Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Size: px
Start display at page:

Download "Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University"

Transcription

1 Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University

2 Quantum entanglement

3 Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( )

4 Quantum Entanglement: quantum superposition with more than one particle _

5 Quantum Entanglement: quantum superposition with more than one particle _

6 Quantum Entanglement: quantum superposition with more than one particle _

7 Quantum Entanglement: quantum superposition with more than one particle _ Einstein-Podolsky-Rosen paradox (1935): Measurement of one particle instantaneously determines the state of the other particle arbitrarily far away

8 Quantum entanglement

9 Quantum entanglement Black holes

10 Black Holes Objects so dense that light is gravitationally bound to them. In Einstein s theory, the region inside the black hole horizon is disconnected from the rest of the universe. Horizon radius R = 2GM c 2

11 On September 14, 2015, LIGO detected the merger of two black holes, each weighing about 30 solar masses, with radii of about 100 km, 1.3 billion light years away 0.1 seconds later!

12 LIGO September 14, 2015

13 Black Holes + Quantum theory Around 1974, Bekenstein and Hawking showed that the application of the quantum theory across a black hole horizon led to many astonishing conclusions

14 Quantum Entanglement across a black hole horizon _

15 Quantum Entanglement across a black hole horizon _ Black hole horizon

16 Quantum Entanglement across a black hole horizon _ Black hole horizon

17 Quantum Entanglement across a black hole horizon There is long-range quantum entanglement between the inside and outside of a black hole Black hole horizon

18 Quantum Entanglement across a black hole horizon Hawking used this to show that black hole horizons have an entropy and a temperature (because to an outside observer, the state of the electron inside the black hole is an unknown) Black hole horizon

19 Quantum Entanglement across a black hole horizon The Hawking temperature k B T H = ~2 8 M`2P and the Bekenstein-Hawking (BH) black hole entropy S BH k B = A 4`2P where `P = p ~G/c 3 in the Planck length, and A is the surface area of the black hole. Note the entropy is proportional to the surface area rather than the volume. Black hole horizon

20 LIGO September 14, 2015 The Hawking temperature, T H influences the radiation from the black hole at the very last stages of the ring-down (not observed so far). The ring-down (approach to thermal equilibrium) happens very rapidly in a time ~ = 8 GM k B T H c 3 8 milliseconds.

21 Quantum entanglement Black holes Black holes have an entropy and a temperature, T H. The entropy is proportional to their surface area. They relax to thermal equilibrium in a time ~/(k B T H ).

22 Quantum entanglement Strange metals

23 High temperature superconductors YBa 2 Cu 3 O 6+x

24 Slide by J. C. Seamus Davis Power Efficiency/Capacity/Stability Power Bottlenecks Efficient Rotating Machines Information Technology HE Accelerators Ultra-High Magnetic Fields Accommodate Renewable Power Next Generation HEP Science / Medicine Medical Transport

25 High temperature superconductors YBa 2 Cu 3 O 6+x

26 Antiferromagnet Strange metal SM Superconductor FL p (hole/cu) Figure: K. Fujita and J. C. Seamus Davis

27 Antiferromagnet Strange metal SM FL Spins of electrons on Cu sites p (hole/cu) Figure: K. Fujita and J. C. Seamus Davis

28 Square lattice of Cu sites

29 Square lattice of Cu sites Remove density p electrons

30 Square lattice of Cu sites Electrons entangle in ( Cooper ) pairs into chemical bonds =

31 Square lattice of Cu sites Superconductivity = Cooper pairs form quantum superpositions at different locations: Bose-Einstein condensation in which all pairs are everywhere at the same time

32 Square lattice of Cu sites Superconductivity = Cooper pairs form quantum superpositions at different locations: Bose-Einstein condensation in which all pairs are everywhere at the same time

33 Square lattice of Cu sites Superconductivity = Cooper pairs form quantum superpositions at different locations: Bose-Einstein condensation in which all pairs are everywhere at the same time

