Quantum criticality of Fermi surfaces

Size: px
Start display at page:

Download "Quantum criticality of Fermi surfaces"

Transcription

1 Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD

2 Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface with full square lattice symmetry

3 Quantum criticality of Ising-nematic ordering in a metal y x Spontaneous elongation along y direction: Ising order parameter < 0.

4 Quantum criticality of Ising-nematic ordering in a metal y x Spontaneous elongation along x direction: Ising order parameter > 0.

5 Ising-nematic order parameter Z d 2 k (cos k x cos k y ) c k c k Measures spontaneous breaking of square lattice point-group symmetry of underlying Hamiltonian

6 Quantum criticality of Ising-nematic ordering in a metal y x Spontaneous elongation along x direction: Ising order parameter > 0.

7 Quantum criticality of Ising-nematic ordering in a metal y x Spontaneous elongation along y direction: Ising order parameter < 0.

8 Quantum criticality of Ising-nematic ordering in a metal or =0 =0 c Pomeranchuk instability as a function of coupling

9 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n =0 =0 c Phase diagram as a function of T and

10 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n Classical d=2 Ising criticality =0 =0 c Phase diagram as a function of T and

11 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n =0 D=2+1 rising criticality c? =0 Phase diagram as a function of T and

12 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n =0 D=2+1 rising criticality c? =0 Phase diagram as a function of T and

13 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n =0 Strongly-coupled non-fermi liquid metal rwith no c quasiparticles =0 Phase diagram as a function of T and

14 Quantum criticality of Ising-nematic ordering in a metal T Quantum critical TI-n Fermi liquid =0 Strongly-coupled non-fermi liquid metal rwith no c quasiparticles =0 Fermi liquid Phase diagram as a function of T and

15 Quantum criticality of Ising-nematic ordering in a metal T Strange Metal TI-n Fermi liquid =0 Strongly-coupled non-fermi liquid metal rwith no c quasiparticles =0 Fermi liquid Phase diagram as a function of T and

16 The Fermi liquid Occupied L = f r 2 2m µ + uf f f f f k F! Empty states

17 The Fermi liquid: RG L = r 2 2m µ f + uf f f f Expand fermion kinetic energy at wavevectors about ~ k 0,by writing f ( ~ k 0 + ~q) = (~q)

18 The Fermi liquid: RG L = r 2 2m µ f + uf f f f Expand fermion kinetic energy at wavevectors about ~ k 0,by writing f ( ~ k 0 + ~q) = (~q) L[ i@ 2 y + u

19 The Fermi liquid: RG S[ ]= Z d d 1 ydxd i@ 2 y + u i

20 The Fermi liquid: RG S[ ]= Z d d 1 ydxd i@ 2 y + u i The kinetic energy is invariant under the rescaling x! x/s, y! y/s 1/2, and! /s z,providedz = 1 and! s (d+1)/4. Then we find u! us (1 d)/2, and so we have the RG flow du d` = (1 d) 2 u Interactions are irrelevant in d =2!

21 The Fermi liquid: RG S[ ]= Z d d 1 ydxd i@ 2 y + u i The kinetic energy is invariant under the rescaling x! x/s, y! y/s 1/2, and! /s z,providedz = 1 and! s (d+1)/4. Then we find u! us (1 d)/2, and so we have the RG flow du d` = (1 d) 2 u Interactions are irrelevant in d =2!

22 The Fermi liquid: RG S[ ]= Z d d 1 ydxd i@ 2 y + u i The fermion Green s function to order u 2 has the form (upto logs) G(~q,!) = A! q x qy 2 + ic! 2 So the quasiparticle pole is sharp. And fermion momentum distribution function n( ~ D k)= f ( ~ k)f ( ~ E k) had the following form:

23 The Fermi liquid: RG S[ ]= Z d d 1 ydxd i@ 2 y + u i The fermion Green s function to order u 2 has the form (upto logs) G(~q,!) = A! q x qy 2 + ic! 2 So the quasiparticle pole is sharp. And fermion momentum distribution function n( ~ D k)= f ( ~ k)f ( ~ E k) had the following form: n(k) A k F k

24 L = f r 2m µ +4Fermiterms The Fermi liquid f Occupied states k F! Empty states Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy! q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T. It is useful to write this is as S T (d )/z, with violation of hyperscaling exponent = d 1.

25 L = f r 2m µ +4Fermiterms The Fermi liquid f Occupied states q k F! Empty states Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy! q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T. It is useful to write this is as S T (d )/z, with violation of hyperscaling exponent = d 1.

26 L = f r 2m µ +4Fermiterms The Fermi liquid f Occupied states q k F! Empty states Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy! q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T. It is useful to write this is as S T (d )/z, with violation of hyperscaling exponent = d 1.

27 Quantum criticality of Ising-nematic ordering in a metal or =0 =0 c Pomeranchuk instability as a function of coupling

28 Quantum criticality of Ising-nematic ordering in a metal E ective action for Ising order parameter S = d 2 rd ( ) 2 + c 2 ( ) 2 +( c) 2 + u 4

29 Quantum criticality of Ising-nematic ordering in a metal E ective action for Ising order parameter S = d 2 rd ( ) 2 + c 2 ( ) 2 +( c) 2 + u 4 E ective action for electrons: S c = d N f c i c i t ij c i c i =1 i i<j N f d c k ( + k ) c k =1 k

30 Quantum criticality of Ising-nematic ordering in a metal Coupling between Ising order and electrons S c = g Z d N f X =1 X k,q q (cos k x cos k y )c k+q/2, c k q/2, for spatially dependent > 0 < 0

31 Quantum criticality of Ising-nematic ordering in a metal S = d 2 rd ( ) 2 + c 2 ( ) 2 +( c) 2 + u 4 S c = N f d c k ( + k ) c k S c = =1 k Z g d N f X =1 X k,q q (cos k x cos k y )c k+q/2, c k q/2,

32 Quantum criticality of Ising-nematic ordering in a metal fluctuation at wavevector ~q couples most e ciently to fermions near ± ~ k 0. Expand fermion kinetic energy at wavevectors about ± ~ k 0 and boson ( ) kinetic energy about ~q = 0.

