientation of H and D 4 sites/chains in unit cell a-b plane D a /(4 h)=8 GHz D c /(4 h)=11 GHz 0.3 Tesla 0.4 Tesla D ~ J/10 b-c plane for H along b-axis only: the gap is determined by the DM interaction strength D = p 2 q D 2 a + D 2 c! (2p h)13.6 GHz T-dependent line width S. C. Furuya Phys. Rev. B 95, (2017)

14 This explanation suggests: 1) ESR absorption in the absence of H 2) strong polarization dependence in zero field p D 2 a + D 2 c H The largest absorption occurs when microwave field h(t) is lined along crystal b-axis, h b [so that it is perpendicular to the D vector in a-c plane]

15 Extension to 2d spin liquids

16 Outline Spin 1/2 chains with uniform DM interaction Electron spin resonance Phase diagram of the quantum model with orthogonal magnetic field Weakly coupled chains Conclusions

17 Model Hamiltonian H = J X i S x i S x i+1 + S y i Sy i+1 + Sz i S z i+1 X Dẑ (S i S i+1 ) h X i S x i, i J > 0, the spins antiferromagnetically interact with nearest neighbor. The DM interaction is uniform along chain. The external magnetic field is perpendicular to the DM vector. Small anisotropy. 1 D -y x h 17

18 Classical version: chiral soliton lattice In classical version, the spin can be treated as vectors with fixed length. H = J X i S i = S(sin i cos i, sin i sin i, cos i ) S x i Si+1 x + S y i Sy i+1 + X Sz i Si+1 z Dẑ (S i S i+1 ) i h X Si x, i h=0 helical structure L(0) h<hc L(h) L(0) J D chiral soliton lattice h hc -x y z h h fully polarized 18 Togawa et al., Phys. Rev.Lett, 2012.

19 Quantum version In quantum mechanics, spins are operators satisfy commutation relation, [S,S ]=i S. Spin-1/2 operator can be mapped to fermionic one by Jordan-Wigner transformation: S + j = j exp(i X k<j k k), S j =exp( i X k<j k k) j, S z j = j j 1/2, Spin Hamiltonian transforms to interaction fermions: H = J X hi,ji apple 1 2 (S+ i S j + S i S+ j )+ Sz i S z j. H F = J X i apple 1 2 ( + i i+1 + i + i+1 )+ ( i i 1 2 )( i+1 i ). 19

20 Bosonization E (x) =R(x)e ip F x + L(x)e ip F x L R p p F p F q = X p p p+q (2p F = ). E(p + p F ) ' vp, E(p p F ) '= vp, p p F. a is lattice spacing with Here v is Fermi velocity. 20

21 Hamiltonian in terms of bosonization Low-energy theory H = H 0 + V + H bs, H = J X i i S x i Si+1 x + S y i Sy i+1 + X Sz i Si+1 z Dẑ (S i S i+1 ) h X i S x i, Isotropic Heisenberg chain H 0 = 2 v 3 dx(j R J R + J L J L ), V contains DM interaction and eeman term L p F E R p F p V = D R dx(j z R J z L ) h R dx(j x R + J x L ), Back-scattering interaction between right- and left- spin current. H bs = g bs R dx[j x R J x L + J y R J y L +(1+ )J z R J z L ], with coupling constant Exchange and DM-induced anisotropy: Garate and Affleck (2010) = c(1 + D2 2J 2 ). 21

22 Chiral rotation Perform a chiral rotation J R/L = R( R/L )M R/L, R( R/L )= Simplified Hamiltonian, 1 cos R/L 0 sin R/L A, sin R/L 0 cos R/L. H = H 0 + V + H bs,! H = H 0 + H bs, H bs = H A + H B + H C + H, H A = vy A dx(m z RM + L eit 'x H B = vy B H C = vy C H = 2 vy dx(m + R M L e i2t 'x +h.c.), dx(m + R M + L +h.c.), dxmrm z L. z R = 0 + /2, L = 0 + /2, D 0 arctan. h Oscillating factors M + R M z Le it 'x +h.c.), t ' p D2 + h 2 v 22