34 Square lattice of Cu sites Superconductivity = Cooper pairs form quantum superpositions at different locations: Bose-Einstein condensation in which all pairs are everywhere at the same time

35 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

36 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

37 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

38 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

39 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

40 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

41 Square lattice of Cu sites High temperature superconductivity! Electrons entangle by exchanging partners, and there is longrange quantum entanglement in the strange metal. =

42 Strange metal Entangled electrons lead to strange SM temperature dependence of resistivity and FL other properties p (hole/cu) Figure: K. Fujita and J. C. Seamus Davis

43 Almost all many-electron systems are described by the quasiparticle concept: a quasiparticle is an excited lump in the many-electron state which responds just like an ordinary particle. R.D. Mattuck

44 Almost all many-electron systems are described by the quasiparticle concept: a quasiparticle is an excited lump in the many-electron state which responds just like an ordinary particle. Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set {n } of quasiparticles with energy " E = P n " + P, F n n +...

45 Almost all many-electron systems are described by the quasiparticle concept: a quasiparticle is an excited lump in the many-electron state which responds just like an ordinary particle. Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time is of order ~E F /(k B T ) 2 as T! 0, where E F is the Fermi energy.

46 Quantum matter without quasiparticles The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

47 Quantum matter without quasiparticles The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations. Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles. There is an lower bound on the phase coherence time ( ' ), and the time to many-body quantum chaos ( L ) in all many-body quantum systems as T! 0: ' C ~ k B T ~ L 2 k B T (SS, 1999) (Maldacena, Shenker, Stanford, 2015) So e.g. we cannot have ' ~/ p Jk B T where J is a microscopic coupling. In the strange metal the inequalities become equalities as T! 0, and the time ~/(k B T ) influences numerous observables.

48 Quantum matter without quasiparticles The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations. Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles. There is an lower bound on the phase coherence time ( ' ), and the time to many-body quantum chaos ( L ) in all many-body quantum systems as T! 0: ' C ~ k B T ~ L 2 k B T (SS, 1999) (Maldacena, Shenker, Stanford, 2015) So e.g. we cannot have ' ~/ p Jk B T where J is a microscopic coupling. In the strange metal the inequalities become equalities as T! 0, and the time ~/(k B T ) influences numerous observables.

49 Quantum matter without quasiparticles The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations. Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles. There is an lower bound on the phase coherence time ( ' ), and the time to many-body quantum chaos ( L ) in all many-body quantum systems as T! 0: ' C ~ k B T ~ L 2 k B T (SS, 1999) (Maldacena, Shenker, Stanford, 2015) So e.g. we cannot have ' ~/ p Jk B T where J is a microscopic coupling. In the strange metal the inequalities become equalities as T! 0, and the time ~/(k B T ) influences numerous observables.

50 Quantum entanglement Strange metals have no quasiparticle description. Their entropy is proportional Strange metals to their volume. They relax to local thermal equilibrium in a time ~/(k B T ).

51 Quantum entanglement Black holes Black holes have an entropy and a temperature, T H. The entropy is proportional to their surface area. They relax to thermal equilibrium in a time ~/(k B T H ).

52 Quantum entanglement Black holes Strange metals A toy model which is both a strange metal and a black hole!

53 A simple model of a metal with quasiparticles Pick a set of random positions

54 A simple model of a metal with quasiparticles Place electrons randomly on some sites

55 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

56 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

57 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

58 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

59 A simple model of a metal with quasiparticles 1 NX H = (N) 1/2 i,j=1 t ij c i c j +... c i c j + c j c i =0, c i c j + c j c i = ij 1 N X i c i c i = Q t ij are independent random variables with t ij = 0 and t ij 2 = t 2 Fermions occupying the eigenstates of a N x N random matrix

60 A simple model of a metal with quasiparticles p Let " be the eigenvalues of the matrix t ij / N. The fermions will occupy the lowest NQ eigenvalues, upto the Fermi energy E F.Thedensity of states is (!) =(1/N ) P (! " ). (!) E F!

