Topological order in quantum matter

Size: px
Start display at page:

Download "Topological order in quantum matter"

Transcription

1 HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu

2 1. Classical XY model in 2 and 3 dimensions 2. Topological order in the classical XY model in 3 dimensions 3. Topological order in the quantum XY model in 2+1 dimensions 4. Topological order in the Hubbard model

3 1. Classical XY model in 2 and 3 dimensions 2. Topological order in the classical XY model in 3 dimensions 3. Topological order in the quantum XY model in 2+1 dimensions 4. Topological order in the Hubbard model

4 Z XY = Y i Z 2 0 d i 2 exp ( H/T ) H = J X hiji cos( i j ) Describes non-zero T phase transitions of superfluids, magnets with `easy-plane spins,..

5 In spatial dimension d = 3, in the low T phase, the symmetry i! i + c is spontaneously broken. There is (o -diagonal) long-range order (LRO) characterized by ( i e i i ) lim r i r j!1 i j = 0 2 6=0. We break the symmetry by choosing an overall phase so that h ii = 0 6= 0 h ii = 0 6= 0 h ii =0 LRO SRO Tc T

6 In spatial dimension d = 3, in the low T phase, the symmetry i! i + c is spontaneously broken. There is (o -diagonal) long-range order (LRO) characterized by ( i e i i ) lim r i r j!1 i j = 0 2 6=0. We break the symmetry by choosing an overall phase so that h ii = 0 6= 0 Wilson-Fisher critical theory (Nobel Prize, 1982) h ii = 0 6= 0 h ii =0 LRO SRO Tc T

7 In spatial dimension d = 2, the symmetry i! i + c is preserved at all non-zero T. There is no LRO, and h ii = 0 for all T>0. Nevertheless, there is a phase transition at T = T KT, where the nature of the correlations changes lim r i r j!1 i 8 < j : r i r j, for T<T KT, (QLRO) exp( r i r j / ), for T>T KT,(SRO)

8 Kosterlitz-Thouless theory in d=2 QLRO Topological order SRO Vortices suppressed 8 < : TKT Vortices proliferate T The low T phase also has topological order associated with the suppression of vortices.

9 KT critical theory (Nobel Prize, 2016) Kosterlitz-Thouless theory in d=2 QLRO Topological order SRO Vortices suppressed 8 < : TKT Vortices proliferate T The low T phase also has topological order associated with the suppression of vortices.

10 1. Classical XY model in 2 and 3 dimensions 2. Topological order in the classical XY model in 3 dimensions 3. Topological order in the quantum XY model in 2+1 dimensions 4. Topological order in the Hubbard model

11 Can we modify the XY model Hamiltonian to obtain a phase with topological order in d=3? h ii = 0 6= 0 h ii =0 SRO LRO J Jc

12 h ii =0 SRO Topological order K h ii =0 SRO h ii = 0 6= 0 LRO No topological order J Jc

13 h ii =0 SRO Topological order K Only even (4, 8...) vortices proliferate h ii =0 SRO h ii = 0 6= 0 LRO No topological order All (2, 4...) vortices proliferate J Jc

14 ez XY = Y i Z 2 0 d i 2 exp eh/t eh = J X hiji cos( i j )+... Add terms which suppress single but not double vortices..

15 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 K

16 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 With K = 0, we can explicitly sum over ij, and the theory reduces to the ordinary XY model.