23 Renormalization group (RG) analysis RG equations are well-known Kosterlitz-Thouless equations, dy C d` = y Cy, H C = vy C H = 2 vy dy d` = y2 C. dx(m + R M + L +h.c.), dxmrm z L. z Ground state is determined by the initial values. y C (0) / [(1 + 2 ) cos 1+ 2 ], y (0) / [(1 + 2 ) cos C = y 2 (0) y 2 C(0). The initial values are determined by ratio D/h, and also influenced by anisotropy. cos =(h 2 D 2 )/(h 2 + D 2 ) = c(1 + D2 2J 2 ). 2 ], 23

24 h/d phase diagram There are three distinct phases. hs(x)i = M ˆx +( 1) x hn(x)i. N z : hn(x)i /( 1) k1+1 z. N y : hn(x)i /cos 0 ( 1) k 2 y, Phase boundaries. N z - N y : N z -LL: N z -LL: c1 = (D J )2 2 c (D h )2. c2 = (D J )2 2 c c3 = p (D/h) 2. Luttinger-liquid (LL): hn(x)i =0, hn a (x)n a (0)i Ca x. Compared to classical phase diagram, LL replaces soliton lattice. D/J=0.1 N y Soliton Lattice p 2 Quantum phase diagram 24 Classical phase diagram Garate and Affleck (2010)

25 h/d phase diagram Large DM interaction promotes the N z state. Phase boundary between LL and N y is independent of DM interaction. Phase diagrams are verified by numerical study (DMRG and itebd). D/J=0.1 D/J=0.01 N y N y p 2 D/J=0.05 D/J= Hong-Chen Jiang SLAC & Stanford University Yang-Hao Chan IAMS, Taiwan

26 Outline Spin 1/2 chains with uniform DM interaction Electron spin resonance Phase diagram of the quantum model with orthogonal magnetic field Weakly coupled chains Conclusions

27 h? D Model Hamiltonian H = X x,y [JS x,y S x+1,y + J 0 S x,y S x,y+1 ] y D + D X ( 1) y S x,y S x+1,y h X x,y x,y S x,y, y y - 1 J J D J > 0. Also J >0, the interchain exchange interaction, and J << J. x - 1 x x + 1 The DM interaction is uniform along chain, but antiparallel in neighboring chains. Real magnetic insulator K2CuSO4(Br/Cl)2. There is no exchange anisotropy, =1. Here we only consider magnetic field perpendicular to DM interaction. Intra-chain exchange J=20.5K, Inter-chain exchange J =0.03K, DM interaction D=0.28K. 27 Smirnov et al., Phys. Rev. B, 92,134417, 2015

28 Hamiltonian in terms of bosonization Low-energy theory S x,y! J yl (x)+j yr (x)+( 1) x/a N y (x), H = X y [H 0 + V + H bs + H inter ], H = X x,y [JS x,y S x+1,y + J 0 S x,y S x,y+1 ]+D X ( 1) y S x,y S x+1,y h X S x,y, x,y x,y H 0 = 2 v dx(j yr J yr + J yl J yl ), 3 V = h z dx(jyr z + JyL) z h x dx(jyr x + JyL) x +( 1) y D dx(jyr z JyL), z H bs = g bs dx[jyrj x yl x + J y yr J y yl +(1+ H inter = J 0 dxn y N y+1, S x,y S x,y+1! N y (x) N y+1 (x) )J z yrj z yl] Isotropic Heisenberg chain. Contains DM interaction and eeman term. Back-scattering interaction between rightand left- spin current. Most relevant part of interchain coupling. DM-induced anisotropy Garate and Affleck (2010) Ground state is determined by H inter, which is strongly affected by H bs. 28

29 h? D Hamiltonian in terms of bosonization Perform a chiral rotation J R/L = R( R/L )M R/L, R( R/L )= 1 cos R/L 0 sin R/L A, sin R/L 0 cos R/L. R = 2 + y 0, L = 2 y 0, y 0 ( 1)y tan 1 [ D h ]. Simplified Hamiltonian, H = X y h H0 + H bs + H inter i [H 0 + V + H bs + H inter ]! H = X y H bs = H A + H B + H C + H, H A = vy A dx(m z RM + L eit 'x H B = vy B H C = vy C H = 2 vy dx(m + R M L e i2t 'x +h.c.), dx(m + R M + L +h.c.), dxmrm z L. z t ' M + R M z Le it 'x +h.c.), p D2 + h 2 v H inter = H x + H y + H ' H x =2 vg x dxny x Ny+1, x H y =2 vg y dxny y N y y+1, H inter,' / g '1 dx cos[ p 2 (' y ' y+1 )]. 29