33 Quantum criticality of Ising-nematic ordering in a metal fluctuation at wavevector ~q couples most e ciently to fermions near ± ~ k 0. Expand fermion kinetic energy at wavevectors about ± ~ k 0 and boson ( ) kinetic energy about ~q = 0.

34 Quantum criticality of Ising-nematic ordering in a metal L[ ±, ]= i@ y i@ y g 2 (@ y ) 2 M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010)

35 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 One loop self-energy with N f fermion flavors: Z d 2 k d (~q,!) = N f = N f 4! q y 1 [ i( +!)+k x + q x +(k y + q y ) 2 ] i k x + ky 2 Landau-damping

36 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 Electron self-energy at order 1/N f : ( ~ k, ) = 1 N f Z d 2 q d! [ i(! + )+k x + q x +(k y + q y ) 2 ] 1 " # q 2 y g 2 +! q y = i 2 g 2 2/3 p sgn( ) 2/3 3Nf 4

37 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 Electron self-energy at order 1/N f : ( ~ k, ) = 1 N f Z d 2 q d! [ i(! + )+k x + q x +(k y + q y ) 2 ] 1 " # q 2 y g 2 +! q y = i 2 g 2 2/3 p sgn( ) 2/3 3Nf 4 d/3 in dimension d.

38 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 Schematic form of and fermion Green s functions in d dimensions D(~q,!) = 1/N f q 2? +! q?, G f (~q,!) = q x + q 2? 1 isgn(!)! d/3 /N f In the boson case, q 2?!1/z b with z b =3/2. In the fermion case, q x q 2?!1/z f with z f =3/d. Note z f < z b for d > 2 ) Fermions have higher energy than bosons, and perturbation theory in g is OK. Strongly-coupled theory in d = 2.

39 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 Schematic form of and fermion Green s functions in d = 2 D(~q,!) = 1/N f q 2 y +! q y, G f (~q,!) = q x + q 2 y 1 isgn(!)! 2/3 /N f In both cases q x qy 2! 1/z,withz =3/2. Note that the bare term! in G 1 f is irrelevant. Strongly-coupled theory without quasiparticles.

40 Quantum criticality of Ising-nematic ordering in a metal L = i@ y i@ y g 2 (@ y ) 2 Simple scaling argument for z =3/2.

41 Quantum criticality of Ising-nematic ordering in a metal L = X i@ y X@ + i@ y g 2 (@ y ) 2 Simple scaling argument for z =3/2.

42 Quantum criticality of Ising-nematic ordering in a metal L = X i@ y X@ + i@ y g 2 (@ y ) 2 Simple scaling argument for z =3/2. Under the rescaling x! x/s, y! y/s 1/2, and! /s z,we find invariance provided! s! s (2z+1)/4 g! gs (3 2z)/4 So the action is invariant provided z =3/2.

43 FL Fermi liquid q k F! k d F Q, the fermion density Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P.

44 FL Fermi liquid q kf! kfd Q, the fermion density NFL Nematic QCP kf! Fermi surface with kfd Q. Sharp fermionic excitations near Fermi surface with q z, and z = 1. Di use fermionic excitations with z = 3/2 n(k) to three loops. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. S T (d )/z with = d 1. Entanglement entropy SE kfd 1 P ln P. kf SE d 1 kf P ln P. k

45 FL Fermi liquid q NFL Nematic k F! k F! QCP q k d F Q, the fermion density Fermi surface with k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P. M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, (2010)

46 FL Fermi liquid q k F! NFL Nematic QCP q k F! k d F Q, the fermion density Fermi surface with k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P.

47 Quantum criticality of Ising-nematic ordering in a metal T Strange Metal TI-n Fermi liquid =0 Strongly-coupled non-fermi liquid metal rwith no c quasiparticles =0 Fermi liquid Phase diagram as a function of T and

48 The Hubbard Model H = X i<j t ij c i c j + U X i 1 1 n i" n i# 2 2 µ X i c i c i t ij! hopping. U! local repulsion, µ! chemical potential Spin index =", # n i = c i c i c i c j + c j c i = ij c i c j + c j c i =0 Will study on the square lattice

49 Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied E ective Hamiltonian for quasiparticles: H 0 = X i<j t ij c i c j X k " k c k c k with t ij non-zero for first, second and third neighbor, leads to satisfactory agreement with experiments. The area of the occupied electron states, A e, from Luttinger s theory is A e = 2 2 (1 x) for hole-doping x 2 2 (1 + p) for electron-doping p The area of the occupied hole states, A h, which form a closed Fermi surface and so appear in quantum oscillation experiments is A h =4 2 A e.

50 Fermi surface+antiferromagnetism Hole states occupied Electron states occupied + The electron spin polarization obeys S(r, ) = (r, )e ik r where K is the ordering wavevector.