17 <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="a19yqjmg86cgevytwuetsdgxf/0=">aaab9xicbzdnssnafiun9a/gqnxtjlgevyfrrn0jblxwmlbqhdkz3lrdj5mwc6ow0kubtz6gk/fpfapfwenpqlspdbzomehe+ejcci2e92xv1ty3nrfq2/zow97d2282hnrekgyby0wuujhvilieadkk6bykabyl6msjm2nfeqsles7vcvxalngb5clnfe3u7jdbnuvn5kwaf2fazkf+8ztmclzmijejqnxp9wqmkqqqmwetoyw1fjsn6ab6xkqagy6q2zot59gkizpmyhyjziz9/akimdbjldy3m4pdvdxnw/+6xonpzvrxwzqiks0hpavwmhemf3ysrochgbtdmejmv4cnqaimdrk71gcwyqeoqxdhgz94yuzuz+45lxmdyf/gswqcu/fk9e88uieh5iicej9ckgtys9okiiwk5jw8ws/wu/ux51izfkapyb9znz+whpzm</latexit> <latexit sha1_base64="+9ei+qeipyezv+miksgt54xkpk4=">aaaefnicbvpnbhmxen4m/jrqamu1lxenvrelsooqpxisepcei2hooq7rrhey63bxxmxvqljlwrnw4aqpwqlx4yl4bwatuiuwa1f6ppz8m/pnomxt5xy7/wupvr90+crv5wun6ys3bq6ura+8dqawkrrspmyehegovzq6xvmujnjlmiuphyanl6rzwyfzp4w+8oocehngwg2urm+m/nptq4quk10qt5n6sjogqbacjaq+iwphkkadhkbi0cdhwl6d9hebegmreyg9rktqs3okiwkjgmscmk8ac1p6r9fahdmv03nsk9gsvswjz7mzwrac2e+bynv25z6i6f4ucg10kyvkqyigccrosf+qk8kfhpn/4o2p6qtezs4zsuoqjhbygsmfcfuz32cco4nocwdqr1xhqjpspazlgsrtonczwqiwlch09aamjtjbhc1m5bk1xb5tu0z6v6qz6iznuo6cap6jsbsw1ci0htwzo+5lciz0zifilxqtegu4hxblj9xlgjmjkivp9lhtujkuwr5mkvvgm+2sbm0agewq6jjtrhrbigdmaamgkcm4ruockehzpt6aqjbc3eykv7pqx9tst9rtbrdbzw42g/na76/9fpgrrubayxsdo+60c98r0xol02q2ckc5ylom6zihzs1cr5xo8qtuscwcgbh8aw9t66jhizlz4yzkm9uouvnnlff/z8efhzzulurnhsctz4egrqqepeunazgyjh06zodssmsymmklkvvjti74venyj6xw9mgpvmrxygeth0pxcnxo63erdhdbt1qdl+1godgibgfbqsd4fdwp9ol9obvi2qfal9rx2rf65/r3+o+zllwluaa3gn9w/ecfzzzyya==</latexit> <latexit sha1_base64="ebnjdu39b78xm2l6fuu6xx4tutc=">aaaefnicdvpnbtnaehytfkootoxay4igqogsjs2llrisepcei2hooq7red2xt7v3ze46ivi58cwcumjjcelceapegxgsvqhaypzmv935zuab2sblphxn5s+5svxk1wvx52/ubi7cur24tlzwyurccgolnwhzhkclrcpqo+ksos4myrokdbscps/pj/pkrntq0a0z6qqykdmtah1d3exkih9qjfuhhaxya41qfmnbyuzgytjmcdfaqkj7kbo4cio3o+5mhslmiwkp+mgkkkfpyeaguigiuffjbupl7xqag0pmztqhxqlrvpfr7bjwa1idc/wb+jlcbz0ef7y/d77skk8dmud7nd/kkmvuiu9hfzfm/gdvjkft8dc2lkhqpqlwjp+bddfxnff9yrftanu3afvyfg6kyerdmjsivbzynsksbmcmqsevqzuqe8zqyeqorbp/yowykd4w8qk6ur2kvasa42gsrwg1mekgi4ew+5kadiyzpnilbqneak6hxfljdtlgqknkyjw9lhtujowwj6lmnfzmo6lb6rqgosy7zjqhrybigu5bj41qp9zwpkfapdgfz3sycy5uitl5lhsxvpunr5t7e9u70gw0x4unrcet7z0dae2rvw+6drplv/xqizwl5usc1p60mpnrfgicfek5w7mldmuzrntcpmlnbkcyt/ei7jesqk8b/pwdmtrruwbq7tan+gy5ivbywqn+6+wkd73dtifvljtsyhkolyfgwfp+ehbkq8ilqzzqgjzmlfnsuha/mcksvyovubjwhb13axlyngkrss1vqdc5dpb/o73z2gu0xjs9ew/fu+utey1vx3vm7xshxtstly+vz5uvla/vt9vv1e8tkstzu03veh+s6o/fy0lyog==</latexit> <latexit