The disordered Hubbard model: from Si:P to the high temperature superconductors

Size: px
Start display at page:

Download "The disordered Hubbard model: from Si:P to the high temperature superconductors"

Transcription

1 The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD

2 1. Disordered Hubbard model for Si:P 2. Solvable disordered models: (A) Random matrix model of a `quantum dot Metal with quasiparticles (B) SYK model of a `quantum dot Metal without quasiparticles 3. High temperature superconductivity and strange metals.

3 1. Disordered Hubbard model for Si:P 2. Solvable disordered models: (A) Random matrix model of a `quantum dot Metal with quasiparticles (B) SYK model of a `quantum dot Metal without quasiparticles 3. High temperature superconductivity and strange metals.

4 <latexit sha1_base64="cx0klfibznm9k5vrm8mrowgc8nq=">aaadfhicdvjnbxmxepuuxyv8pxdkwiiiqogm7laghansbzcei0tastmw8nq9ivn717k9ldf2e+qn8cu4wokb4sqda/8fb7kbtgphsub5ztypz+xicqan5/123ctxr12/sxkzcev2nbv3mqv393swk0l7joozooiwppyltg+y4frakopfxol+dpi2iu8fuavzlr43u0mhao9sljccjaxcvefr2g68hjyeohdhwtymjrjrwxps+qbzocblhydgoxfvftlzkbaejbxtzbpnihx+frtuz5b0skx/bv2z2lxipblj8+ofxw/j7di9mo9/wfy6rs5btwy7czqtencpetbbj1aeuqkqtfxb//aetp7j0hvacjstr/nyq9d91qwv483mat/b7g11wa+zfqptn2z+sxvjlmhqcmdad3xpmmgblwge07ir5jpkta7xia4stlggeim+yllp4lcypwojt2wwhirtdqugzuyyumbc66mibkbazqzpxyryotggn0lvwlbu5oamzf4oytmydkofajftlbg+tqatxey1gyyxwstyf1tny9e0xa72nu2eov67f63tn/vkvtbd9bitix910tbaqbuoj4jzyfnifhw+uz/d7+4p9+c81xvqzqn0xtxffwhapvut</latexit> <latexit sha1_base64="cx0klfibznm9k5vrm8mrowgc8nq=">aaadfhicdvjnbxmxepuuxyv8pxdkwiiiqogm7laghansbzcei0tastmw8nq9ivn717k9ldf2e+qn8cu4wokb4sqda/8fb7kbtgphsub5ztypz+xicqan5/123ctxr12/sxkzcev2nbv3mqv393swk0l7joozooiwppyltg+y4frakopfxol+dpi2iu8fuavzlr43u0mhao9sljccjaxcvefr2g68hjyeohdhwtymjrjrwxps+qbzocblhydgoxfvftlzkbaejbxtzbpnihx+frtuz5b0skx/bv2z2lxipblj8+ofxw/j7di9mo9/wfy6rs5btwy7czqtencpetbbj1aeuqkqtfxb//aetp7j0hvacjstr/nyq9d91qwv483mat/b7g11wa+zfqptn2z+sxvjlmhqcmdad3xpmmgblwge07ir5jpkta7xia4stlggeim+yllp4lcypwojt2wwhirtdqugzuyyumbc66mibkbazqzpxyryotggn0lvwlbu5oamzf4oytmydkofajftlbg+tqatxey1gyyxwstyf1tny9e0xa72nu2eov67f63tn/vkvtbd9bitix910tbaqbuoj4jzyfnifhw+uz/d7+4p9+c81xvqzqn0xtxffwhapvut</latexit> <latexit sha1_base64="cx0klfibznm9k5vrm8mrowgc8nq=">aaadfhicdvjnbxmxepuuxyv8pxdkwiiiqogm7laghansbzcei0tastmw8nq9ivn717k9ldf2e+qn8cu4wokb4sqda/8fb7kbtgphsub5ztypz+xicqan5/123ctxr12/sxkzcev2nbv3mqv393swk0l7joozooiwppyltg+y4frakopfxol+dpi2iu8fuavzlr43u0mhao9sljccjaxcvefr2g68hjyeohdhwtymjrjrwxps+qbzocblhydgoxfvftlzkbaejbxtzbpnihx+frtuz5b0skx/bv2z2lxipblj8+ofxw/j7di9mo9/wfy6rs5btwy7czqtencpetbbj1aeuqkqtfxb//aetp7j0hvacjstr/nyq9d91qwv483mat/b7g11wa+zfqptn2z+sxvjlmhqcmdad3xpmmgblwge07ir5jpkta7xia4stlggeim+yllp4lcypwojt2wwhirtdqugzuyyumbc66mibkbazqzpxyryotggn0lvwlbu5oamzf4oytmydkofajftlbg+tqatxey1gyyxwstyf1tny9e0xa72nu2eov67f63tn/vkvtbd9bitix910tbaqbuoj4jzyfnifhw+uz/d7+4p9+c81xvqzqn0xtxffwhapvut</latexit> <latexit sha1_base64="cx0klfibznm9k5vrm8mrowgc8nq=">aaadfhicdvjnbxmxepuuxyv8pxdkwiiiqogm7laghansbzcei0tastmw8nq9ivn717k9ldf2e+qn8cu4wokb4sqda/8fb7kbtgphsub5ztypz+xicqan5/123ctxr12/sxkzcev2nbv3mqv393swk0l7joozooiwppyltg+y4frakopfxol+dpi2iu8fuavzlr43u0mhao9sljccjaxcvefr2g68hjyeohdhwtymjrjrwxps+qbzocblhydgoxfvftlzkbaejbxtzbpnihx+frtuz5b0skx/bv2z2lxipblj8+ofxw/j7di9mo9/wfy6rs5btwy7czqtencpetbbj1aeuqkqtfxb//aetp7j0hvacjstr/nyq9d91qwv483mat/b7g11wa+zfqptn2z+sxvjlmhqcmdad3xpmmgblwge07ir5jpkta7xia4stlggeim+yllp4lcypwojt2wwhirtdqugzuyyumbc66mibkbazqzpxyryotggn0lvwlbu5oamzf4oytmydkofajftlbg+tqatxey1gyyxwstyf1tny9e0xa72nu2eov67f63tn/vkvtbd9bitix910tbaqbuoj4jzyfnifhw+uz/d7+4p9+c81xvqzqn0xtxffwhapvut</latexit> Disordered Hubbard model for Si:P H = X i,j t ij c i c j µ X i c i c i + U X i c i" c i"c i# c i# t ij exp( r i r j /a 0 )