51 Fermi surface+antiferromagnetism We use the operator equation (valid on each site i): 1 1 U n " n # = 2U S ~ 2 + U 4 (1) Then we decouple the interaction via exp 2U X Z! Z d S 3 ~ i 2 = D J ~ i ( )exp i X i Z d apple 3 8U ~ J 2 i ~J i ~ Si! (2) We now integrate out the fermions, and look for the saddle point of the resulting e ective action for ~ J i. At the saddle-point we find that the lowest energy is achieved when the vector has opposite orientations on the A and B sublattices. Anticipating this, we look for a continuum limit in terms of afield~' i where ~J i = ~' i e ik r i (3)

52 Fermi surface+antiferromagnetism In this manner, we obtain the spin-fermion model Z Z = Dc D~' exp ( S) Z X S = d k Z c k d X " k c c i ~' i ~ c i e ik r i + Z d d 2 r apple 1 2 (r r ~' ) (@ ~' ) 2 + s 2 ~' 2 + u 4 ~' 4

53 Fermi surface+antiferromagnetism In the Hamiltonian form (ignoring, for now, the time dependence of ~' ), the coupling between ~' and the electrons takes the form X H sdw = ~' q c k+q, ~ c k+k, k,q,, where ~ are the Pauli matrices, the boson momentum q is small, while the fermion momenum k extends over the entire Brillouin zone. In the antiferromagnetically ordered state, we may take ~' / (0, 0, 1), and the electron dispersions obtained by diagonalizing H 0 + H sdw are E k± = " k + " k+k 2 ± s "k " k+k ~' 2 This leads to the Fermi surfaces shown in the following slides as a function of increasing ~'.

54 Fermi surface+antiferromagnetism Metal with large Fermi surface

55 Fermi surface+antiferromagnetism Fermi surfaces translated by K =(, ).

56 Fermi surface+antiferromagnetism Hot spots

57 Fermi surface+antiferromagnetism Electron and hole pockets in antiferromagnetic phase with h~' i6=0

58 Square lattice Hubbard model with hole doping Increasing SDW order Hole pockets Electron pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

59 Square lattice Hubbard model with hole doping Increasing SDW order Hole pockets Electron pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

60 Square lattice Hubbard model with hole doping Increasing SDW order Hole pockets Electron pockets Hot spots where " k = " k+k S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

61 Square lattice Hubbard model with hole doping Increasing SDW order Hole pockets Hole pockets Electron pockets Hot spots where " k = " k+k Fermi surface breaks up at hot spots into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

62 Square lattice Hubbard model with hole doping Increasing SDW order Hole pockets Electron pockets Hot spots where " k = " k+k Fermi surface breaks up at hot spots into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

63 Square lattice Hubbard model with hole doping h~' i6=0 and large h~' i6=0 and small h~' i =0 In ncreasing SDW Metal with hole pockets Metal with electron and hole pockets Metal with large Fermi surface s

64 Square lattice Hubbard model with electron doping h~' i6=0 and large h~' i6=0 and small h~' i =0 Metal with electron pockets Metal with electron and hole pockets Metal with large Fermi surface s

65 Square lattice Hubbard model with no doping h~' i6=0 and large h~' i6=0 and small h~' i =0 In ncreasing SDW Insulator Metal with electron and hole pockets Metal with large Fermi surface s

66 Fermi surface+antiferromagnetism Fermi surfaces translated by K =(, ).

67 Hot spots

68 Low energy theory for critical point near hot spots

69 Theory has fermions 1,2 (with Fermi velocities v 1,2 ) and boson order parameter ~', interacting with coupling v 1 v 2 k y k x 1 fermions occupied 2 fermions occupied Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

70 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 v 1 v 2 k y k x 1 fermions occupied 2 fermions occupied Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

71 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 v 1 v 2 Hot spot k y k x Cold Fermi surfaces Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

72 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 Order parameter: L ' = 1 2 (r r ~' ) (@ ~' ) 2 + s 2 ~' 2 + u 4 ~' 4 Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

73 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 Order parameter: L ' = 1 2 (r r ~' ) (@ ~' ) 2 + s 2 ~' 2 + u 4 ~' 4 Yukawa coupling: L c = ~' 1 ~ ~ 1 Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

74 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 v 1 v 2 Metal with large Fermi surface h~' i =0 " k1 < 0 " k2 < 0 Fermion dispersions: " k1 = v 1 k and " k2 = v 2 k

75 L f = 1 (@ iv 1 r r ) (@ iv 2 r r ) 2 ~' 1 ~ ~ 1 E k± > 0 Metal with E k+ > 0 E k < 0 hole and electron pockets h~' i6=0 E k± < 0 Fermion dispersions: s "k1 E k± = " k1 + " k2 2 ± 2 " k ~' 2

76 Hertz action. Upon integrating the fermions out, the leading term in the ~' e ective action is (q,! n ) ~' (q,! n ) 2, where (q,! n ) is the fermion polarizability. This is given by a simple fermion loop diagram (q,! n )= Z d d k (2 ) d Z d n 2 1 [ i( n +! n )+v 1 (k + q)][ i n + v 2 k]. We define oblique co-ordinates p 1 = v 1 k and p 2 = v 2 k. It is then clear that the integrand is independent of the (d 2) transverse momenta, whose integral yields an overall factor d 2 (in d =2this factor is precisely 1).

77 Also, by shifting the integral over k 1 we note that the integral is independent of q. So we have (q,! n )= d 2 v 1 v 2 Z dp1 dp 2 d n [ i( n +! n )+p 1 ][ i n + p 2 ]. Next, we evaluate the frequency integral to obtain (q,! n ) = = d 2 v 1 v 2! n d 2 4 v 1 v 2. Z dp1 dp [sgn(p 2 ) sgn(p 1 )] i! n + p 1 p 2 In the last step, we have dropped a frequency-independent, cuto dependent constant which can absorbed into a redefinition of r. Inserting this fermion polarizability in the e ective action for ~', we obtain the Hertz action for the SDW transition: S H = Z d d k (2 ) d T X 1 k 2 +! n + s ~' (k,! n ) 2 2! n + u Z d d xd ~' 2 (x, ) 2. 4

78 Fate of the fermions. Let us, for now, assume the validity of the Hertz Gaussian action, and compute the leading correction to the electronic Green s function. This is given by the following Feynman graph for the electron self energy,. At zero momentum for the 1 fermion we have 1 (0,! n )= 2 Z d d q (2 ) d Z d n 2 1 [q 2 + n ][ i( n +! n )+v 2 q ]. We first perform the integral over the q direction parallel to v 2, while ignoring the subdominant dependence on this momentum in the boson propagator. Then we have 2 Z d d 1 Z q d n sgn( n +! n ) 1 (0,! n )=i v 2 (2 ) d 1 2 q 2 + n 2 Z d d 1 q q 2 = i sgn(! n ) v 2 (2 ) d 1 ln +! n q 2.

