Quantum criticality of Fermi surfaces in two dimensions

Size: px
Start display at page:

Download "Quantum criticality of Fermi surfaces in two dimensions"

Transcription

1 Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD

2 Yejin Huh, Harvard Max Metlitski, Harvard HARVARD

3 Outline 1. Quantum criticality of Fermi points: Dirac fermions in d-wave superconductors 2. Quantum criticality of Fermi surfaces: Onset of spin density wave order in the cuprates

4 Outline 1. Quantum criticality of Fermi points: Dirac fermions in d-wave superconductors 2. Quantum criticality of Fermi surfaces: Onset of spin density wave order in the cuprates

5 The cuprate superconductors

6 Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

7 Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Γ Γ

8 d-wave superconductivity in cuprates Γ H 0 = i<j Hole states occupied Electron states occupied t ij c iα c iα k Γ ε k c kα c kα Begin with free electrons.

9 d-wave superconductivity in cuprates - + Γ ε k c kα c kα + k c k c k + c.c. Γ + H = k Begin with free electrons. Add d-wave pairing interaction k cos k x cos k y which vanishes along diagonals

10 d-wave superconductivity in cuprates - + Γ Γ + ε k c kα c kα + k c k c k + c.c. H = k Begin with free electrons. Add d-wave pairing interaction k which vanishes along diagonals Obtain Bogoliubov quasiparticles with dispersion ε 2 k + 2 k

11 d-wave superconductivity in cuprates S Ψ = 4 two-component Dirac fermions d 2 k (2π) 2 T Ψ 1a ( iω n + v F k x τ z + v k y τ x ) Ψ 1a ω n + d 2 k (2π) 2 T ω n Ψ 2a ( iω n + v F k y τ z + v k x τ x ) Ψ 2a.

12 Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)

13 Broken rotational symmetry in the pseudogap phase of a high-tc superconductor R. Daou, J. Chang, David LeBoeuf, Olivier Cyr- Choiniere, Francis Laliberte, Nicolas Doiron- Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arxiv: S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).

14 d-wave superconductivity in cuprates Now consider a discrete spontaneous symmetry breaking, with Ising symmetry, described by a real scalar field φ. Two cases of experimental interest are: Break 4-fold lattice rotation symmetry to 2-fold lattice rotations: leads to a superconductor with nematic order: equivalent to d x 2 y 2 + s pairing. Time-reversal symmetry breaking: leads to a d x2 y 2 + id xy superconductor, in ε H = H φ + which k c the kα c kα Dirac + fermions k c k c k are + massive c.c. k H φ = φ k c k c k + c.c.

15 d-wave superconductivity in cuprates Now consider a discrete spontaneous symmetry breaking, with Ising symmetry, described by a real scalar field φ. Two cases of experimental interest are: Break 4-fold lattice rotation symmetry to 2-fold lattice rotations: leads to a superconductor with nematic order: equivalent to d x 2 y 2 + s pairing. Time-reversal symmetry breaking: leads to a d x2 y 2 + id xy superconductor, in which the Dirac fermions are massive H = H φ + k ε k c kα c kα + k c k c k + c.c. H φ = iφ k sin k x sin k y c k c k + c.c.

16 Lattice rotation symmetry breaking d x 2 y 2 superconductor + nematic order d x 2 y 2 superconductor φ =0 φ =0 r c r

17 Time-reversal symmetry breaking d x 2 y 2 ± id xy superconductor d x 2 y 2 superconductor φ =0 φ =0 r c r

18 T T c T n Quantum Critical φ/v 1/λ c 1/λ M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, (2008).

19 Discrete symmetry breaking in d-wave superconductors Field theory for transition with Ising order described by a real scalar field φ: S = S Ψ + S φ + S Ψφ S Ψ = + 4 two-component Dirac fermions d 2 k (2π) 2 T Ψ 1a ( iω n + v F k x τ z + v k y τ x ) Ψ 1a ω n d 2 k (2π) 2 T Ψ 2a ( iω n + v F k y τ z + v k x τ x ) Ψ 2a. ω n

20 Discrete symmetry breaking in d-wave superconductors Field theory for transition with Ising order described by a real scalar field φ: S = S Ψ + S φ + S Ψφ S Ψ = + 4 two-component Dirac fermions d 2 k (2π) 2 T Ψ 1a ( iω n + v F k x τ z + v k y τ x ) Ψ 1a ω n d 2 k (2π) 2 T Ψ 2a ( iω n + v F k y τ z + v k x τ x ) Ψ 2a. ω n S φ = d 2 xdτ Ising field theory 1 2 ( τ φ) 2 + c2 2 ( φ)2 + r 2 φ2 + u 0 24 φ4 ;