5 Electrons in doped silicon appear to separate into two components: localized spin moments and itinerant electrons 10' P 2 [ " T(K) F1G. 1. Temperature dependence of normalized susceptibility g/gp, ~; of three Si:P,B samples with dia'erent normalized electron densities, n/n, =0. 58, I.I, and 1.8. Solid lines through data are a guide to the eye. M. J. Hirsch, D.F. Holcomb, R.N. Bhatt, and M.A. Paalanen PRL 68, 1418 (1992) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989) A.C. Potter, M. Barkeshli, J. McGreevy, T. Senthil, PRL 109, (2012)

6 Theory of local moment formation in Si:P Choose an e ective Hamiltonian of the form H e = t ij c i c X j X i,j X ~ hi c i ~ c i i i ic i c i where ~ h i and i are variational parameters. Taking the density matrix defined by H e as the trial density matrix, and minimizing the free energy, we obtain an expansion in power of ~ h i where F e [ ~ h i ]=F X i,j,k ij( jk U jk )( ~ h i ~h k )+... ij X, (i) (i) (j) (j) f( ) f( ) <latexit sha1_base64="ordtzt4fenvvf3ocibhpu6opsry=">aaagvnicdvvfb9s2efc7j+u0f+n2ujfdkhux5hly2ilzq4fihyo8zkdtfghdg6joemoj0kjkisdox2ifzm/78032mowow7ktpqqm3f3ujkfe/y4oy0wagwr/3rv/wwbn98mhh/kff/lpz5/vpfzitskqlfbcffmh34bcycyvnltpm3xbaur5mogbcp7c2d8subtzqfd2wei054mssrtcejr7opirqukqcjx1x6rfyrc4aoxjffyuee55ljnbkeloeynneejc5z4lmzgq5plmvom/op3vtocurofn8b0wu+wzwo4ug7d0bfok92u8k1pevgmrtxludrzswc6mvbke55ye98x0indpvzwhbdmgj37drg+bxzqletlur013hhiwkoq0culevni7m7rozmgk5w1drlxshs3vbrgs+9w+qxv1tbhkusmc9ikoqkar6es7kurmbdey7qdpoosa52ipswn4xedsjw2zqsvg2ixk3gp5twpmly4gxmlbvrvpo9o6kxptdtno1kbopzk5/kxbn9aigap1shzbfuirwi5v2/xrkivhfcc9lk6oettyrzvc6vrlrazfrcs7oxppiqivzwfstebjs6heae6kscupritdfmfmoffg7hhwvjarnitbrw51+hygbvemmhn3g2dvh5snbn+tl+hplvz0vguzzuzer8b0wpd1zmgepepkyqu9y9zymxppoy1xa4tdyzw+8njaw4t4kgfpzezd10cmkf0w7ikgtf1/p3fkbafg39d+tu61+vfbhf36+b4mt8chlamquflc0dg03i204fmfpmxant98brcoac+cgzhabg8/gd99fhl8/tee46bdjeyco5phxzbzi/veep3n9v5husgqnj4dkxfjlizbaac111akdol+lcgsizlp8ijerqnirtfclqyvp3x78jxwdrkj9ylrt9e0o3q7uoa5mcs8je8aidtctjnwlttfzeotas1vwvluypuorjkwbbhnfckp6yxmlirwosudg0rkgyzchpvmil3ekrfpzsxe2yszuz76yfipva0vq6sivf94futlg09+otp//so6ba+8r7yvvunv4h17z71t78w798tgt8hvg78gf+/8sfpvlv1lrfzv31vhfondwlt7/wg7/cke</latexit> where and are the eigenfunctions and eigenvalues of H e at ~ h i = 0. M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989)