79 <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="hp+6lruf2d3tzaldqaqqvekmxyw=">aaab2xicbzdnsgmxfixv1l86vq1rn8eiucozbnqpuhfzwbzco5rm5k4bmskmyr2hdh0bf25efc93vo3pz0jbdwq+zknivscullqubn9ebwd3b/+gfugfnfzjk9nmo2fz0gjsilzl5jnmfpxu2cvjcp8lgzylffbj6f0i77+gstlxtzqrmmr4wmtuck7o6oyaraadlmw2ivxdc9yanb+gss7kddujxa0dhefbucunsafw7g9liwuxuz7ggupnm7rrtrxzzi6dk7a0n+5oykv394ukz9bostjdzdhn7ga2mp/lbiwlt1eldvesarh6kc0vo5wtdmajnchizrxwyasblykjn1yqa8z3hysbg29d77odbu3wmya6nmmfxeein3ahd9cblghi4bxevyn35n2suqp569lo4i+8zx84xio4</latexit> <latexit sha1_base64="azuc7c136kqlz8jcnn+xksejcw8=">aaaijxicjvvbj9tefhyljmuuuuwvlymalqyahnhf4kusclhtaw9fdluv1rvr2d52rvxmodpjhnrx/hev/br4aqme+cccx3lzxalfsqtxzll+3+czqzzyy0ejp+7cfefd9zrde++7h9z/8kmhbw/vvziq1ygehipv+nxadkzc4qnlnsxxmuymghtpgjffvudnm9sgk/nsljk8ecyrpoyhs7q1ftg58qnmucxclbz16rz+ynscfhddcbmikgy7qyhrc3iw5dd1uuyb8+/rqm4gecsnus0hwizjbdy+m5byinvfoszz1pytpgo5mzxjygfvanniceilstw2bimyimvedzxwwnuavfujpvsuleqhpnoi8nmdcs5rkyg8nhad9ev4dcuei6zslazqtthgbbdsunzes2zivuxurgrcmaauqjpfahr+jzwrrdeebyy8ra1akeen5wlwjj0/m3zs9dbawbxhwmbo++5q59+ci9o8xrt0m8hjd/qjafgunwfjeqrpaqh3euts8hh8li34swzhev1gmc2lpm1m/ogykq8cgo9uruo8yrkotupwmzovjcixtudtcvgy/iqjwwc5dvj6lf/zzgivgsmnwkg/pa+cnuu9hqisxkwcu5ywurz5n5bbiouqfklklglubtvmgglhork3khvfbde4i164nhyy1isnqagltpc4sugrxbui2xw9iphacbkjkxttshg9tu29acwnpkugivs6yrvyn3kqkceli8aizkgglcg6lzwqqwwo5bi2d5spemivsyrzpstfoxrbxrdmsqy1w5tu4shsjzndbuxnxibwsljoxsflqwxeftetr9ylun64leawzfbfoh4qtcllvdxr3ulynwjklwlacoxdw9vqta9+sgx1d22k8mr6tcb/12aqorzeh9zw+eadbcrl20lzau1ov2o7svm2sltz9b2noez16xnum/a2unpnrm0n7tn740uffz+qb7jyqe2y6fndr18cl7tfxru8cynkrolnilpavoimawzx06oxpw3kixrhhtzunrruruyzqbzfy9dewmqjxcbjbypvimrba/xx9y96fpbonbzvd9xceo3ikdm+l8yhv/qrcvpqgwxtujtovvfmlwqmlq9tppc5wyyfb1ic57sutkc5koolr4tpaceqz3gskjcr3v2pggljfiigs8hsxfw/qzb/6+w8t/fxfwwx1wukwyzrnnfjpro920mulmjbqs2pvggnnjncugynsyb411u+uxh1pprgq++hkxpp+ct51ok7nvol87xz3hnhndph5+fob50/o391f+n+3v27gevunra3j50rt/effwgk38sb</latexit> <latexit sha1_base64="eeckffjemaalhdmmlx7zl0xejcm=">aaaijxicjvvbj9tefhylzispdmsrl0c0lfk1dfa23e1ljrbi2wceiuh2k613o7f97ixqzzgz44tucf4rl/wueaejhpgnhf9y2s7ryiwspxou3/fngt9ludao88enm++9/0fn59ah9ke3p/7kzu7d26+0zfwaj4fmphrtm40jf3hiuenwdaaqpx6cp/6bb6v90wkqzav4awyznqcsfjziato0nlzbofz8jlkoahqgvwkxxsjujj4fwtezcdicm0kiukxkomub7aeiv+bfo4fc9ygscosc9ofpnady+0xywknuzssyz1gzt/cm5vpzjoafvqnkiuiizjrlpnflkivcxhyglclaboysdzchbyufd+czqhrfaohyuzsm4owia6bfzccowj81zcskkvokbsc4eylljrxlrnzv7mzeiaqjqieqnvwh6/3i45r1b/cngbeojkqypybzfjaoxs/tfoh2l8dafghejuh59mlj34kl47zgu7sbyemxek4fpioas6hyh6cahhvqh+ziadwudhirykerxoqwloselwz8/yisl22ch1rfqjyksqhnsrcbpbckijeyz2mkeb+8mkupg/naye5rfsxjktlvdb8ah956v3jalxcfikoqk3jiwyjqmuz7xk6dlapwhbr56qoyq2z8taodtl2nbbszxucueofkg8hqez5pdsi1hcrnaplk2kdc5uhcyjdcybizjjhuiuiuaur2ytricqwjhvqv25w/zv1qplwwaizejgpaeabdyamsyopslmpzx+oqgzizi5mrqliucrvldc2kyeqxwwnv7cfwmjluwnrerggti/lkedc/zobfet5wy02k64vraw5zbi/15u+fjkw5ltvko55ve0g5jg1irrc3t1gsttvpiahuoy1uxk6/yvj/gkwe1mlrgd0ax6mzjthvwyhbre1vsm1dae5kauuovqmr1khuoyo64+5aaryeyammdwaunftydlq9zdon2i6khjw0/9vbuvnuzcgtkehujhiezlkzspabzexqwnxdp418usfc0dq1u8o+lik9vqzo+dpkwg20ctipol9yug1bod5491apd+85a+fqoxrsgdn49pdiptykf+fry/fhe3ahtv3cs9rnxxd3vy+uqv6dwschs+pmdtjzxjblejaghc81zix4w2i8o1fbuttnrx3hlfafryt1li5kbwa1uulrsftrweqtzcrmsl+7vy3+195zbqin5wux1wukgizrlnfjpro920muzoifbyptrrcmacyfdblqm0bydgrbx14ddfxn4p7gwlesz6zprz7lwkfw19zz64v1ygwdnzu/df7s/lxzy87vo383cn280el2qxxp2fnnx+day0m=</latexit> <latexit