sha1_base64="6gsgeyemkjxmsbiauvca+r+dmcs=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hoos7red2xt7v3ze46ivi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfndwrz/d7zkzuas8nmjpkmvkykwu6hjrzlqu/oeiqqjpk5xsa1vzsgr2ywmwkzqbitibq91n0craur4ed1tpemeceuvxqsfschkofqkaceapik9qelt4qnayhzmt0djsslnwjo9gxrpuwbgf4ffazudx6ap5ofw98pvwebmta92u+lvgknuied/9igptp3xhbx+cvrjyr1hxs4vq+felirmrs+4rjp9cqrwcqscwcsjgjbmaoraks5gpcwniakyuoxoe2iseyocguhft1f9fkeso9kerzdcm6shtoncfrwfrdamgsqbyplpclar1ymj3kftogvnccdrvyx+pywfshlmaoeyw33ewkyqdtmtitmhzcg9i1denzdpkpq4omkqxdhs4bou65rt2cgehxps7ombdc3fik01nozc02gw9xt7bwn6hzai4wg2upwusbg9caiivezo125n75orz5ssqjbk09bduzd1sgcvik5wzlljiujxjrizuknbnhxwikh3cxkrc62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbh4vumw5iyxggbp5ao6l5scbotqkxdjga4vhyuq5xqyf95ozlpgrupglc9/ro9exiccp1hrrupukncoa/zfaq42trut5c3h76usqww/bu+mtey1vw9v2drxdr+2jyofkp8rnypfqx+rx6rfq9/hvysze57b3x6r+/a21b1os</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> <latexit sha1_base64="f8adzy6vdaeuqbbjstqxd4xrkk0=">aaaeixicdvpnbtnaehytfkr4a+hyy4igqogsjs2llrjsbzcei2hooq7red2xt7v3ze46jvi58cwcumjjcelcea/bkzbo0iouwnns7lc738x8mxtkibsu2fwxu6leuhjp8uyv2tvr12/cnju/9dlq3ahqc51ocxcgpuqqajvpejridgeajlqfhd8rz/f7zkzuas8nmuqkgcnzkwidq935yoifucrvir2l8j0na35pwv5m4glszgaxwkco+ym6oaik18puah0izcmcqfpojcpbj+geqkaceapik9qelt4qnayhzmt0drsslnwjo9gxre9gcc7w++bncrn1apzr/h74sqs8dcia79d8k6muu4u8gv7fmpafvjgcjsbfwtkjqfmkwql8tqsluaqx7xoonukrvgkowrjwieumgochfkwykktxywedphq6eaxahjxghgztcmzv/v0rr4z0ppbn1q3rio051rxhy2knq4vjalk8snyxbhrgyfsrw2gb8ejzouzkh6vlavmdugkj7lhccdmphb1mzek0ytpxdurxmaxl2wwmdckyrbz0d3pshdrltvyjailf+tijw1xwcwortmeho7fybdxc3dpa34rmozlabkw9aq1vbebrgix6k7xbnfvlh1rkksknert2snxmxkda46riytnklwuojjgiqzyva2y7xwikh3cxkrb62vcvhizqay8cu2shaca3y1g0589k8f9nh7nrbxykqblckrljql08acfs8poauboslhmwgckwzkkcyooc+8lmlvhvqcjfhe/onturiccp1hrrupukncoa/zfaq42truv56ul204lus96cd8db9lrehrft7xi7xtstlq+vt5xpls/vj9wv1w/v7+orlzmjz23vj1x9+ru1p1ou</latexit> X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 The theory has a Z 2 gauge invariance: we can change i! i + (1 i ) ij! i ij j, with i = ±1, and the energy remains unchanged. The XY order parameter i = e i i is gauge invariant, as are all physical observables. So this is an XY model with a modified Hamiltonian, and no additional degrees of freedom have been introduced.