7 <latexit sha1_base64="d+nvezigw+znbxq2zvtszp4xycg=">aaadbnicdvjba9rafm52vdr4axv8effgv2hxxzo2slvqiklxwyckblvyrgeyozud7mqmzey21pcf54/wn/jig4kpnr1uquibwdnfn+es75ykkmk6ipjswgpeuhjp8viv/+q16zdurqzeorc6nbx7xettjhjmuqqfpsecxkpcimstiyfj+pwup5ygsukr9+60wehomiwggjnhulza+baplvskyvlrgplqfzmiu7w/f1eryqghwxr6ee2qv6ny1dcaf7axb/aioqfhvarrarugyjz5xin2cxtmar8jco5rwi9sli7f1thbj6g3ocjaig5ws44foal2cbapywnaxrjmgcztzz6g8snu6wi48a8rcezdpyllkasczvor+qmh9bt9qw1mpcbhwlsefbmqxkdo4us40tyemfks0irekmypo1leqvik13oobosuxaxovfpjxbudttaqfsodp0fqggjynzoiijr1lbfsoig2a/hkwtb5urxtfdafobpmjjww2nzz6kk4qna8he3hkz+jvpnywotlzm0/dao3qjhxgkus/ai0wda+zhn2yvusr9toj6kwm3dqzw6ihodepjduhj4aa4aet65ybu1pntdlnlmr/zubgv/i+qub7gwqoyrsoelzrsnstowyhhitwib3851wqzjwwgcjs3f0hn5kkw5uzw5urq4/uhorup9qw6iapdrta/7vhgysej3w3eba7qufamvexe+bt+6fxtfb9d54+17p443pja+n740fs9+ad5r3mvfnt5cai5zb3h/wxp8fpjga3g==</latexit> <latexit sha1_base64="d+nvezigw+znbxq2zvtszp4xycg=">aaadbnicdvjba9rafm52vdr4axv8effgv2hxxzo2slvqiklxwyckblvyrgeyozud7mqmzey21pcf54/wn/jig4kpnr1uquibwdnfn+es75ykkmk6ipjswgpeuhjp8viv/+q16zdurqzeorc6nbx7xettjhjmuqqfpsecxkpcimstiyfj+pwup5ygsukr9+60wehomiwggjnhulza+baplvskyvlrgplqfzmiu7w/f1eryqghwxr6ee2qv6ny1dcaf7axb/aioqfhvarrarugyjz5xin2cxtmar8jco5rwi9sli7f1thbj6g3ocjaig5ws44foal2cbapywnaxrjmgcztzz6g8snu6wi48a8rcezdpyllkasczvor+qmh9bt9qw1mpcbhwlsefbmqxkdo4us40tyemfks0irekmypo1leqvik13oobosuxaxovfpjxbudttaqfsodp0fqggjynzoiijr1lbfsoig2a/hkwtb5urxtfdafobpmjjww2nzz6kk4qna8he3hkz+jvpnywotlzm0/dao3qjhxgkus/ai0wda+zhn2yvusr9toj6kwm3dqzw6ihodepjduhj4aa4aet65ybu1pntdlnlmr/zubgv/i+qub7gwqoyrsoelzrsnstowyhhitwib3851wqzjwwgcjs3f0hn5kkw5uzw5urq4/uhorup9qw6iapdrta/7vhgysej3w3eba7qufamvexe+bt+6fxtfb9d54+17p443pja+n740fs9+ad5r3mvfnt5cai5zb3h/wxp8fpjga3g==</latexit> <latexit