21 Ising order and Dirac fermions couple via a Yukawa term. S Ψφ = d 2 xdτ λ 0 φ Ψ 1a τ x Ψ 1a + Ψ 2a τ x Ψ 2a, Nematic ordering S Ψφ = d 2 xdτ λ 0 φ Ψ 1a τ y Ψ 1a + Ψ 2a τ y Ψ 2a Time reversal symmetry breaking M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

22 Ising order and Dirac fermions couple via a Yukawa term. S Ψφ = d 2 xdτ λ 0 φ Ψ 1a τ x Ψ 1a + Ψ 2a τ x Ψ 2a, Nematic ordering S Ψφ = d 2 xdτ λ 0 φ Ψ 1a τ y Ψ 1a + Ψ 2a τ y Ψ 2a Time reversal symmetry breaking For the latter case only, with v F = v = c, theory reduces to relativistic Gross-Neveu model M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

23 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the scalar order parameter S φ = N f v v F Γ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms rφ 2 (x, τ) where Γ is a non-local and non-analytic functional of φ. The theory has only 2 couplings constants: r and v /v F. Y. Huh and S. Sachdev, Physical Review B 78, (2008).

24 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the nematic order parameter S φ = N f 2 k,ω + λ2 0 8v F v φ(k, ω) 2 r ω 2 + vf 2 k2 x ω 2 + vf 2 k2 x + v 2 k2 y +(x y) +higher order terms which cannot be neglected E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:

25 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the T-breaking order parameter S φ = N f 2 k,ω + λ2 0 8v F v φ(k, ω) 2 r ω 2 + v 2 F k2 x + v 2 k2 y +(x y) +higher order terms which cannot be neglected E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:

26 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the scalar order parameter S φ = N f v v F Γ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms rφ 2 (x, τ) where Γ is a non-local and non-analytic functional of φ. The theory has only 2 couplings constants: r and v /v F. Y. Huh and S. Sachdev, Physical Review B 78, (2008).

27 Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the scalar order parameter S φ = N f v v F Γ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms rφ 2 (x, τ) where Γ is a non-local and non-analytic functional of φ. There is a systematic expansion in powers of The theory has only 2 couplings constants: r and v /v F. 1/N f for renormalization group equations and all critical properties. Y. Huh and S. Sachdev, Physical Review B 78, (2008).

28 Outline 1. Quantum criticality of Fermi points: Dirac fermions in d-wave superconductors 2. Quantum criticality of Fermi surfaces: Onset of spin density wave order in the cuprates

29 Outline 1. Quantum criticality of Fermi points: Dirac fermions in d-wave superconductors 2. Quantum criticality of Fermi surfaces: Onset of spin density wave order in the cuprates

30 Large Fermi surfaces in cuprates Hole states occupied Γ Electron states occupied Γ H 0 = i<j t ij c iα c iα k ε k c kα c kα The area of the occupied electron/hole states: A e = 2π 2 (1 x) 2π 2 (1 + p) for hole-doping x for electron-doping p A h = 4π 2 A e

31 Spin density wave theory The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where ϕ is the spin density wave (SDW) order parameter, and K is the ordering wavevector. For simplicity, we consider K =(π, π).

32 Spin density wave theory Spin density wave Hamiltonian H sdw = ϕ c k,α σ αβc k+k,β k,α,β Diagonalize H 0 + H sdw for ϕ = (0, 0, ϕ) E k± = ε k + ε k+k 2 ± εk ε k+k 2 + ϕ 2

33 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

34 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

35 Spin density wave theory in hole-doped cuprates Γ Γ Incommensurate order in YBa2Cu3O6+x A. J. Millis and M. R. Norman, Physical Review B 76, (2007). N. Harrison, Physical Review Letters 102, (2009).

36 Electron-doped cuprates Increasing SDW order Γ Γ Γ Γ Electron pockets Hole pockets Large Fermi surface breaks up into electron and hole pockets D. Senechal and A.-M. S. Tremblay, Physical Review Letters 92, (2004) J. Lin, and A. J. Millis, Physical Review B 72, (2005).

37 Increasing SDW order Quantum oscillations Nd 2 x Ce x CuO 4 T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009).