sha1_base64="rmzatibmwmlwbilvjvjalzllges=">aaaimhicjvvbj9tefhyljmxctvdiyxeblqyabnvb7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13wu1b79rvvf/bhx/t3p74hza5cvakkilul32mmeectww3cb7mfllut/duf/vntx86rqw5fm/nnmpzlmwcrzxghpygt1vhno8xf0wawqaq7cjlmirr8ym4zgzbrmcgcbgqlbx02bc9fohk/ds0koserfkbkjmemk3zfgufmut4ym10gempkvmanrbca84eskaqgtxecifms9ws3bjkirexhuilslybi+sdtohbscedekiqxrcaolzujn14puqa6bfzmqrwp4uyzzlicuwdy5yklllgimvduyp3myiqghggqbvpe9dxfubxyjp9+mraa1qsuplsw3kks8eol2k+cdtlygccmgrj9dx7vvfvwmvrxund2oviaxe6tg88ihqzgdihrwcee+qh7oiapc4mejfiqrfehdaqiy4tznz/iiwvbykhvevcpiqyqe1ksbd7bkleymtorhtwdngxs1mgs7xdzkp8isddc74wvascuuv9ymlv3h0okkgmywflcujpft+jch2k7imnpmhth5vdnenjuuhw4jrlqjfrde6jf660gqwv4znwgfjbsnwkiemuc4ibhb0i+viigsotbjnkez1vtz0etiy8oscxkkpiu/lxur/klatggiwyuq0oarqrovvswvhkrw3us10ludjjmtnsvypcyte8rpkutck2le29pdhkjockmjqifa1lmrspdmaxgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb25vp5tvopmdq9njhky+lxgf9fg4mawnhdsbvjk3u2ewdnc2wjtf1nqw0ozv0pbcnrtzscfqpbzqdoqlowmq2hcqjpnzkrjxw2hvvp83sjtouisw3tf3lqbhz1wfakjjibcz6nmvsmemram7uavp3w0uk+qbcuao3aqwffy5qekvm0fg0lrdbabjxu0jvpqbytub+8eagho7to3zl0jh444ptv3ztydw/pxbn/wl33eny+uz+7vvm8g+z84ouyykszgcr0azy5tmboc6ymdxkk8lngjawvwixn9cpyivq8qc+8ej6nlbcexzgswkxwnz0klmo9tx2ytjkz6jf3qsx/2jvltftwvociuoxesegu5fw4qw7pzhilu3phgejukwrdmkkbxybajhcwncl2lxchfdfpu987u4+/buc4zx1qfwz1ldc6sh5bt61n1okvth5q/dr6o/vn++f2b+2/2n8vtg/eahw+ss497x/+bc/dzoa=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> <latexit sha1_base64="6/ebs0dragzu74nn1jbwccuft4m=">aaaimhicjvvbj9tefhylbiq5begrlym2lfk1dxba7valuggx7qmprxs7lda70dg+dka1z5yzculqop+if34kviaeqrzykzh2nmt2iryrkeyzc/2+b874wck1czzfb9x86+13dlq33rxfe/+ddz/avf3xcy1zfebjibopxvpmy8ifnhhuenyzkwspn+cp/+qbav90jepzkz6baybnkysfj3jadc0nbu8cez7gxbqbcooqtasvyspgz4/gmbkegyeziksounlqzc/2uiqr8+/qqk67eekfqk66wltou6x9xizhitftzyynqmxremjyrtktwikqbpiqiqqyzxkzceuqhvzedicvwtogjkx3mkfvjqup4ilcff9oihjrm/tg+zbrof/mxyjany7klkkijxqnjnequsoak5yn7arczyhaceaaalu87ulb+4hhkwv34csdr1fjsgvkdecplb3bxqb5wg0vgyejwpcn0fps+ca/ardhey13as8id1zoof3wkgrmbuiahgeq7qkfsos+efwy8clfgik8cgfufh1azpjbrvhe2gqpqyqeebrluzuuyc/23jkixmicjsjghfbilqymzmuhmuf5fy+h5nxhebc4dnb7ldoqvdtqviiylwpkeotsll5h5tpi2qnpsjgnpiq7asbhpndhxhxkhwlwgjwsl1xpaxkqwjotaaw2klhjqjjcfxa3odoq8quqmkymcsavitqrmtpdmax5qkfiivxfduwvcz+ukremaasxoxpqbghxcqqksqkui9rcl7pkogtgymakqhsfwm54xtmpmfjswtr7+7cvta4vmdurk1rlyjye9gexgbwowrtuuulxvxatzq3l4kw+/lhqssi3ckd5r7ntiijxpahjffb35/p5tvopmdq9njhky+lxgf9fg4mawngdsbvjk3u2ewdnc2wjtynnqw0ozv0pbcnrtzscfqpbzqd2ql2wmq2hcqjpnzkrjxw2hvvp83sjtouiqw0dfnkvn4u6lhgsesmnbm/ttcptctkgmv1nq3b4acffvahxthbt1lcvzuqplckavrysvhttak4q6m7nvnswqptvhurb7p7tcw6dowcool37947cw0n6ce4/co89blfn1m+e1tzpbru/ekem8uombgldgmeuk5nzgindgwqpfk4xy8erfumzvqqwoj4v6guvhm9pjaxncsqrmkvvty+cpvppu58su2ag+s29avg/9s5yez08l7iolimrlbjfet1uqtuzmutjlf5yodjvcsgqzljal6g2cyrlp7d95uw/5zo99/v+3uovgzhuwz9an1kdy7wormfwu+uzdwifoz/t/lrzx86frz9bv7x+av29ml15o/h5xlr0tp75f9bjzoi=</latexit> Evaluation of the q integral shows that (d 1)/2 1 (0,! n )! n The most important case is d = 2, where we have 1 (0,! n )=i 2 v 2 p sgn(! n ) p! n, d =2.

