Quantum phase transitions in condensed matter

Size: px
Start display at page:

Download "Quantum phase transitions in condensed matter"

Transcription

1 Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

2 Outline 1. The simplest models without quasiparticles A. Superfluid-insulator transition of ultracold bosons in an optical lattice B. Conformal field theories in 2+1 dimensions and the AdS/CFT correspondence 2. Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. The holographic view: charged black-branes

3 Outline 1. The simplest models without quasiparticles A. Superfluid-insulator transition of ultracold bosons in an optical lattice B. Conformal field theories in 2+1 dimensions and the AdS/CFT correspondence 2. Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. The holographic view: charged black-branes

4 Begin with a CFT

5 Holographic representation: AdS4 A 2+1 dimensional CFT at T=0 S = Z d 4 x p g apple 1 2apple 2 R + 6L 2

6 Holographic representation: AdS4 A 2+1 dimensional CFT at T=0 2 apple L dr ds 2 2 = r f(r) with f(r) =1 f(r)dt 2 + dx 2 + dy 2

7 Apply a chemical potential

8 AdS4 theory of nearly perfect fluids To leading order in a gradient expansion, charge transport in an infinite set of strongly-interacting CFT3s can be described by Einstein-Maxwell gravity/electrodynamics on AdS 4 -Schwarzschild Z S EM = d 4 x p apple 1 g F ab F ab. 4g 2 4 This is to be solved subject to the constraint A µ (r! 0,x,y,t)=A µ (x, y, t) where A µ is a source coupling to a conserved U(1) current J µ of the CFT3 Z S = S CFT + i dxdydta µ J µ At non-zero chemical potential we simply require A = µ.

9 AdS4 theory of nearly perfect fluids To leading order in a gradient expansion, charge transport in an infinite set of strongly-interacting CFT3s can be described by Einstein-Maxwell gravity/electrodynamics on AdS 4 -Schwarzschild Z S EM = d 4 x p apple 1 g F ab F ab. 4g 2 4 This is to be solved subject to the constraint A µ (r! 0,x,y,t)=A µ (x, y, t) where A µ is a source coupling to a conserved U(1) current J µ of the CFT3 Z S = S CFT + i dxdydta µ J µ At non-zero chemical potential we simply require A = µ.

10 The Maxwell-Einstein theory of the applied chemical potential yields a AdS4-Reissner-Nordtröm black-brane r E r = hqi Electric flux hqi =0 S = Z d 4 x p g apple 1 2apple 2 E r = hqi R + 6L 2 1 4g 2 4 F ab F ab S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, (2007)

11 The Maxwell-Einstein theory of the applied chemical potential yields a AdS4-Reissner-Nordtröm black-brane r E r = hqi Electric flux E r = hqi hqi =0 ds 2 = L r with f(r) = 2 apple dr 2 1 f(r) r R f(r)dt 2 + dx 2 + dy r R + 3r2 R 2 and R = p 6Lg4 appleµ, and A = µ 1 r R

12 The Maxwell-Einstein theory of the applied chemical potential yields a AdS4-Reissner-Nordtröm black-brane r Electric flux hqi =0 At T = 0, we obtain an extremal black-brane, with a near-horizon (IR) metric of AdS 2 R 2 ds 2 = L2 6 dt 2 + dr 2 r 2 + dx 2 + dy 2 T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv:

13 Holography of a non-fermi liquid Einstein-Maxwell-dilaton theory r E r = hqi Electric flux S = Z d d+2 x p g apple 1 2apple 2 E r = hqi R 2(r ) 2 V ( ) Z( ) L 2 4e 2 F abf ab with Z( ) = Z 0 e, V ( ) = V 0 e, as!1. C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010). S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, (2010). N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arxiv: [hep-th].

14 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i The r!1limit of the metric of the Einstein-Maxwelldilaton (EMD) theory has the above form with = d 2 +(d 1) z = 1+ d + 8(d(d )+ )2 d 2 (d ) 2.