38 Quantum oscillations Nature 450, 533 (2007)

39 Quantum oscillations Nature 450, 533 (2007)

40 Theory of quantum criticality in the cuprates Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

41 Evidence for connection between linear resistivity and stripe-ordering in a cuprate with a low Tc Magnetic field of upto 35 T used to suppress superconductivity Identifies x m 0.24 Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-tc superconductor R. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough & Louis Taillefer, Nature Physics 5, (2009)

42 Theory of quantum criticality in the cuprates Fluctuating Fermi pockets Strange Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

43 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface d-wave superconductor Spin density wave (SDW) Onset of d-wave superconductivity hides the critical point x = x m

44 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

45 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

46 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave superconductor E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

47 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Spin gap Strange Metal d-wave Classical spin waves superconductor Neel order Large Fermi surface Quantum critical E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, Dilute (2001). triplon gas E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Criticality of the coupled dimer antiferromagnet at x=xs Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

48 Theory of quantum criticality in the cuprates ncreasing SDW Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Criticality of the topological change in Fermi surface at x=xm Spin gap Spin density wave (SDW) Strange Metal d-wave superconductor Large Fermi surface Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m. E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009)

49 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC

50 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001).

51 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC Hc2 SC+ SDW SC E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

52 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC Hc2 SC+ SDW SC Quantum oscillations E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

53 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC Hsdw E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

54 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC Hsdw E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

55 T Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Neutron scattering & muon resonance Thermally fluctuating SDW Magnetic quantum criticality Spin gap SC+ SDW d-wave SC SC Hsdw E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

56 T Neutron scattering experiments on Nd 2 x Ce x CuO 4 show that at low fields x s =0.14, while quantum oscillations at high fields show that x m = Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Spin gap SC+ SDW Strange Metal d-wave SC Large Fermi surface SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

57 T Physics of competition: d-wave SC and SDW eat up same pieces of the large Fermi surface. Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Thermally fluctuating SDW Magnetic quantum criticality Spin gap SC+ SDW Strange Metal d-wave SC Large Fermi surface SC V. Galitski and S. Sachdev, Physical Review B 79, (2009). Eun Gook Moon and S. Sachdev, Physical Review B 80, (2009). SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

58 Similar phase diagram for CeRhIn5 G. Knebel, D. Aoki, and J. Flouquet, arxiv:

59 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

60 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

61 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

62 Start from the spin-fermion model Z = Dc α Dϕ exp ( S) S = dτ k λ c kα dτ i τ ε k c kα c iα ϕ i σ αβ c iβ e ik r i + dτd 2 r 1 2 ( r ϕ ) 2 ζ + 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

63 =3 =2 =4 =1 Low energy fermions ψ 1α, ψ 2α =1,...,4 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v =1 1 =(v x,v y ), v =1 2 =( v x,v y )

64 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 ψ 1 fermions occupied ψ 2 fermions occupied

65 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

66 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β

67 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms)

68 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 But, higher order terms contain an infinite number of marginal couplings ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms) ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004).

69 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = λϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Perform RG on both fermions and ϕ, using a local field theory.

70 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Under the rescaling x = xe, τ = τe z, the spatial gradients are fixed if the fields transform as ϕ = e (d+z 2)/2 ϕ ; ψ = e (d+z 1)/2 ψ. Then the Yukawa coupling transforms as λ = e (4 d z)/2 λ For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ, ζ are irrelevant.

71 Two approaches: A Fix λ = 1 and perform RG in a 1/N expansion, where N is the number of fermion flavors B Make λ part of the bare fermion dispersion by transforming electrons to a rotating reference frame determined by the local orientation of the SDW order ϕ.

72 Two approaches: A Fix λ = 1 and perform RG in a 1/N expansion, where N is the number of fermion flavors B Make λ part of the bare fermion dispersion by transforming electrons to a rotating reference frame determined by the local orientation of the SDW order ϕ.

73 Max Metlitski M. Metlitski and S. Sachdev, to appear Ar. Abanov, A.V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003) Sung-Sik Lee, arxiv:

74 Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

75 Hole-doped cuprates Increasing SDW order Γ Γ Γ ϕ Γ Hole pockets Electron pockets ϕ fluctuations act on the large Fermi surface S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

76 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = ϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β

77 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous irrelevancy).

78 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set ϕ wavefunction renormalization by keeping co-efficient of ( r ϕ ) 2 fixed (as usual).

79 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set fermion wavefunction renormalization by keeping Yukawa coupling fixed. Y. Huh and S. Sachdev, Phys. Rev. B 78, (2008).

80 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β We find consistent two-loop RG factors, as ζ 0, for the velocities v x, v y, and the wavefunction renormalizations. Consistency check: the expression for the boson damping constant, γ = 2 πv x v y, is preserved under RG.