sha1_base64="d+nvezigw+znbxq2zvtszp4xycg=">aaadbnicdvjba9rafm52vdr4axv8effgv2hxxzo2slvqiklxwyckblvyrgeyozud7mqmzey21pcf54/wn/jig4kpnr1uquibwdnfn+es75ykkmk6ipjswgpeuhjp8viv/+q16zdurqzeorc6nbx7xettjhjmuqqfpsecxkpcimstiyfj+pwup5ygsukr9+60wehomiwggjnhulza+baplvskyvlrgplqfzmiu7w/f1eryqghwxr6ee2qv6ny1dcaf7axb/aioqfhvarrarugyjz5xin2cxtmar8jco5rwi9sli7f1thbj6g3ocjaig5ws44foal2cbapywnaxrjmgcztzz6g8snu6wi48a8rcezdpyllkasczvor+qmh9bt9qw1mpcbhwlsefbmqxkdo4us40tyemfks0irekmypo1leqvik13oobosuxaxovfpjxbudttaqfsodp0fqggjynzoiijr1lbfsoig2a/hkwtb5urxtfdafobpmjjww2nzz6kk4qna8he3hkz+jvpnywotlzm0/dao3qjhxgkus/ai0wda+zhn2yvusr9toj6kwm3dqzw6ihodepjduhj4aa4aet65ybu1pntdlnlmr/zubgv/i+qub7gwqoyrsoelzrsnstowyhhitwib3851wqzjwwgcjs3f0hn5kkw5uzw5urq4/uhorup9qw6iapdrta/7vhgysej3w3eba7qufamvexe+bt+6fxtfb9d54+17p443pja+n740fs9+ad5r3mvfnt5cai5zb3h/wxp8fpjga3g==</latexit> <latexit sha1_base64="d+nvezigw+znbxq2zvtszp4xycg=">aaadbnicdvjba9rafm52vdr4axv8effgv2hxxzo2slvqiklxwyckblvyrgeyozud7mqmzey21pcf54/wn/jig4kpnr1uquibwdnfn+es75ykkmk6ipjswgpeuhjp8viv/+q16zdurqzeorc6nbx7xettjhjmuqqfpsecxkpcimstiyfj+pwup5ygsukr9+60wehomiwggjnhulza+baplvskyvlrgplqfzmiu7w/f1eryqghwxr6ee2qv6ny1dcaf7axb/aioqfhvarrarugyjz5xin2cxtmar8jco5rwi9sli7f1thbj6g3ocjaig5ws44foal2cbapywnaxrjmgcztzz6g8snu6wi48a8rcezdpyllkasczvor+qmh9bt9qw1mpcbhwlsefbmqxkdo4us40tyemfks0irekmypo1leqvik13oobosuxaxovfpjxbudttaqfsodp0fqggjynzoiijr1lbfsoig2a/hkwtb5urxtfdafobpmjjww2nzz6kk4qna8he3hkz+jvpnywotlzm0/dao3qjhxgkus/ai0wda+zhn2yvusr9toj6kwm3dqzw6ihodepjduhj4aa4aet65ybu1pntdlnlmr/zubgv/i+qub7gwqoyrsoelzrsnstowyhhitwib3851wqzjwwgcjs3f0hn5kkw5uzw5urq4/uhorup9qw6iapdrta/7vhgysej3w3eba7qufamvexe+bt+6fxtfb9d54+17p443pja+n740fs9+ad5r3mvfnt5cai5zb3h/wxp8fpjga3g==</latexit> Theory of local moment formation in Si:P F e [ ~ h i ]=F X i,j,k ij( jk U jk )( ~ h i ~h k )+... We numerically diagonalize ij, and choose eigenmodes with eigenvalues i > 1/U: these are the eigenmodes corresponding to local moment instabilities. M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989)