30 h? D Backscattering RG equations, dy C dl = y C y, dy dl RG equations = y 2 C, Interchain interaction RG equations, H C = vy C H = 2 vy dx(m + R M + L +h.c.), dxmrm z L. z dg x = g x (1 + y C + 1 dl 2 y ), dg y = g y (1 y C + 1 dl 2 y ), dg '1 1 = g '1 (1 dl 2 y ).! g(l) / g(0)e l Ground state is determined by the fasted growing g, y B / y C y C (0) / [(1 + 2 ) cos 1+ 2 ], c < 0 2 y (0) / [(1 + ) cos 2 C = y 2 (0) yc(0). 2 2 ], 3 1 c > 0 y z / y σ 4 6 is function of h and D. 5 30

31 h? D (h/d) phase diagram There are three distinct phases. SDW(z): hs x,y i Mx +( 1) x+y sdw(z)z, SDW(y): hs x,y i Mx +( 1) x+y h p h2 + D 2 sdw(y)y. SDW(y) distorted-cone: hs x,y i Mx +( 1) x+y dist cone sin[ p 2 ˆ' + t ' x]x ( 1) y D p h2 + D cos[p 2 ˆ' + t ' x]y. 2 Distinguish strong coupling by the initial values of y C and y. 0.2 II III IV distorted-cone y c (0) V 0 y (0) C(0) h x /D h x /D 31

32 h? D D h phase diagram SDW(y) / (D/J) 2 SDW(y) real material Phase boundary between two SDWs is independent of D, when D/J is small. Phase boundary between SDW(y) and distorted-cone is linear with h/d~1.5. Distorted-cone is unlikely to realize in real materials with small D/J y c y g x g y -0.2 g 1 g 2 h x /D=0.1, = L Typical RG flows for SDW(z). 32

33 h D z DM-induced frustration Identical-between-chains DM interactions stabilize 2D helical structure. Staggered-between-chains DM interactions effectively cancel the transverse interchain coupling. Hälg et al., Phys. Rev. B, Intra-chain exchange J=20.5K, Inter-chain exchange J =0.03K, DM interaction D=0.28K. 33 Smirnov et al., Phys. Rev. B, 92,134417, 2015

34 Model: h D z Weakly coupled S = 1/2 AFM Heisenberg chains with a uniform DMI and magnetic field, : Intra-chain and inter-chain exchange, and : staggered between chains. y+1 y h Low-energy theory: y-1 Spin operator in spin current J R/L and staggered magnetization N, x -1 x x+1 DMI ( a is lattice spacing ) can be absorbed into H 0 by a shift of bosonic field, Cone: spiral in XY plane Rapidly oscillates when D is large. Collinear SDW

35 Strong DMI: quantum fluctuations generate interaction between next-nearest (NN) chains Effective interaction between NN chain, no frustration due to DMI, J 2 ~ - (J ) 2 /D with y+1 x -1 x x+1 : scaling dimension of, modulated by magnetic field y y-1 Induced state: Cone2N h Magnetic field enhances Cone2N. J 2 < 0

36 Strong DMI: competition between SDW and Cone2N RG flows: for D/J =10, Ordering temperatures: for D/J =10, Small field, h/d= Large field, h/d=5. T cone2n SDW - cone transition h c ~ J

37 Summary h D h Strong DMI promotes collinear SDW. Magnetic field enhances Cone2N, quantum fluctuation generate J 2 among NN chains. C-IC phase transition between SDW and Cone2N. Strong DMI K 2 CuSO 4 Br 2 1 st chain NN chain T cone2n Weak DMI K 2 CuSO 4 Cl 2 1 st chain