18 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 A single (odd) 2 vortex in i has Q (ij)2 cos [( i j )/2] < 0. So for J>0, such a vortex will prefer Q (ij)2 ij = 1, i.e. a2 vortex has Z 2 flux = 1 in its core. So a large K>0 will suppress (odd) 2 vortices. There is no analogous suppression of (even) 4 vortices.

19 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 SRO Topological order h ii =0 Only even (4, 8...) vortices proliferate K h ii = 0 6= 0 LRO h ii =0 SRO No topological order All (2, 4...) vortices proliferate J Jc

20 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 Deconfined phase of Z2 gauge theory. Z2 flux is expelled Higgs phase of h ii =0 K Z2 gauge theory h ii =0 h ii = 0 6= 0 Confined phase of Z2 gauge theory. Z2 flux flucuates J Jc

21 1. Classical XY model in 2 and 3 dimensions 2. Topological order in the classical XY model in 3 dimensions 3. Topological order in the quantum XY model in 2+1 dimensions 4. Topological order in the Hubbard model

22 A quantum Hamiltonian in 2+1 dimensions eh = J X hiji z ij cos [( i j )/2] K X Y (ij)2 z ij U X 2 i g X hiji x ij z z K z z

23 A quantum Hamiltonian in 2+1 dimensions eh = J X hiji z ij cos [( i j )/2] K X Y z ij (ij)2 U X 2 i g X hiji x ij In the topological phase, the suppressed Z 2 fluxes of -1 become well-defined gapped quasiparticle excitations ( visons ) above the ground state. -1

24 A quantum Hamiltonian in 2+1 dimensions eh = J X hiji z ij cos [( i j )/2] K X Y z ij (ij)2 U X 2 i g X hiji x ij In the topological phase, on a torus, inserting the Z 2 flux of -1 into one of the cycles of the torus leads to an orthogonal state whose energy cost vanishes exponentially in the size of the torus: there are 4 degenerate ground states on a large torus.

25 1. Classical XY model in 2 and 3 dimensions 2. Topological order in the classical XY model in 3 dimensions 3. Topological order in the quantum XY model in 2+1 dimensions 4. Topological order in the Hubbard model

26 SM FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

27 SM FL YBa 2 Cu 3 O 6+x d-wave superconductor Figure: K. Fujita and J. C. Seamus Davis

28 SM Insulating Antiferromagnet FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

29 Undoped insulating antiferromagnet

30 Antiferromagnet with p mobile holes per square

31 Filled Band

32 Antiferromagnet with p mobile holes per square But relative to the band insulator, there are 1+ p holes per square

33 Antiferromagnet In a conventional metal (a Fermi liquid), with no broken symmetry, the area with p mobile holes per square enclosed by the Fermi surface must be 1+p But relative to the band insulator, there are 1+ p holes per square

34 M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, (2005) SM FL A conventional metal: the Fermi liquid with Fermi surface of size 1+p

35 S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016). Pseudogap metal SM FL at low p Many indications that this metal behaves like a Fermi liquid, but with Fermi surface size p and not 1+p.

36 T. Senthil, M. Vojta and S. Sachdev, PRB 69, (2004) Pseudogap metal SM FL at low p Many indications that this metal behaves like a Fermi liquid, but with Fermi surface size p and not 1+p. If present at T=0, a metal with a size p Fermi surface (and translational symmetry preserved) must have topological order

37 The Hubbard Model H = X i<j t ij c i c j + U X i 1 1 n i" n i# 2 2 µ X i c i c i t ij! hopping. U! local repulsion, µ! chemical potential Spin index =", # n i = c i c i c i c j + c j c i = ij c i c j + c j c i =0 Will study on the square lattice