61 A simple model of a metal with quasiparticles There are 2 N many body levels with energy Many-body level spacing 2 N E = NX =1 n ", Quasiparticle excitations with spacing 1/N where n =0, 1. Shown are all values of E for a single cluster of size N = 12. The " have a level spacing 1/N.

62 The Sachdev-Ye-Kitaev (SYK) model Pick a set of random positions

63 The Sachdev-Ye-Kitaev (SYK) model Place electrons randomly on some sites

64 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

65 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

66 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

67 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

68 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

69 The Sachdev-Ye-Kitaev (SYK) model Entangle electrons pairwise randomly

70 The Sachdev-Ye-Kitaev (SYK) model The SYK model has nothing but entanglement

71 The Sachdev-Ye-Kitaev (SYK) model This describes both a strange metal and a black hole!

72 The Sachdev-Ye-Kitaev (SYK) model H = 1 (2N) 3/2 NX i,j,k,`=1 J ij;k` c i c j c k c` µ X i c i c i c i c j + c j c i =0, c i c j + c j c i = ij Q = 1 X c N i c i i J ij;k` are independent random variables with J ij;k` = 0 and J ij;k` 2 = J 2 N!1yields critical strange metal. S. Sachdev and J. Ye, PRL 70, 3339 (1993) A. Kitaev, unpublished; S. Sachdev, PRX 5, (2015)

73 The Sachdev-Ye-Kitaev (SYK) model Many-body level spacing 2 N = e N ln 2 Non-quasiparticle excitations with spacing e S GP S There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S with S GP S N = G + ln(2) 4 < ln 2 = where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, (2001) W. Fu and S. Sachdev, PRB 94, (2016)

74 A simple model of a metal with quasiparticles There are 2 N many body levels with energy Many-body level spacing 2 N E = NX =1 n ", Quasiparticle excitations with spacing 1/N where n =0, 1. Shown are all values of E for a single cluster of size N = 12. The " have a level spacing 1/N.

75 The Sachdev-Ye-Kitaev (SYK) model Many-body level spacing 2 N = e N ln 2 Non-quasiparticle excitations with spacing e S GP S There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S with S GP S N = G + ln(2) 4 < ln 2 = where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, (2001) W. Fu and S. Sachdev, PRB 94, (2016)

76 SYK and black holes The SYK model has a nonzero entropy, S GP S / N as T! 0. A. Georges, O. Parcollet, and S. Sachdev, PRB 63, (2001) The SYK model has a phasecoherence time ' ~/(k B T ) O. Parcollet and A. Georges, PRB 59, 5341 (1999) These properties indicate that SYK model holographically realizes a black hole, and the black hole entropy S BH = S GP S. S. Sachdev, PRL 105, (2010)

77 SYK and black holes T 2 ~x T 2 ) two-dimensional torus

78 SYK and black holes Black hole horizon SS, PRL 105, (2010) T 2 ~x The SYK model has dual description in which an extra spatial dimension,, emerges. The curvature of this emergent spacetime is described by Einstein s theory of general relativity

79 SYK and black holes GPS BH entropy entropy AdS 2 T 2 ds 2 =(d 2 dt 2 )/ 2 + d~x 2 Gauge field: A =(E/ )dt charge density Q T 2 = 1 Z S = d 4 x p ĝ ~x ˆR +6/L ˆF µ µ ˆF SS, PRL 105, (2010) The BH entropy is proportional to the size of T 2, and hence the surface area of the black hole. Mapping to SYK applies when temperature 1/(size of T 2 ).