15 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i This is the most general metric which is invariant under the scale transformation x i! x i t! z t ds! /d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical points). We will see shortly that is the violation of hyperscaling exponent. We have used reparametrization invariance in r to define it so that it scales as r! (d )/d r. L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)

16 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i At T>0, there is a black-brane at r = r h. The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system r = 0. The entropy density, S, is proportional to the area of the horizon, and so S r d h r L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)

17 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i Under rescaling r! (d )/d r, and the temperature T t 1, and so S T (d )/z = T d eff /z where = d d e, the dimension deficit, is now identified as the violation of hyperscaling exponent. r L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)

18 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i The null energy condition (stability condition for gravity) yields a new inequality z 1+ d In d = 2, with = d 1, this implies z 3/2. Sothelower bound is precisely the value obtained from the field theory. N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012). L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)

19 Holography of a non-fermi liquid ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i Application of the Ryu-Takayanagi minimal area formula to a dual Einstein-Maxwell-dilaton theory yields 8 < P, for <d 1 S E P ln P, for = d 1. : P /(d 1), for >d 1 The log-violation of area law again prefers the value = d 1. Moreover, the co-e cient of P ln P is (i) independent of the shape of the entangling region just as expected for a circular Fermi surface, and (ii) has the same universal dependence on Q expected from the Luttinger theorem. N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012). L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)

20 Open questions: Holography of a non-fermi liquid Is there any selection principle for the values of and z? What is the physical interpretation of metallic states with 6= d 1? Does the metallic state have a Fermi surface, and what is k F? Are there N 2 Fermi surfaces of quarks with k F 1, or 1 Fermi surface of a baryon with k F N 2? Why is k F not observable as Friedel oscillations in correlators of the density, and other gauge-neutral operators? Answer: need non-perturbative e ects of monopole operators T. Faulkner and N. Iqbal, arxiv: ; S. Sachdev, Phys. Rev. D 86, (2012)

21 Open questions: Holography of a non-fermi liquid Is there any selection principle for the values of and z? What is the physical interpretation of metallic states with 6= d 1? Does the metallic state have a Fermi surface, and what is k F? Are there N 2 Fermi surfaces of quarks with k F 1, or 1 Fermi surface of a baryon with k F N 2? Why is k F not observable as Friedel oscillations in correlators of the density, and other gauge-neutral operators? Answer: need non-perturbative e ects of monopole operators T. Faulkner and N. Iqbal, arxiv: ; S. Sachdev, Phys. Rev. D 86, (2012)

22 Open questions: Holography of a non-fermi liquid Is there any selection principle for the values of and z? What is the physical interpretation of metallic states with 6= d 1? Does the metallic state have a Fermi surface, and what is k F? Are there N 2 Fermi surfaces of quarks with k F 1, or 1 Fermi surface of a baryon with k F N 2? Why is k F not observable as Friedel oscillations in correlators of the density, and other gauge-neutral operators? Answer: need non-perturbative e ects of monopole operators T. Faulkner and N. Iqbal, arxiv: ; S. Sachdev, Phys. Rev. D 86, (2012)

23 Open questions: Holography of a non-fermi liquid Is there any selection principle for the values of and z? What is the physical interpretation of metallic states with 6= d 1? Does the metallic state have a Fermi surface, and what is k F? Are there N 2 Fermi surfaces of quarks with k F 1, or 1 Fermi surface of a baryon with k F N 2? Why is k F not observable as Friedel oscillations in correlators of the density, and other gauge-neutral operators? Answer: need non-perturbative e ects of monopole operators T. Faulkner and N. Iqbal, arxiv: ; S. Sachdev, Phys. Rev. D 86, (2012)

24 Open questions: Holography of a non-fermi liquid Is there any selection principle for the values of and z? What is the physical interpretation of metallic states with 6= d 1? Does the metallic state have a Fermi surface, and what is k F? Are there N 2 Fermi surfaces of quarks with k F 1, or 1 Fermi surface of a baryon with k F N 2? Why is k F not observable as Friedel oscillations in correlators of the density, and other gauge-neutral operators? Answer: need non-perturbative e ects of monopole operators T. Faulkner and N. Iqbal, arxiv: ; S. Sachdev, Phys. Rev. D 86, (2012)

25 R. A. Davison, M. Goykhman, and A. Parnachev, arxiv: Consider the truncation of IIB supergravity on AdS 5 S 5 where two of the three U(1) charges are equal and non-vanishing while the third one is zero (S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, (2010)). In the IR limit, the bulk metric is of the general scaling form, but with = z and z!1: ds 2 = 1 r 2 dt 2 r 6 + dr2 r 2 + dx2 i This metric is conformal to AdS 2 R 3. From our results before, we have the entropy S T and the entanglement entropy S E P. Key di erence from a Landau Fermi liquid are the equality of hydrodynamic and zero sound velocities, and a viscosity = S/(4 )..