38 Electron spin D ~Si E = i ~ i where i = ±1 Fermi surface+antiferromagnetism p=0 h ~ i6=0 h ~ i =0 Insulator with AF order Metal with large Fermi surface of size 1 U/t

39 We can (exactly) transform the Hubbard model to the spin-fermion model: electrons c i on the square lattice with dispersion H c = X t c i, c i+v, + c i+v, c i, µ X c i, c i, + H int i, i are coupled to an antiferromagnetic order parameter ` = x, y, z X H int = `(i)c i i, ` c i, + V i `(i), where i = ±1 on the two sublattices. (For suitable V, integrating out the yields back the Hubbard model). When `(i) = (non-zero constant) independent of i, we have longrange AF order, which gaps out the fermions into an insulating state.

40 We can (exactly) transform the Hubbard model to the spin-fermion model: electrons c i on the square lattice with dispersion H c = X t c i, c i+v, + c i+v, c i, µ X c i, c i, + H int i, i are coupled to an antiferromagnetic order parameter ` = x, y, z X H int = `(i)c i i, ` c i, + V i `(i), where i = ±1 on the two sublattices. (For suitable V, integrating out the yields back the Hubbard model). When `(i) = (non-zero constant) independent of i, we have longrange AF order, which gaps out the fermions into an insulating state.

41 For fluctuating antiferromagnetism, we transform to a rotating reference frame using the SU(2) rotation R i ci" i,+ = R i, c i# in terms of fermionic chargons s and a Higgs field H a (i) i, ` `(i) =R i a H a (i) R i The Higgs field is the AFM order in the rotating reference frame. Note that this representation is ambiguous up to a SU(2) gauge transformation, V i! V i i,+ i, i,+ R i! R i V i a H a (i)! V i b H b (i) V i. i,

42 For fluctuating antiferromagnetism, we transform to a rotating reference frame using the SU(2) rotation R i ci" i,+ = R i, c i# in terms of fermionic chargons s and a Higgs field H a (i) i, ` `(i) =R i a H a (i) R i The Higgs field is the AFM order in the rotating reference frame. Note that this representation is ambiguous up to a SU(2) gauge transformation, V i! V i i,+ i, i,+ R i! R i V i a H a (i)! V i b H b (i) V i. i,

43 Fluctuating antiferromagnetism The simplest e ective Hamiltonian for the fermionic chargons is the same as that for the electrons, with the AFM order replaced by the Higgs field. H = X i, t i,s i+v,s + i+v,s i,s H int = X i i H a (i) i,s µ X i a ss 0 i,s 0 + V H i,s i,s + H int IF we can transform to a rotating reference frame in which H a (i) = a constant independent of i and time, THEN the fermions in the presence of fluctuating AFM will inherit the insulating nature of the electrons in the presence of static AFM.

44 Fluctuating antiferromagnetism The simplest e ective Hamiltonian for the fermionic chargons is the same as that for the electrons, with the AFM order replaced by the Higgs field. H = X i, t i,s i+v,s + i+v,s i,s H int = X i i H a (i) i,s µ X i a ss 0 i,s 0 + V H i,s i,s + H int IF we can transform to a rotating reference frame in which H a (i) = a constant independent of i and time, THEN the fermions in the presence of fluctuating AFM will inherit the insulating nature of the electrons in the presence of static AFM.

45 Fluctuating antiferromagnetism We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order A.V. Chubukov, T. Senthil and S. Sachdev, PRL 72, 2089 (1994); S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, (2016)

46 Fluctuating antiferromagnetism We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order R ( 1) n R A.V. Chubukov, T. Senthil and S. Sachdev, PRL 72, 2089 (1994); S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, (2016)

47 Topological order We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order R ( 1) n R Vortices with n odd must be suppressed: such a metal with fluctuating antiferromagnetism has BULK Z 2 TOPOLOGICAL ORDER and fermions which inherit the insulating behavior of the antiferromagnetic metal.