81 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2

82 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The velocities flow as 1 dv x v x d A(α) B(α) = A(α)+B(α) 2 3 α πn 1+α πN α α 1+ ; 1 dv y v y d = A(α)+B(α) 2 1 α α tan 1 1 α

83 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The anomalous dimensions of ϕ and ψ are η ϕ = 2πN α α + α 2 + α2 tan 1 1 α η ψ = πN α α 1+ α α tan 1 1 α

84 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting v 1 v 2 Bare Fermi surface

85 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

86 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Bare Fermi surface

87 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

88 RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. In ϕ SDW fluctuations, characteristic q and ω scale as q ω 1/2 exp 3 64π 2 ln(1/ω) N 3 However, 1/N expansion cannot be trusted in the asymptotic regime..

89 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω

90 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω Dangerous

91 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 ζ 2 1 ω

92 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 Actual order 1 N 0 ζ 2 1 ω

93 Double line representation A way to compute the order of a diagram. Extra powers of N come from the Fermi-surface What are the conditions for all propagators to be on the Fermi surface? Concentrate on diagrams involving a single pair of hot-spots Any bosonic momentum may be (uniquely) written as R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, (2005).

94 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Singularities as ζ 0 appear when fermions in closed blue and red line loops are exactly on the Fermi surface Actual order 1 N 0

95 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arxiv:

96 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 A consistent analysis requires resummation of all planar graphs

97 Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions

98 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

99 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Naturally formulated in route B: theory of fluctuating Fermi pockets Thermally fluctuating SDW SDW (Small Fermi pockets) H Magnetic quantum criticality Spin gap SC+ SDW d-wave SC M SC "Normal" (Large Fermi surface)

100 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Naturally formulated in route B: theory of fluctuating Fermi pockets Thermally fluctuating SDW SDW (Small Fermi pockets) H Magnetic quantum criticality Spin gap SC+ SDW d-wave SC M SC "Normal" (Large Fermi surface)

101 T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Onset of superconductivity induces confinement R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, (2008). SDW (Small Fermi pockets) H T sdw VBS and/or nematic SC+ SDW d-wave SC M SC "Normal" (Large Fermi surface)

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain Damping of collective modes and quasiparticles in d-wave superconductors C. Buragohain Y. Zhang Subir Sachdev M. Vojta Transparencies on-line at http://pantheon.yale.edu/~subir Review article: cond-mat/000550

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

arxiv: v2 [cond-mat.str-el] 22 Aug 2010 Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order arxiv:005.88v [cond-mat.str-el] Aug 00 Max A. Metlitski and Subir Sachdev Department of Physics, Harvard University,

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD What is a quantum phase transition? Non-analyticity in ground state properties

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor NPHYS-2008-06-00736 Supplementary Information for Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor R. Daou 1, Nicolas Doiron-Leyraud 1, David

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals arxiv:1206.0742v2 [cond-mat.str-el] 8 Nov 2012 Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals Erez Berg, 1,2 Max A. Metlitski, 3 Subir Sachdev 1,4 1 Department of Physics,

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Superconductivity due to massless boson exchange.

Superconductivity due to massless boson exchange. Superconductivity due to massless boson exchange. Andrey Chubukov University of Wisconsin Consultations Artem Abanov Mike Norman Joerg Schmalian Boris Altshuler Emil Yuzbashyan Texas A&M ANL ISU Columbia

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

arxiv: v1 [cond-mat.str-el] 16 Dec 2011

arxiv: v1 [cond-mat.str-el] 16 Dec 2011 Competition between superconductivity and nematic order: anisotropy of superconducting coherence length Eun-Gook Moon 1, 2 and Subir Sachdev 1 1 Department of Physics, Harvard University, Cambridge MA

More information

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford) Quantum critical metals and their instabilities Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S. Kachru,

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point Singularites in ermi liquids and the instability of a ferromagnetic quantum-critical point Andrey Chubukov Dmitrii Maslov lorida University of Wisconsin Catherine Pepin Jerome Rech SPhT Saclay Dima Kveshchenko

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Competing orders and quantum criticality in the high temperature superconductors

Competing orders and quantum criticality in the high temperature superconductors Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse, France Collaborations F. Laliberté W. Tabis D. Vignolles

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

lattice that you cannot do with graphene! or... Antonio H. Castro Neto Theoretical Aspects What you can do with cold atomsof on agraphene honeycomb lattice that you cannot do with graphene! or... Antonio H. Castro Neto 2 Outline 1. Graphene for beginners 2. Fermion-Fermion

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim (Cornell) Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001 Europhysics Letters PREPRINT arxiv:cond-mat/000563v3 [cond-mat.supr-con] 5 Jan 200 Quantum-critical superconductivity in underdoped cuprates Ar. Abanov, Andrey V. Chubukov and Jörg Schmalian 2 Department

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information