80 SYK and black holes Same long-time e ective action for energy and number fluctuations, involving Schwarzian derivatives of time reparameterizations f( ). AdS 2 T 2 ds 2 =(d 2 dt 2 )/ 2 + d~x 2 Gauge field: A =(E/ )dt charge density Q T 2 = 1 ~x Einstein-Maxwell theory + cosmological constant A. Kitaev, unpublished, J. Maldacena, D. Stanford, and Zhenbin Yang, arxiv: ; K. Jensen, arxiv: ; J. Engelsoy, T.G. Mertens, and H. Verlinde, arxiv:

81 SYK and black holes GPS BH entropy entropy AdS 2 T 2 ds 2 =(d 2 dt 2 )/ 2 + d~x 2 Gauge field: A =(E/ )dt charge density Q T 2 = 1 ~x An extra spatial dimension emerges from SS, PRL 105, (2010) quantum entanglement!

82 Tensor network of hierarchical entanglement ~x D-dimensional space depth of entanglement B. Swingle

83 String theory near a D-brane ~x D-dimensional space Emergent depth of spatial direction entanglement of SYK model or string theory

84 String theory near a D-brane ~x D-dimensional space Quantum entanglement can lead to an emergent spatial dimension Emergent depth of spatial direction entanglement of SYK model or string theory

85 Quantum entanglement Black holes Strange metals A toy model which is both a strange metal and a black hole!

86 Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Superconductor, levitated by an unseen magnet, in which countless

More information

Strange metals and black holes

Strange metals and black holes HARVARD Strange metals and black holes Homi Bhabha Memorial Public Lecture Indian Institute of Science Education and Research, Pune November 14, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Sorry, Einstein. Quantum Study Suggests Spooky Action Is Real. By JOHN MARKOFF OCT. 21, 2015 In a landmark

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Equilibrium and non-equilibrium dynamics of SYK models

Equilibrium and non-equilibrium dynamics of SYK models Equilibrium and non-equilibrium dynamics of SYK models Strongly interacting conformal field theory in condensed matter physics, Institute for Advanced Study, Tsinghua University, Beijing, June 25-27, 207

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Chaos and Order: from Strongly Correlated Systems to Black Holes, Kavli Institute for Theoretical Physics University

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

From the SYK model to a theory of the strange metal

From the SYK model to a theory of the strange metal HARVARD From the SYK model to a theory of the strange metal International Centre for Theoretical Sciences, Bengaluru Subir Sachdev December 8, 2017 Talk online: sachdev.physics.harvard.edu Magnetotransport

More information

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu The main unsolved problem in theoretical physics today: Unification of The main unsolved

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Imperial College May 16, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565 sachdev.physics.harvard.edu

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

The quantum phases of matter. sachdev.physics.harvard.edu

The quantum phases of matter. sachdev.physics.harvard.edu The quantum phases of matter sachdev.physics.harvard.edu The phases of matter: The phases of matter: Solids Liquids Gases The phases of matter: Solids Liquids Gases Theory of the phases of matter: Theory

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Quantum matter without quasiparticles

Quantum matter without quasiparticles HARVARD Quantum matter without quasiparticles Frontiers in Many Body Physics: Memorial for Lev Petrovich Gor kov National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 13, 2018 Talk

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Spacetime versus the Quantum

Spacetime versus the Quantum Spacetime versus the Quantum Joseph Polchinski UCSB Faculty Research Lecture, Dec. 12, 2014 God does not play dice with the world (Albert Einstein, 1926) vs. God does not play dice with the world (Albert

More information

Quantum Entanglement and the Geometry of Spacetime

Quantum Entanglement and the Geometry of Spacetime Quantum Entanglement and the Geometry of Spacetime Matthew Headrick Brandeis University UMass-Boston Physics Colloquium October 26, 2017 It from Qubit Simons Foundation Entropy and area Bekenstein-Hawking

More information

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Emergence of Causality Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Bounds on quantum dynamics Quantum dynamics is a large subject, but one natural anchor point is to ask

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

From Black holes to Qubits through String Theoretic Microscopes

From Black holes to Qubits through String Theoretic Microscopes ICHEP Formal Theory Development, July 10 th, 2018 @ Seoul From Black holes to Qubits through String Theoretic Microscopes Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University 1

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, Subir Sachdev

Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, Subir Sachdev HARVARD Quantum matter without quasiparticles Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Foundations of quantum many body