26 R. A. Davison, M. Goykhman, and A. Parnachev, arxiv: Claim: all physical properties of the holographic theory can be interpreted in a theory of a Fermi surface of baryons with k F N 2/3, v F N 2/3, and interactions such that the system is precisely at the nematic quantum critical point in d = 3!

27 Strongly-coupled quantum criticality leads to a novel regime of quantum dynamics without quasiparticles. The simplest examples are conformal field theories in 2+1 dimensions, realized by ultracold atoms in optical lattices. Holographic theories provide an excellent quantitative description of quantum Monte studies of quantum-critical boson models Exciting recent progress on the description of transport in metallic states without quasiparticles, via field theory and holography

28 Strongly-coupled quantum criticality leads to a novel regime of quantum dynamics without quasiparticles. The simplest examples are conformal field theories in 2+1 dimensions, realized by ultracold atoms in optical lattices. Holographic theories provide an excellent quantitative description of quantum Monte studies of quantum-critical boson models Exciting recent progress on the description of transport in metallic states without quasiparticles, via field theory and holography

29 Strongly-coupled quantum criticality leads to a novel regime of quantum dynamics without quasiparticles. The simplest examples are conformal field theories in 2+1 dimensions, realized by ultracold atoms in optical lattices. Holographic theories provide an excellent quantitative description of quantum Monte studies of quantum-critical boson models Exciting recent progress on the description of transport in metallic states without quasiparticles, via field theory and holography

30 Strongly-coupled quantum criticality leads to a novel regime of quantum dynamics without quasiparticles. The simplest examples are conformal field theories in 2+1 dimensions, realized by ultracold atoms in optical lattices. Holographic theories provide an excellent quantitative description of quantum Monte studies of quantum-critical boson models Exciting recent progress on the description of transport in metallic states without quasiparticles, via field theory and holography

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013 New Compressible Phases From Gravity And Their Entanglement Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013 Collaborators: Kevin Goldstein, Nori Iizuka, Shamit Kachru, Nilay Kundu, Prithvi Nayaran,

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality Institute for Nuclear Theory, Seattle Summer School on Applications of String Theory July 18-20 Subir Sachdev HARVARD Outline 1. Conformal quantum matter 2. Compressible

More information

Superfluid-insulator transition

Superfluid-insulator transition Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T Quantum critical T KT Superfluid Insulator 0 g c

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Hyperscaling violation and entanglement entropy in gauge/string theory

Hyperscaling violation and entanglement entropy in gauge/string theory Hyperscaling violation and entanglement entropy in gauge/string theory K. Narayan Chennai Mathematical Institute Introduction, summary Lightcone SYM, string theory, AdS plane waves AdS plane waves, hyperscaling

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality 2013 Arnold Sommerfeld School, Munich, August 5-9, 2013 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD " k Dirac semi-metal " k Insulating antiferromagnet

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Imperial College May 16, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565 sachdev.physics.harvard.edu

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Quantum Null Energy Condition A remarkable inequality in physics

Quantum Null Energy Condition A remarkable inequality in physics Quantum Null Energy Condition A remarkable inequality in physics Daniel Grumiller Institute for Theoretical Physics TU Wien Erwin-Schrödinger Institute, May 2018 1710.09837 Equalities in mathematics and

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT Sumit R Das (w/ Pallab Basu) (arxiv:1109.3909, to appear in JHEP) Quantum Quench Suppose we have a quantum field theory, whose parameters (like couplings

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

Momentum relaxation in holographic massive gravity

Momentum relaxation in holographic massive gravity Momentum relaxation in holographic massive gravity Richard Davison Lorentz Institute, Leiden Based on 1306.5792 [hep-th] Gauge/Gravity Duality 2013, Munich July 30 th 2013 Introduction and motivation We

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states States of quantum matter with long-range entanglement in d spatial dimensions Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets

More information

Exact holography and entanglement entropy from one-point functions

Exact holography and entanglement entropy from one-point functions Exact holography and entanglement entropy from one-point functions O-Kab Kwon (Sungkyunkwan University) In collaboration with Dongmin Jang, Yoonbai Kim, Driba Tolla arxiv:1612.05066, 1610.01490 1605.00849

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

Confinement/Deconfinement Phase Transitions in Strongly Coupled Anisotropic Theories

Confinement/Deconfinement Phase Transitions in Strongly Coupled Anisotropic Theories Confinement/Deconfinement Phase Transitions in Strongly Coupled Anisotropic Theories Dimitrios Giataganas National Center for Theoretical Sciences (NCTS), Taiwan Based on works with: U. Gursoy(Utrecht