38 Conclusions Simple model but many interesting properties Interesting dependence on the angle between h and D Strong in-chain DM frustrates interchain exchange Experimental checks are available

Spinon spin resonance Electron spin resonance of spinon gas

Spinon spin resonance Electron spin resonance of spinon gas Spinon spin resonance Electron spin resonance of spinon gas Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow, Russia,

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow,

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah June 11, 2018 My other projects I d be glad to discuss at the workshop Topological phase of repulsively interacting quantum wire with SO coupling

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Spin-orbit-induced spin-density wave in quantum wires and spin chains

Spin-orbit-induced spin-density wave in quantum wires and spin chains Spin-orbit-induced spin-density wave in quantum wires and spin chains Oleg Starykh, University of Utah Suhas Gangadharaiah, University of Basel Jianmin Sun, Indiana University also appears in quasi-1d

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

DM-induced frustration of the weakly coupled Heisenberg chains

DM-induced frustration of the weakly coupled Heisenberg chains Journal of Physics: Conference Series PAPER OPEN ACCESS DM-induced frustration of the weakly coupled Heisenberg chains To cite this article: Wen Jin and Oleg A. Starykh 2017 J. Phys.: Conf. Ser. 828 012019

More information

Spatially anisotropic triangular antiferromagnet in magnetic field

Spatially anisotropic triangular antiferromagnet in magnetic field Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Triangular lattice antiferromagnet in magnetic field: ground states and excitations

Triangular lattice antiferromagnet in magnetic field: ground states and excitations Triangular lattice antiferromagnet in magnetic field: ground states and excitations Oleg Starykh, University of Utah Jason Alicea, Caltech Leon Balents, KITP Andrey Chubukov, U Wisconsin Outline motivation:

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields Sergei Zvyagin Dresden High Magnetic Field Laboratory (HLD) Helmholtz-Zentrum Dresden-Rossendorf Dresden, Germany In collaboration with Experiment:

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Emergent Ising orders of frustrated magnets

Emergent Ising orders of frustrated magnets Emergent Ising orders of frustrated magnets Oleg Starykh University of Utah Jason Alicea (Caltech) Andrey Chubukov (U Minnesota) Leon Balents (KITP) Zhentao Wang (U Tennessee) Cristian Batista (U Tennessee)

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems WDS'11 Proceedings of Contributed Papers, Part III, 49 54, 011. ISBN 978-80-7378-186-6 MATFYZPRESS Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems A. S. Serov and G. V.

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Conductance of a quantum wire at low electron density

Conductance of a quantum wire at low electron density Conductance of a quantum wire at low electron density Konstantin Matveev Materials Science Division Argonne National Laboratory Argonne National Laboratory Boulder School, 7/25/2005 1. Quantum wires and

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Quantum phases and transitions of spatially anisotropic triangular antiferromagnets. Leon Balents, KITP, Santa Barbara, CA

Quantum phases and transitions of spatially anisotropic triangular antiferromagnets. Leon Balents, KITP, Santa Barbara, CA Quantum phases and transitions of spatially anisotropic triangular antiferromagnets Leon Balents, KITP, Santa Barbara, CA Hanoi, July 14, 2010 Collaborators Oleg Starykh, University of Utah Masanori Kohno,

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Spinons in Spatially Anisotropic Frustrated Antiferromagnets Spinons in Spatially Anisotropic Frustrated Antiferromagnets June 8th, 2007 Masanori Kohno Physics department, UCSB NIMS, Japan Collaborators: Leon Balents (UCSB) & Oleg Starykh (Univ. Utah) Introduction

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 arxiv:1709.05252 Masahiko G. Yamada the Institute for Solid State Physics, the University of Tokyo with Masaki Oshikawa (ISSP) and George

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space 1 [NPHYS-007-06-00643] SUPPLEMENTARY MATERIAL for Spinons and triplons in spatially anisotropic frustrated antiferromagnets by Masanori Kohno, Oleg A. Starykh, and Leon Balents Basis The two-spinon states

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Jung Hoon Kim, Jung Hoon Han