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

Black holes and random matrices

Black holes and random matrices Black holes and random matrices Stephen Shenker Stanford University Kadanoff Symposium Stephen Shenker (Stanford University) Black holes and random matrices Kadanoff Symposium 1 / 18 Black holes and chaos

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

Black Holes, Matrix Models and Large D

Black Holes, Matrix Models and Large D Black Holes, Matrix Models and Large D Frank FERRARI Université Libre de Bruxelles International Solvay Institutes Quantum Gravity in Paris IHP, Paris, March 23th, 2017 Plan of the talk 1. Building Quantum

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Black Hole Entropy and Thermodynamics of Space=me

Black Hole Entropy and Thermodynamics of Space=me Black Hole Entropy and Thermodynamics of Space=me Ted Jacobson University of Maryland 1 Sadi Carnot How does the maximum efficiency of steam engines depend on the working fluid? Carnot: given the temperatures

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Investigations on the SYK Model and its Dual Space-Time

Investigations on the SYK Model and its Dual Space-Time 2nd Mandelstam Theoretical Physics Workshop Investigations on the SYK Model and its Dual Space-Time Kenta Suzuki A. Jevicki, KS, & J. Yoon; 1603.06246 [hep-th] A. Jevicki, & KS; 1608.07567 [hep-th] S.

More information

arxiv: v1 [cond-mat.str-el] 16 Mar 2016

arxiv: v1 [cond-mat.str-el] 16 Mar 2016 Numerical study of fermion and boson models with infinite-range random interactions Wenbo Fu and Subir Sachdev, 2 Department of Physics, Harvard University, arxiv:63.5246v [cond-mat.str-el] 6 Mar 26 Cambridge,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

arxiv: v2 [hep-th] 22 Apr 2018

arxiv: v2 [hep-th] 22 Apr 2018 Why do Things Fall? arxiv:1802.01198v2 [hep-th] 22 Apr 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA Abstract

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

The Black Hole Information Paradox, and its resolution in string theory

The Black Hole Information Paradox, and its resolution in string theory The Black Hole Information Paradox, and its resolution in string theory Samir D. Mathur The Ohio State University NASA Hawking 1974: General relativity predicts black holes Quantum mechanics around black

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality 2013 Arnold Sommerfeld School, Munich, August 5-9, 2013 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD " k Dirac semi-metal " k Insulating antiferromagnet

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini New Frontiers in Theoretical Physics XXXIV Convegno Nazionale di Fisica Teorica - Cortona Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini Collaborators:

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract Gravitation Adrian Ferent This is a new quantum gravity theory which breaks the wall of Planck scale. My Nobel Prize Idea Abstract The Photon Graviton pair (coupled) has the same speed and frequency, and

More information

Chaos n QFT (PRL) w/ K.Murata, K.Yoshida Chaos of chiral condensates in gauge theories

Chaos n QFT (PRL) w/ K.Murata, K.Yoshida Chaos of chiral condensates in gauge theories KEK theory workshop, 6 th December, 2016 Chaos n QFT Koji Hashimoto (Osaka u) 1605.08124 (PRL) w/ K.Murata, K.Yoshida Chaos of chiral condensates in gauge theories 1610.06070 w/ N.Tanahashi Universality

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Black holes and the renormalisation group 1

Black holes and the renormalisation group 1 Black holes and the renormalisation group 1 Kevin Falls, University of Sussex September 16, 2010 1 based on KF, D. F. Litim and A. Raghuraman, arxiv:1002.0260 [hep-th] also KF, D. F. Litim; KF, G. Hiller,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

Transport bounds for condensed matter physics. Andrew Lucas

Transport bounds for condensed matter physics. Andrew Lucas Transport bounds for condensed matter physics Andrew Lucas Stanford Physics High Energy Physics Seminar, University of Washington May 2, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME Ted Jacobson University of Maryland Goddard Scientific Colloquium, Feb. 7, 2018 Holographic principle Information paradox geometry from entanglement

More information