80 Critical point theory is strongly coupled in d =2 Results are independent of coupling v 1 v 2 k y G fermion p i! 1 v.k k x A. J. Millis, Phys. Rev. B 45, (1992) Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004)

81 M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, (2010) Critical point theory is strongly coupled in d =2 Results are independent of coupling k k k? k y k x G fermion = Z(k k )! v F (k k )k?, Z(k k ) v F (k k ) k k

82 Strong coupling physics in d =2 The theory so far has the boson propagator 1 q 2 +! which scales with dynamic exponent z b = 2, and now a fermion propagator 1 i! + c 1! (d 1)/2 + v q. First note that for d<3, the bare i! term is less important than the contribution from the self energy at low frequencies. Ignoring the i! term, we see that the fermion propagator scales with dynamic exponent z f =2/(d 1). For d>2, z f <z b, and so at small momenta the boson fluctuations have lower energy than the fermion fluctuations. Thus it seems reasonable to assume that the fermion fluctuations are not as singular, and we can focus on an e ective theory of the SDW order parameter ~' alone. In other words, the Hertz assumptions appear valid for d>2.

83 <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="hp+6lruf2d3tzaldqaqqvekmxyw=">aaab2xicbzdnsgmxfixv1l86vq1rn8eiucozbnqpuhfzwbzco5rm5k4bmskmyr2hdh0bf25efc93vo3pz0jbdwq+zknivscullqubn9ebwd3b/+gfugfnfzjk9nmo2fz0gjsilzl5jnmfpxu2cvjcp8lgzylffbj6f0i77+gstlxtzqrmmr4wmtuck7o6oyaraadlmw2ivxdc9yanb+gss7kddujxa0dhefbucunsafw7g9liwuxuz7ggupnm7rrtrxzzi6dk7a0n+5oykv394ukz9bostjdzdhn7ga2mp/lbiwlt1eldvesarh6kc0vo5wtdmajnchizrxwyasblykjn1yqa8z3hysbg29d77odbu3wmya6nmmfxeein3ahd9cblghi4bxevyn35n2suqp569lo4i+8zx84xio4</latexit> <latexit sha1_base64="/gaw60x2ignjqzsafnz3ddbxlly=">aaahfhiclvxbbtw2efxsxe7uthx62pdbswxs1pfxm6y2iqtodyhzemctndia5rgura0is6jmumtvnus/6u/1rx/tq0rxjtzqve9cksm5c86z2bqppbhd4t+3bn9y5+7c4r374acppvv8i6whd94y1wouxnnvkr2xminkwyvxvtps7dvascotxw569js7350ibasqd+y0eqcvg9cyl5xzbb0+vptxkoqxrgdc1fboethl0py2rvb1mlhqgqglppgayq3jmgbz89fghiaizs5jdgpbthbkt8koypmmghm3q6kyqqzgq4anmvu67lnl0jqlm1bmfnjlyiqsxdm+i+ez47cj+o6smasqru8tvykxe98nvbj2ukhekogsfizopc0om9askpzeaanqykpbu8mucfej1rnv6oqy5ujx8v9iekysoisaxg/jc1xvz8vz43hlbtthgadumqeez8p2v47n8+gg6c+knhaaroonwcqvbrhpngcpz41pqyolpamczrvjqygvklsn0pahpgtxpokr2mqztk7umneq8ruwru6ifno8jwqpqucuxxerai6fiejlufba6esud65mw6ut90ap0f24ztx/kp/tcxqteyogufjcv/mt08ofpspi04sd3ycnqvhzuguytwwxdjsxlbett6ybtybc1sl0h9ocdeflijfvr7rttcdnumoqq+gopmnqigsr1ji2uqhikxmdhball8marrzkejv0qeerhwk54siakkxfngtu5es8i1tuh97+fzeuzgc6yzpvahztijkipksmtdefna+ilwaucl/wpbci6qqbprpeptd2xye26ue1jucntvgps95aodykw7mkctdbd9p+9bxjvzyeuv4wuo/egft09hvdp1exzx3rayzapfboemhbjgeqc3n6ihpndy2z9frkdiix9j8uyavvrxvygy5zsytzscaysyhotwejuc1sqygr8qhwkxoufy9y9dnj9gcnx/0hgsskgnwdxtk8kslofqwbfh/awu+cfjkv1mc3wu4pcq1mcdzcaeyqhzgzbqvaqcyskyvegzmsbfttq+jsl+jslbal3jis/snt6gyb8site6tqe3lyyzwcpo3i0cyglw/5yyrn/xqtku7o125ubizmqzrcfxqp1ml5niyhkytrelj0abgn/ufxf3g/ebt039bh0t9jbje6buil7lifdxt7mgmafzucc601omh8cgzvy4mwfezg5v9h5vqndjov5zgn5hcvr8xyzcy0snhtzthz8zkfbjec7bc23ziyybpplwzplyhvsyel+1oitgo0dytjjovyj16gtti6xdgs4o9lvr54m4riyrt/mqzubv8fxwflqrysbz8hm8fw8drgc3cwvl14svd94v3ftcuforpu3+p5+zk48i1u/asdyym8</latexit> <latexit