8 Theory of local moment formation in Si:P Magnetic excitations are localized (eigenmodes of the spin susceptibility) Charged fermionic excitations are extended (eigenmodes of the electron Hamiltonian) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989)

9 1. Disordered Hubbard model for Si:P 2. Solvable disordered models: (A) Random matrix model of a `quantum dot Metal with quasiparticles (B) SYK model of a `quantum dot Metal without quasiparticles 3. High temperature superconductivity and strange metals.

10 A simple model of a metal with quasiparticles Pick a set of random positions

11 A simple model of a metal with quasiparticles Place electrons randomly on some sites

12 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

13 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

14 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

15 A simple model of a metal with quasiparticles Electrons move one-by-one randomly

16 A simple model of a metal with quasiparticles 1 NX H = (N) 1/2 i,j=1 t ij c i c j +... c i c j + c j c i =0, c i c j + c j c i = ij 1 N X i c i c i = Q t ij are independent random variables with t ij = 0 and t ij 2 = t 2 Fermions occupying the eigenstates of a N x N random matrix

17 Infinite-range model with quasiparticles Feynman graph expansion in t ij.., and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) G( =0 )=Q., ( ) =t 2 G( ) G(!) can be determined by solving a quadratic equation. Im G(!) µ!

18 Now add weak interactions Infinite-range model with quasiparticles H = 1 (N) 1/2 NX i,j=1 t ij c i c j + 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` c i c j c k c` J ij;k` are independent random variables with U ij;k` = 0 and U ij;k` 2 = U 2.We compute the lifetime of a quasiparticle,, in an exact eigenstate (i) of the free particle Hamitonian with energy E. By Fermi s Golden rule, for E at the Fermi energy 1 = U Z de de de f(e )(1 f(e ))(1 f(e )) (E + E E E ) = 3 U T 2 where 0 is the density of states at the Fermi energy. <latexit sha1_base64="cmzytw7hgbfdnmmx0ij330jbm9e=">aaafo3icdvrtb9s2efzbe2u1t3rdp/xlove7b3m9yu2afkwbolu3yaocboibapft0njjziyrkkklnvttj+3/7mp+y46ynspfxi863j18epfcibmi49r4/j/xrt/odd/7/oyt94svv/r6m63b377rslqrjikzsfv2xjrmxodicjph20ihy2czhs8wp9n48rkqzau4msscxzllbu94xay5prdv/b0kyuwmwrih8hxyhmm5sgvwyvcxykk0g84w5ajigu9f7r7acwgtclzbxfuodyzv8oowrihuzt6tep/0evbpdgembu5riohtt8kypskqsfty/tbigillehszo7/oh5hlk6qrzxq2sa6c9imdxxbg09owvzhu4vkxz8lihnzum4i9emwiyhdlpkplhijityneb60bpwakwypuykmukcziijljijnswsm5n3pwqkls205u7yrrkssndhg3er/aka+touwnjknvamcikcyl0icyoulgezq8r5ajmhhxms0lpgypmuwtowhlngqz1ex1kue6bva99q2qpyi0yutjhyxm02ofq6hhdzzlztkthqgbpjhgotdsccjpkkkbkl2c92pzxqbeluexvdn/xsovmim1qju2k0sqfg6yaegb6jrmkyl68hecwkvygckcwykgvhm59a1bwwgxkc/qsmziwz6vrbgzw9ykt47uqc+ah9dsg9bo29oaybmyept0aro35a/hgr0xvyc+tgmeofvgl7sufgjkd/lousj1tvvdkxvcovznc1s2kq3aa64bquhkzc3snqbpmr5kw8f0a9sf+e/3d4n98afby3/38zcmvd29vb0hbao/wdvoer2ebv0bxjiqcxrbkgnanwr+ycbvuuo1g5yacxytwionzaqwo+7hz7zqjtmumjemhvsujjsuj5k60xjbhyuwa73mz4tmmznrt2pwevxspdtjk3hfhr14ea0ussomjat7yehmfuymw5lbisupbyjmzd5n9ky5pmemaph/481wejbafwy3x7xck3ptuevcc3po4ow7l5wd57uzcqlonc6zzs+dv9373d+7f3apvtdr19znvnmure74p5ge2ec=</latexit> <latexit