48 Electron spin D ~Si E = i ~ i where i = ±1 Fermi surface+antiferromagnetism p=0 h ~ i6=0 h ~ i =0 Insulator with AF order Metal with large Fermi surface of size 1 U/t

49 Fermi surface+antiferromagnetism+topological order Insulator with Z2 topological order Higgs phase of a SU(2) gauge theory (SU(2) is broken down to Z2) h ~ i =0 p=0 h ~ i6=0 h ~ i =0 Insulator with AF order Metal with large Fermi surface of size 1 U/t

50 X ez XY = { ij }=±1 eh = J X hiji Y i Z 2 0 d i 2 exp eh/t ij cos [( i j )/2] K X Y ij (ij)2 Deconfined phase of Z2 gauge theory. Z2 flux is expelled Higgs phase of h ii =0 K Z2 gauge theory h ii =0 h ii = 0 6= 0 Confined phase of Z2 gauge theory. Z2 flux flucuates J Jc

51 T. Senthil, M. Vojta and S. Sachdev, PRB 69, (2004) Pseudogap metal SM FL at low p Many indications that this metal behaves like a Fermi liquid, but with Fermi surface size p and not 1+p. If present at T=0, a metal with a size p Fermi surface (and translational symmetry preserved) must have topological order

52 Topological order in the pseudogap metal Mathias S. Scheurer, 1 Shubhayu Chatterjee, 1 Wei Wu, 2, 3 Michel Ferrero, 2, 3 Antoine Georges, 2, 4, 3, 5 1, 6, 7 and Subir Sachdev We compute the electronic Green s function of the topologically ordered Higgs phase of a SU(2) gauge theory of fluctuating antiferromagnetism on the square lattice. The results are compared with cluster extensions of dynamical mean field theory, and quantum Monte Carlo calculations, on the pseudogap phase of the strongly interacting hole-doped Hubbard model. Good agreement is found in the momentum, frequency, hopping, and doping dependencies of the spectral function and electronic self-energy. We show that lines of (approximate) zeros of the zero-frequency electronic Green s function are signs of the underlying topological order of the gauge theory, and describe how these lines of zeros appear in our theory of the Hubbard model. We also derive a modified, non-perturbative version of the Luttinger theorem that holds in the Higgs phase. to appear..

53 magnetic ratio shape measure along the c axis the line shape i viously measur 17 using O NMR measurements of an isotopenmr line shap Candidate forsingle an insulator 2Iztopo(OH) Clto We enriched crystal of with ZnCu3Z =6m m nuclear spin an logicaldemonstrated order whichthat hasthecharge neutral, spin spin excitation spectrum tum number m exhibits a finite gap D = 0.03 J to 0.07 J bes = 1/2, spinon excitations. which are sep Kagome lattice antiferromagnet tween a S = 0 spin-liquid ground state and the S. Sachdev, Physical Review B 45, (1992) excited states, where J ~ 200 K represents the Cu-Cu superexchange interaction (5, 21). 295K (9T See Atalk tomorrow byusing H. Changlani major advantage of a single crystal for NMR is that we can achieve high resolution by applying an external magnetic field Bext along specific crystallographic directions. In Fig. 2A, we present the 17O (nuclear spin I = 5/2; gyromagnetic ratio gn/2p = MHz/T) NMR line shape measured at 295 K in Bext = 9 T, applied along the c axis; the temperature dependence51.5of the line shape is presented in Fig. 2C. Unlike preand 17O viously measured powder-averaged 35Cl 2.0 NMR line shapes (22, 23), we can resolve the five Iz = m to m + 1 transitions (Iz, z component 1.5of the ZnCu (OH) nuclear angular momentum; magnetic quan3 spin 6 Cl 2 tum number m = 5/2, 3/2, 1/2, +1/2,1.0+3/2), Spin echo intensity (arb. units) ES E A RC H R E PO R TS Herbertsmithite:

54 Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet Mingxuan Fu, 1 Takashi Imai, 1,2 * Tian-Heng Han, 3,4 Young S. Lee 5,6 The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains amatterofactivedebate.weconductedoxygen-17single-crystalnuclearmagnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu 3 (OH) 6 Cl 2 ], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility c kagome,deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of c kagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. Gap to topological S =1/2 spinon excitations: J/20. Science 350, 655 (2015) Neutron scattering observations T Han, Young Lee, et al, Nature 492, 406 (2012) SCIENCE 6NOVEMBER2015 VOL 350 ISSUE Theory by Punk, Chowdhury, Sachdev Nature Physics, 2013

55 Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu Zn(OH) FBr 3 6 Zili Feng ( ) 1, Zheng Li ( ) 1,2, Xin Meng ( ) 1, Wei Yi ( ) 1, Yuan Wei ( ) 1, Jun Zhang ( ) 3, Yan-Cheng Wang ( ) 1, Wei Jiang ( ) 4, Zheng Liu ( ) 5, Shiyan Li ( ) 3, Chinese Physical Society and IOP Publishing Ltd Chinese Physics Letters, Volume 34, Number 7 * Gap to topological S =1/2 spinon excitations: J/20. (c) (K) K-Kchem (%) 1E-2 1E-3 1E-4 S = 1 S = 1/ T T 3 T T B (T) 1/T (K -1 )

56 New classes of quantum states with topological order Can be understood as: (a) defect suppression in states with fluctuating order (b) Higgs phases of emergent gauge fields A metal with bulk topological order (i.e. long-range quantum entanglement) can explain existing experiments in cuprates, and agrees well with cluster- DMFT Direct evidence for topological order in kagome antiferromagnets

57 New classes of quantum states with topological order Can be understood as: (a) defect suppression in states with fluctuating order (b) Higgs phases of emergent gauge fields A metal with bulk topological order (i.e. long-range quantum entanglement) can explain existing experiments in cuprates, and agrees well with cluster- DMFT Direct evidence for topological order in kagome antiferromagnets

58 New classes of quantum states with topological order Can be understood as: (a) defect suppression in states with fluctuating order (b) Higgs phases of emergent gauge fields A metal with bulk topological order (i.e. long-range quantum entanglement) can explain existing experiments in cuprates, and agrees well with cluster- DMFT Direct evidence for topological order in kagome antiferromagnets

59 New classes of quantum states with topological order Can be understood as: (a) defect suppression in states with fluctuating order (b) Higgs phases of emergent gauge fields A metal with bulk topological order (i.e. long-range quantum entanglement) can explain existing experiments in cuprates, and agrees well with cluster- DMFT Direct evidence for topological order in kagome antiferromagnets

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Topology, quantum entanglement, and criticality in the high temperature superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation,

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Experiments on Kagome Quantum Spin Liquids

Experiments on Kagome Quantum Spin Liquids Experiments on Kagome Quantum Spin Liquids Past, Present, Future. (Harry) Tian-Heng Han ( 韩天亨 ) July 6, 2017 Beijing Outline Herbertsmithite ZnCu 3 (OH) 6 Cl 2 Look for fractionalized spin excitations

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter Session L04: Lars Onsager Prize APS March Meeting, Los Angeles Subir Sachdev March 7, 2018 HARVARD Talk online: sachdev.physics.harvard.edu Thanks to students

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Two studies in two-dimensional quantum magnets: spin liquids and intertwined order Young Lee (Stanford and SLAC)

Two studies in two-dimensional quantum magnets: spin liquids and intertwined order Young Lee (Stanford and SLAC) Two studies in two-dimensional quantum magnets: spin liquids and intertwined order Young Lee (Stanford and SLAC) KITP (Intertwined Order) Order, Fluctuations, Strong Correlations Conference, August 2017

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Fermi liquid theory. Abstract

Fermi liquid theory. Abstract Fermi liquid theory Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University)

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University) Gauge dynamics of kagome antiferromagnets Michael J. Lawler (Binghamton University, Cornell University) Outline Introduction to highly frustrated magnets Constrained spin models Dirac s generalized Hamiltonian

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse, France Collaborations F. Laliberté W. Tabis D. Vignolles

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Nambu Memorial Symposium University of Chicago March 12, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Nambu and superconductivity

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information