sha1_base64="0fcjx1vto3mmy7nraa792wq5afy=">aaahfhiclvvdb9rgfduuenbpc33ty1xzskkbjl0hyaqcql9c4qgjnglbwigahy/xi2ypmzpezfk2/6r/qm/9nz0zdr4kvvu/zc7mnxvuoefehtelndao/7p2/zmbn5ewb90op73z2edf3l1356vrrezij6ts6vdjzkqpa7fnps3fq0ylvo1lst9++4s7358kbasqd+2seqcvm9qyl5xzbb3eu/lhohytwc+5qk3qi3cejnpasvrve+kqbqysmmjmjdckaxpkt4adrzikojup2s0e2uiopsojkgeacmbcdo2vutu1wjvswqzsyz8tk6yp2axitsbbrlau5prxebkyh70z0neutlhvmxqfqkpm2ps+4zww40lyggxnptb0lg1b2axmleqkthpvaxsn3h2oaxenwj1rry6jus50jf8vpgckqumcapwwocf1zr6spuhwhw4xopdutreu8kzz7tfryhf9bpptqy0fiot4y5zypuhs43ug9awxlwhwkxraolkiaqilqowqudoy1ifg2kdwvvstx60tncy1qvwubjgtqiwezahzshcqa3huipplysj6nqmvdvq6y4or2dbo2d3qa3qxpmtup8np6qknh3qkblh41ff5g9pdnz0mynola98gjalywvifglvllwyuly23rbesgbemwtui9fltjobwmstl9ypalvqqzl01lsf0b55kabcysgpmw32kycsznrwqc5fjgk62zhotdkhbeyccueligcisrz4lbux0vcnu7h/e+xwflm4aumgavqic0ycdcj5pp0w3hvwmijvglgqf1aqqoukyaaazxlbq9l2htulbny1ap01zkbpeqka2csptna23qq/afu28y72cnrlefldvxbn09pr1qz9xl2cd6w9yghmg0ozcgh0pibfm9bq1zh5amuvplrgqe+1/xjalqlrr5azdspzwspkmzrmr0x4peqfa2fzdvuvd4vp0kc5esoqnk+jbgo/7liercodca10yvdkgnf1ya/w+tloeocnkwfqd3qq7j8q1mmhzcaeyqxrezrqvaggzseyweavmslnqtc+j05+i0+fclnjjrfrp7ksno4wxmzgihx4lp98ncbwrjcprifze+ggk538xuymo6eduviygizwktzas4ratdomkxl2nwso79+mo3sr2thh0ah0r2dzein60kaypkili/90p+u/f4d0/0wxuda3es9jldri39mdoncoqbezaa0td+fuw/rpltkwwb3p/p7kgb7dtesnhpcg/ezlizipjztuyn90cm/8888pti2evw5upduayblql2dmlytvsyel+lcitgk0dytljovajf2gtji4xjoszsunffy+hurjhyw9xccv4kvg6wamsycv4mdgoxgr7av+6sftt0vrso+xbyw+xnzu6rl/refsyupitj/4gx9ydfg==</latexit> <latexit sha1_base64="n5jzmv+88k0i5jutxuqwps8xbb0=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/xbnp3/z0vgg823nu85cj+5sdj53tjrbnbcdpnnv5oezlznv2yezy7prs5vtq3fvtdhfdg58sy/+bkm8hhi=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> <latexit sha1_base64="uq7oav7n8mv/qi0adincouv8snk=">aaahh3iclvxbbtw2en2kiz2olzjty18g9raww0ew1lcuszgkrea8bhbrjzzgoqaxolaejvemqbu3m/wf9kf61r/pive+ns6k6ollcjhnzjkz268lawwu/xxn7mf37s/mpngyfp7fl189mnv89tujgs3fw64kpff7zihcvuktlbyq+7uwrowxyq9//is73xskbasqdu2ofoclg1qyk5xzbb09vv9h0hcdwy25qkzqk2cc9dpasvpva+kqaqys6nxkjdckk+qmz3rdszcikr2m2c0f2vwopskjkgoacmbcdvwvurxvwtvswkzsqzstlayu2khknsdbrpauzjrxctwzn7zv0y+udfhzmvqyqfim2mc24y2w01zynaxnhtb0km1o6ahipeqkzmpvart1pxz1axejwjvspu6jusz0kf8vpickayoe0phrfinr/xghfrivlvcmopdudseu8ftz6a+tyss8bforqy0fiot4y5yypuhs0xug9awxlah7lbrlolkkaqilqowyvtoy1ifgykdwvvkt+40tnci0kv0ubjgrqiqejahzchcqaxhsiiplyuj6paiudvq6y92b2zbo1d3qanqxpmxup8np6bn1lj1f3tb45av82enhz54s5gnfgw+qxpsskkgejmqyawbkiobbxlvwwftd4wor+qi2r0nwhel1+yht5g1is66a0hc6a08ynahzjdwmkw8p8kzgjwfewmuyokspmf4khgpqxkfapjgyiaprkwwcwzm87aiv+yd3ft0jpvoarplmpqdh1e2ggo+tidn1liddygwyc4pxfsmeadpfgjlaykto+2gktm5b1bvapw1zidpwqka2dilzjam2qa/afumyy72cnrlwfldvxom29lr1qz9xl2cd609yghmg0ojkglmeqc7m6smqnt20znbtkzegbtr/ucixvdxwyq26zcwtzauzywyipl0wjek1si2grmqhwqfouvy8ytvpj9gcnr73rqjxfac5b6bj8eofdvzjdfdb0kn1xfku+9ia7jbypsougqnorgjaskvdctytfqhihwwygcgwu5kaanotnr8iz98iw+cny+mf3anpdxjpuzfecr0vhz/fubqwxr3ntvry9smuz/8uhlkc0svpqnjstzyo2lilexu00iviahexdi7m5qmwwsd2rfg4urirr69jea2uxsubfier/+y77bd9npdnksknrof4abscxfftd8dmo6jcyk41rtsmh4ptayzrssicjv3/yis+x87usxnmcfnd6xfjvhozkvu46eay+eezh263nb00nts8hmuqbixmzzrr1hrofvenrknuaboik0o2zz94jjbh6bljsliolp598a4xxley/9abf/6ypenb59vod52fttzz6dzvbhw2o287fobeza8zkzorsw9nl2fxzzenv+/eawo+6dz4zl/8dupchhq=</latexit> However, in d = 2, we have z f = z b = 2. Thus fermionic and bosonic fluctuations are equally important, and it is not appropriate to integrate the fermions out at an initial stage. We have to return to the original theory of coupled bosons and fermions. This turns out to be strongly coupled, and exhibits complex critical behavior. For more details, see M. A. Metlitski and S. Sachdev, arxiv: (Physical Review B 82, (2010)).