More information

From Black holes to Qubits through String Theoretic Microscopes

From Black holes to Qubits through String Theoretic Microscopes ICHEP Formal Theory Development, July 10 th, 2018 @ Seoul From Black holes to Qubits through String Theoretic Microscopes Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University 1

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Cold Holographic matter in top-down models

Cold Holographic matter in top-down models Cold Holographic matter in top-down models A. V. Ramallo Univ. Santiago NumHol016, Santiago de Compostela June 30, 016 Based on 1503.0437, 160.06106, 1604.03665 with Y. Bea, G. Itsios and N. Jokela Motivation

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

An Introduction to AdS/CFT Correspondence

An Introduction to AdS/CFT Correspondence An Introduction to AdS/CFT Correspondence Dam Thanh Son Institute for Nuclear Theory, University of Washington An Introduction to AdS/CFT Correspondence p.1/32 Plan of of this talk AdS/CFT correspondence

More information

Black Hole Entropy and Gauge/Gravity Duality

Black Hole Entropy and Gauge/Gravity Duality Tatsuma Nishioka (Kyoto,IPMU) based on PRD 77:064005,2008 with T. Azeyanagi and T. Takayanagi JHEP 0904:019,2009 with T. Hartman, K. Murata and A. Strominger JHEP 0905:077,2009 with G. Compere and K. Murata

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

JHEP01(2014)039. A holographic model of SQUID. Rong-Gen Cai, a Yong-Qiang Wang b and Hai-Qing Zhang c

JHEP01(2014)039. A holographic model of SQUID. Rong-Gen Cai, a Yong-Qiang Wang b and Hai-Qing Zhang c Published for SISSA by Springer Received: November 13, 13 Accepted: December 16, 13 Published: January 9, 14 A holographic model of SQUID Rong-Gen Cai, a Yong-Qiang Wang b and Hai-Qing Zhang c a State

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Superconductivity, Superfluidity and holography

Superconductivity, Superfluidity and holography Outline Department of Theoretical Physics and Institute of Theoretical Physics, Autònoma University of Madrid, Spain and Scuola Normale Superiore di Pisa, Italy 12 November 2012, Laboratori Nazionali del

More information

The quantum phases of matter and gauge-gravity duality

The quantum phases of matter and gauge-gravity duality The quantum phases of matter and gauge-gravity duality University of Michigan, Ann Arbor, March 13, 2013 Subir Sachdev HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Holographic duality in condensed matter physics.! Jan Zaanen!!

Holographic duality in condensed matter physics.! Jan Zaanen!! Holographic duality in condensed matter physics.! Jan Zaanen!! 1! Book sales! Cambridge University Press! Release: October 28 2015.! It is 600 pages and only 80!! 2! Plan of course.! 1. Overview of AdS/CMT

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

Expanding plasmas from Anti de Sitter black holes

Expanding plasmas from Anti de Sitter black holes Expanding plasmas from Anti de Sitter black holes (based on 1609.07116 [hep-th]) Giancarlo Camilo University of São Paulo Giancarlo Camilo (IFUSP) Expanding plasmas from AdS black holes 1 / 15 Objective

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY. Sumit R. Das

QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY. Sumit R. Das QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY Sumit R. Das QUANTUM QUENCH Consider a quantum theory with a Hamiltonian with a time dependent coupling e.g. Suppose we start, at early times, in the ground

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München Holographic hydrodynamics of systems with broken rotational symmetry Johanna Erdmenger Max-Planck-Institut für Physik, München Based on joint work with M. Ammon, V. Grass, M. Kaminski, P. Kerner, H.T.

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Quantum bosons for holographic superconductors

Quantum bosons for holographic superconductors Quantum bosons for holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef

More information

Quantum critical transport and AdS/CFT

Quantum critical transport and AdS/CFT Quantum critical transport and AdS/CFT Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller, Trieste Joerg Schmalian, Iowa Dam Son, Washington

More information

Strange metals and gauge-gravity duality

Strange metals and gauge-gravity duality Strange metals and gauge-gravity duality Loughborough University, May 17, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Holographic zero sound at finite temperature

Holographic zero sound at finite temperature Holographic zero sound at finite temperature Richard Davison and Andrei Starinets Rudolf Peierls Centre for Theoretical Physics Oxford University arxiv: 1109.XXXX [hep-th] Holographic Duality and Condensed

More information