sha1_base64="cmzytw7hgbfdnmmx0ij330jbm9e=">aaafo3icdvrtb9s2efzbe2u1t3rdp/xlove7b3m9yu2afkwbolu3yaocboibapft0njjziyrkkklnvttj+3/7mp+y46ynspfxi863j18epfcibmi49r4/j/xrt/odd/7/oyt94svv/r6m63b377rslqrjikzsfv2xjrmxodicjph20ihy2czhs8wp9n48rkqzau4msscxzllbu94xay5prdv/b0kyuwmwrih8hxyhmm5sgvwyvcxykk0g84w5ajigu9f7r7acwgtclzbxfuodyzv8oowrihuzt6tep/0evbpdgembu5riohtt8kypskqsfty/tbigillehszo7/oh5hlk6qrzxq2sa6c9imdxxbg09owvzhu4vkxz8lihnzum4i9emwiyhdlpkplhijityneb60bpwakwypuykmukcziijljijnswsm5n3pwqkls205u7yrrkssndhg3er/aka+touwnjknvamcikcyl0icyoulgezq8r5ajmhhxms0lpgypmuwtowhlngqz1ex1kue6bva99q2qpyi0yutjhyxm02ofq6hhdzzlztkthqgbpjhgotdsccjpkkkbkl2c92pzxqbeluexvdn/xsovmim1qju2k0sqfg6yaegb6jrmkyl68hecwkvygckcwykgvhm59a1bwwgxkc/qsmziwz6vrbgzw9ykt47uqc+ah9dsg9bo29oaybmyept0aro35a/hgr0xvyc+tgmeofvgl7sufgjkd/lousj1tvvdkxvcovznc1s2kq3aa64bquhkzc3snqbpmr5kw8f0a9sf+e/3d4n98afby3/38zcmvd29vb0hbao/wdvoer2ebv0bxjiqcxrbkgnanwr+ycbvuuo1g5yacxytwionzaqwo+7hz7zqjtmumjemhvsujjsuj5k60xjbhyuwa73mz4tmmznrt2pwevxspdtjk3hfhr14ea0ussomjat7yehmfuymw5lbisupbyjmzd5n9ky5pmemaph/481wejbafwy3x7xck3ptuevcc3po4ow7l5wd57uzcqlonc6zzs+dv9373d+7f3apvtdr19znvnmure74p5ge2ec=</latexit> <latexit sha1_base64="cmzytw7hgbfdnmmx0ij330jbm9e=">aaafo3icdvrtb9s2efzbe2u1t3rdp/xlove7b3m9yu2afkwbolu3yaocboibapft0njjziyrkkklnvttj+3/7mp+y46ynspfxi863j18epfcibmi49r4/j/xrt/odd/7/oyt94svv/r6m63b377rslqrjikzsfv2xjrmxodicjph20ihy2czhs8wp9n48rkqzau4msscxzllbu94xay5prdv/b0kyuwmwrih8hxyhmm5sgvwyvcxykk0g84w5ajigu9f7r7acwgtclzbxfuodyzv8oowrihuzt6tep/0evbpdgembu5riohtt8kypskqsfty/tbigillehszo7/oh5hlk6qrzxq2sa6c9imdxxbg09owvzhu4vkxz8lihnzum4i9emwiyhdlpkplhijityneb60bpwakwypuykmukcziijljijnswsm5n3pwqkls205u7yrrkssndhg3er/aka+touwnjknvamcikcyl0icyoulgezq8r5ajmhhxms0lpgypmuwtowhlngqz1ex1kue6bva99q2qpyi0yutjhyxm02ofq6hhdzzlztkthqgbpjhgotdsccjpkkkbkl2c92pzxqbeluexvdn/xsovmim1qju2k0sqfg6yaegb6jrmkyl68hecwkvygckcwykgvhm59a1bwwgxkc/qsmziwz6vrbgzw9ykt47uqc+ah9dsg9bo29oaybmyept0aro35a/hgr0xvyc+tgmeofvgl7sufgjkd/lousj1tvvdkxvcovznc1s2kq3aa64bquhkzc3snqbpmr5kw8f0a9sf+e/3d4n98afby3/38zcmvd29vb0hbao/wdvoer2ebv0bxjiqcxrbkgnanwr+ycbvuuo1g5yacxytwionzaqwo+7hz7zqjtmumjemhvsujjsuj5k60xjbhyuwa73mz4tmmznrt2pwevxspdtjk3hfhr14ea0ussomjat7yehmfuymw5lbisupbyjmzd5n9ky5pmemaph/481wejbafwy3x7xck3ptuevcc3po4ow7l5wd57uzcqlonc6zzs+dv9373d+7f3apvtdr19znvnmure74p5ge2ec=</latexit> <latexit sha1_base64="cmzytw7hgbfdnmmx0ij330jbm9e=">aaafo3icdvrtb9s2efzbe2u1t3rdp/xlove7b3m9yu2afkwbolu3yaocboibapft0njjziyrkkklnvttj+3/7mp+y46ynspfxi863j18epfcibmi49r4/j/xrt/odd/7/oyt94svv/r6m63b377rslqrjikzsfv2xjrmxodicjph20ihy2czhs8wp9n48rkqzau4msscxzllbu94xay5prdv/b0kyuwmwrih8hxyhmm5sgvwyvcxykk0g84w5ajigu9f7r7acwgtclzbxfuodyzv8oowrihuzt6tep/0evbpdgembu5riohtt8kypskqsfty/tbigillehszo7/oh5hlk6qrzxq2sa6c9imdxxbg09owvzhu4vkxz8lihnzum4i9emwiyhdlpkplhijityneb60bpwakwypuykmukcziijljijnswsm5n3pwqkls205u7yrrkssndhg3er/aka+touwnjknvamcikcyl0icyoulgezq8r5ajmhhxms0lpgypmuwtowhlngqz1ex1kue6bva99q2qpyi0yutjhyxm02ofq6hhdzzlztkthqgbpjhgotdsccjpkkkbkl2c92pzxqbeluexvdn/xsovmim1qju2k0sqfg6yaegb6jrmkyl68hecwkvygckcwykgvhm59a1bwwgxkc/qsmziwz6vrbgzw9ykt47uqc+ah9dsg9bo29oaybmyept0aro35a/hgr0xvyc+tgmeofvgl7sufgjkd/lousj1tvvdkxvcovznc1s2kq3aa64bquhkzc3snqbpmr5kw8f0a9sf+e/3d4n98afby3/38zcmvd29vb0hbao/wdvoer2ebv0bxjiqcxrbkgnanwr+ycbvuuo1g5yacxytwionzaqwo+7hz7zqjtmumjemhvsujjsuj5k60xjbhyuwa73mz4tmmznrt2pwevxspdtjk3hfhr14ea0ussomjat7yehmfuymw5lbisupbyjmzd5n9ky5pmemaph/481wejbafwy3x7xck3ptuevcc3po4ow7l5wd57uzcqlonc6zzs+dv9373d+7f3apvtdr19znvnmure74p5ge2ec=</latexit> Fermi liquid state: Two-body interactions lead to a scattering time of quasiparticle excitations from in (random) single-particle eigenstates which diverges as T 2 at the Fermi level.