Jung Hoon Kim, Jung Hoon Han Chiral Spin Liquid from Dzyaloshinskii-Moriya Interactions Jung Hoon Kim, Jung Hoon Han Dept. of Physics, BK21 Physics Research Division, Sungkyunkwan Univ.(SKKU), Korea Introduction to spin liquids Spin

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Linear spin wave theory

Linear spin wave theory Linear spin wave theory Sándor Tóth Paul Scherrer Institut August 17, 2015 Sándor Tóth (Paul Scherrer Institut) Linear spin wave theory August 17, 2015 1 / 48 Motivation Presentation Outline 1 Motivation

More information

In this chapter we focus our attention on the model (3.1) in the hard-core. the model (3.1) can be mapped into spin-2 XX model in the presence of

In this chapter we focus our attention on the model (3.1) in the hard-core. the model (3.1) can be mapped into spin-2 XX model in the presence of Chapter 4 Hard core Bosons 4.1 Introduction In this chapter we focus our attention on the model (3.1) in the hard-core limit, i.e., taking U = oo. In this limit with density of bosons p = 1/2 the model

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Physics 742 Graduate Quantum Mechanics 2 Midterm Exam, Spring [15 points] A spinless particle in three dimensions has potential 2 2 2

Physics 742 Graduate Quantum Mechanics 2 Midterm Exam, Spring [15 points] A spinless particle in three dimensions has potential 2 2 2 Physics 74 Graduate Quantum Mechanics Midterm Exam, Spring 4 [5 points] A spinless particle in three dimensions has potential V A X Y Z BXYZ Consider the unitary rotation operator R which cyclically permutes

More information

Relativistic Dirac fermions on one-dimensional lattice

Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa DUE, 211-1-2 Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa Universität Duisburg-Essen & Ralf Schützhold Plan: 2 Jan 211 Discretized relativistic Dirac fermions (in an external

More information

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Oxford Collaborators Alun Biffin (Oxford->PSI) Roger D. Johnson S. Choi P. Manuel A. Bombardi Sample

More information

External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method

External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 00, (): 96-00 External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method

More information

The Mermin-Wagner Theorem

The Mermin-Wagner Theorem June 24, 2010 Conclusion In one and two dimensions, continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions. Contents 1 How symmetry

More information

Exact diagonalization methods

Exact diagonalization methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Exact diagonalization methods Anders W. Sandvik, Boston University Representation of states in the computer bit

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Non-Abelian Berry phase and topological spin-currents

Non-Abelian Berry phase and topological spin-currents Non-Abelian Berry phase and topological spin-currents Clara Mühlherr University of Constance January 0, 017 Reminder Non-degenerate levels Schrödinger equation Berry connection: ^H() j n ()i = E n j n

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University)

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University) Gauge dynamics of kagome antiferromagnets Michael J. Lawler (Binghamton University, Cornell University) Outline Introduction to highly frustrated magnets Constrained spin models Dirac s generalized Hamiltonian

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3 Olexei Motrunich (KITP) PRB 72, 045105 (2005); PRB 73, 155115 (2006) with many thanks to T.Senthil

More information

The ac conductivity of monolayer graphene

The ac conductivity of monolayer graphene The ac conductivity of monolayer graphene Sergei G. Sharapov Department of Physics and Astronomy, McMaster University Talk is based on: V.P. Gusynin, S.G. Sh., J.P. Carbotte, PRL 96, 568 (6), J. Phys.:

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

One-dimensional theory: carbon nanotubes and strong correlations. Sam T Carr. University of Karlsruhe

One-dimensional theory: carbon nanotubes and strong correlations. Sam T Carr. University of Karlsruhe One-dimensional theory: carbon nanotubes and strong correlations Sam T Carr University of Karlsruhe CFN Summer School on Nano-Electronics Bad Herrenalb, 5 th September 2009 Outline Part I - introduction

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Universal conductance in quantum multi-wire junctions

Universal conductance in quantum multi-wire junctions Universal conductance in quantum multi-wire unctions Armin Rahmani (BU) Chang-Yu Hou (Leiden) Adrian Feiguin (Wyoming) Claudio Chamon (BU) Ian Affleck (UBC) Phys. Rev. Lett. 105, 226803 (2010). Outline

More information