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Chaos and Order: from Strongly Correlated Systems to Black Holes, Kavli Institute for Theoretical Physics University

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum Phase Transitions in Fermi Liquids

Quantum Phase Transitions in Fermi Liquids Quantum Phase Transitions in Fermi Liquids in d=1 and higher dimensions Mihir Khadilkar Kyungmin Lee Shivam Ghosh PHYS 7653 December 2, 2010 Outline 1 Introduction 2 d = 1: Mean field vs RG Model 3 Higher

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

arxiv: v2 [cond-mat.str-el] 2 Apr 2014 Transport near the Ising-nematic quantum critical point of metals in two dimensions Sean A. Hartnoll, Raghu Mahajan, Matthias Punk, 2, 3 and Subir Sachdev 4 Department of Physics, Stanford University,

More information

arxiv: v1 [cond-mat.str-el] 17 Feb 2012

arxiv: v1 [cond-mat.str-el] 17 Feb 2012 Fermi surface reconstruction in hole-doped t-j models without long-range antiferromagnetic order. Matthias Punk and Subir Sachdev Department of Physics, Harvard University, Cambridge MA 0138 (Dated: February

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT)

How might a Fermi surface die? Unconventional quantum criticality in metals. T. Senthil (MIT) How might a Fermi surface die? Unconventional quantum criticality in metals T. Senthil (MIT) Fermi Liquid Theory (FLT) of conventional metals Electron retains integrity at low energies as a `quasiparticle

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

arxiv: v3 [cond-mat.str-el] 2 Apr 2014

arxiv: v3 [cond-mat.str-el] 2 Apr 2014 Auxiliary-boson and DMFT studies of bond ordering instabilities of t-j-v models on the square lattice Andrea Allais, Johannes Bauer, and Subir Sachdev Department of Physics, Harvard University, Cambridge

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

arxiv: v2 [cond-mat.str-el] 2 Apr 2014 Transport near the Ising-nematic quantum critical point of metals in two dimensions Sean A. Hartnoll, 1 Raghu Mahajan, 1 Matthias Punk, 2, 3 and Subir Sachdev 4 1 Department of Physics, Stanford University,

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

2. The interaction between an electron gas and the potential field is given by

2. The interaction between an electron gas and the potential field is given by 68A. Solutions to Exercises II. April 5. Carry out a Hubbard Stratonovich transformation for the following interaction Hamiltonians, factorizing the terms in brackets, and write one or two sentences interpreting

More information

arxiv: v1 [cond-mat.str-el] 15 Jan 2018

arxiv: v1 [cond-mat.str-el] 15 Jan 2018 Fluctuation effects at the onset of 2k F density wave order with one pair of hot spots in two-dimensional metals Jáchym Sýkora, Tobias Holder, 2 and Walter Metzner Max Planck Institute for Solid State

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

3 Classical phase transitions

3 Classical phase transitions 3 Classical phase transitions Given the motivation outlined in Chapter, we will begin by discussing phase transitions in the context of classical statistical mechanics. This is a vast subject, and the

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

Quantum Phase Transitions at Integer Filling. Abstract

Quantum Phase Transitions at Integer Filling. Abstract Quantum Phase Transitions at Integer Filling Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa Entanglement signatures of QED3 in the kagome spin liquid William Witczak-Krempa Aspen, March 2018 Chronologically: X. Chen, KITP Santa Barbara T. Faulkner, UIUC E. Fradkin, UIUC S. Whitsitt, Harvard S.

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute Fermi liquid & Non- Fermi liquids Sung- Sik Lee McMaster University Perimeter Ins>tute Goal of many- body physics : to extract a small set of useful informa>on out of a large number of degrees of freedom

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information