19 1. Disordered Hubbard model for Si:P 2. Solvable disordered models: (A) Random matrix model of a `quantum dot Metal with quasiparticles (B) SYK model of a `quantum dot Metal without quasiparticles 3. High temperature superconductivity and strange metals.

20 The Sachdev-Ye-Kitaev (SYK) model Pick a set of random positions

21 The SYK model Place electrons randomly on some sites

22 The SYK model Entangle electrons pairwise randomly

23 The SYK model Entangle electrons pairwise randomly

24 The SYK model Entangle electrons pairwise randomly

25 The SYK model Entangle electrons pairwise randomly

26 The SYK model Entangle electrons pairwise randomly

27 The SYK model Entangle electrons pairwise randomly

28 The SYK model This describes both a strange metal and a black hole!

29 H = The SYK model (See also: the 2-Body Random Ensemble in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)) 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` c i c j c k c` µ X i c i c j + c j c i =0, c i c j + c j c i = ij Q = 1 X c i N c i i c i c i U ij;k` are independent random variables with U ij;k` = 0 and U ij;k` 2 = U 2 N!1yields critical strange metal. S. Sachdev and J. Ye, PRL 70, 3339 (1993) A. Kitaev, unpublished; S. Sachdev, PRX 5, (2015)

30 The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

31 The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) X G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) Low frequency analysis shows that the solutions must be gapless and obey (z) =µ 1 Ap z +..., G(z) = A pz where A = e i /4 ( /U 2 ) 1/4 at half-filling. The ground state is a non-fermi liquid, with a continuously variable density Q. <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

32 <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> The SYK model T = 0 fermion Green s function is incoherent: G( ) 1/2 at large. (Fermi liquids with quasiparticles have the coherent: G( ) 1/ ) S. Sachdev and J. Ye, PRL 70, 3339 (1993) T>0 Green s function has conformal invariance G (T/sin( k B T /~)) 1/2 The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study.

33 <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> The SYK model T = 0 fermion Green s function is incoherent: G( ) 1/2 at large. (Fermi liquids with quasiparticles have the coherent: G( ) 1/ ) S. Sachdev and J. Ye, PRL 70, 3339 (1993) T>0 Green s function has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study.

34 <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> <latexit sha1_base64="4qtgybnvf4bwaohansesw2ahoq8=">aaaem3icdvpnbtnaedyjv+gvwjhlibqrinz10kicegibsjkgbckfst02wtutenx12t1dtxgrt8gzcoakt4g4ia6iv2dsbih/k9mand2zb75vdojmcmn9/+orrvposemntp5qnt5z9tz5uqsxx5g01yguh6lm9ubaduqhcn0kk3ej08itqollyodbdf5yd7urqrraisothe+ugiuqw3knljqwwiatouphmrgvcdpildv6no4dktstygesrorfii0kifazyqtix2ast2gya5fpog2vdoazkqbul0/ajpxptvvxm5ldbcsetfcxv0d+b54am/ak4vo6v5vzakh+q49c4a743srnlchkwpm8fxg7qaxqysjiuhoba6tcre6zatznffpdwfwfmwfigyaj1brx+5gj5q7v+c6musdeg9y0orpmyjyrsnibhaghwjrgtblva4fhwmssf8ywemen2szyfmaxmrflxe5sb+octyc5nidpqg7xa7vlzhiujbc6o2ugc5zcwwozpnjnrwrgx9gyilgrgddwhbinxhwpwcyih8pyowzbxaorpp1fwrjdu8tqlzyxn5rfjvnnhrcxpa4fvyfw3vo7sabt4vlviskwcdgz3sfzqvrlla647ns2y5pei6gkfr2n0dy87/nl/f7ap14t+4pbrcrw+yu3+n3oen695p3zejqa+8ainmwtohnkbsxm18/svjkjty8tn5jxcidpcjnmxrm0w2ut3bsukiccykgfslb7d0eupdgmsak6mxabmz/pkue/zjzzox5slujluuuvhgcncwk2hwpgibiaqyvpvqseakg1qhhzzunlk9ribmnm1mtgjbp4yu6lihdkze+gufns6icm8h/jrc/r+l73ww/+3v2zviedy84vp+10nb5zz3nkphxwnbdxpvgu8b7xofm2+an5ufnl4grjyczmkvpban79dicevsy=</latexit> The SYK model T = 0 fermion Green s function is incoherent: G( ) 1/2 at large. (Fermi liquids with quasiparticles have the coherent: G( ) 1/ ) S. Sachdev and J. Ye, PRL 70, 3339 (1993) T>0 Green s function has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, PRB 96, (2017)

35 Quantum matter without quasiparticles: If there are no quasiparticles, then E 6= X n " + X, F n n +... If there are no quasiparticles, then eq =# ~ k B T Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as T! 0 eq >C ~ k B T. S. Sachdev, Quantum Phase Transitions, Cambridge (1999) In Fermi liquids eq 1/T 2, and so the bound is obeyed as T! 0. This bound rules out quantum systems with e.g. eq ~/(Jk B T ) 1/2. There is no bound in classical mechanics (~! 0). By cranking up frequencies, we can attain equilibrium as quickly as we desire.

36 Quantum matter without quasiparticles: If there are no quasiparticles, then E 6= X n " + X, F n n +... If there are no quasiparticles, then eq =# ~ k B T Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as T! 0 eq >C ~ k B T. S. Sachdev, Quantum Phase Transitions, Cambridge S. Sachdev, (1999) Quantum Phase Transitions, Cambridge (1999) In Fermi liquids eq 1/T 2, and so the bound is obeyed as T! 0. This bound rules out quantum systems with e.g. eq ~/(Jk B T ) 1/2. There is no bound in classical mechanics (~! 0). By cranking up frequencies, we can attain equilibrium as quickly as we desire.

37 Quantum matter without quasiparticles: If there are no quasiparticles, then E 6= X n " + X, F n n +... If there are no quasiparticles, then eq =# ~ k B T Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as T! 0 eq >C ~ k B T. S. Sachdev, Quantum Phase Transitions, Cambridge (1999) In Fermi liquids eq 1/T 2, and so the bound is obeyed as T! 0. This bound rules out quantum systems with e.g. eq ~/(Jk B T ) 1/2. There is no bound in classical mechanics (~! 0). By cranking up frequencies, we can attain equilibrium as quickly as we desire.

38 SYK models and black holes Black holes have an entropy and a temperature, T H = ~c 3 /(8 GMk B ). Black holes relax to thermal equilibrium in a time ~/(k B T H )=8 GM/c 3. Black holes

39 <latexit sha1_base64="c/xovl74roynoxdul6vugijr6gk=">aaadb3icdvjbaxnbfn5tvnr4a/xbb0eotkkcku42tvoeodqhc1ko2jt00za7e5idojo7zszwxiw/0wd/hfjgq3q2ibwvemdhcc7f9823j86lsc4ivvoztwvxb9ycvvw/fefuvftz8w/2bfyyjrs8k5k5ijlfkttuouekhuqgmyol7sfhr6v+/gkakzk940y59hqbajeqndkq9ef9nipxkhqphcrxgcf1qmrqg5lxy0gzirzsdolankb2jsthlcbagkzynmwvbl/a4k5/e15blmbmad9qlzxwimofvietoo5vnbdbv+aalowuxayuraoybpxyccliiwofqlccqiesrlaocfrsg8caujpenmxywik+c/ydfm91zgoil9ajcznvm1o9nngmxmkalcyacxoigfeyqsh7d29bzqlkajco4hkicsnrlyu2wvcst9u2uwbf6q0vzzei1mlfx/tzc0gruxx0uieerwaldnodsskvzmq7c2eroisfbxrb/blvuzlxgvacl8zawzdixa9kpj/l6kcvfnpiz0m8pfqzhbzxnp3egj5rjyfbzujtds6qfzdkpqwdqzgmfxop/bdxfa/qhrzusnyrhc4lh5ppiabfxe26lzlaihdyranjrpbw4ckzjdu6wnpkku5ud11arg5p3seree/zbnwehpndf2ya/yd7y62qbhu3vlc+mfvq1nvspfuaxuiteuveprft7xrc/+l/8h/6v2a+1x7vntrgmjrjt3ceepei1vwnaugteq==</latexit> <latexit sha1_base64="c/xovl74roynoxdul6vugijr6gk=">aaadb3icdvjbaxnbfn5tvnr4a/xbb0eotkkcku42tvoeodqhc1ko2jt00za7e5idojo7zszwxiw/0wd/hfjgq3q2ibwvemdhcc7f9823j86lsc4ivvoztwvxb9ycvvw/fefuvftz8w/2bfyyjrs8k5k5ijlfkttuouekhuqgmyol7sfhr6v+/gkakzk940y59hqbajeqndkq9ef9nipxkhqphcrxgcf1qmrqg5lxy0gzirzsdolankb2jsthlcbagkzynmwvbl/a4k5/e15blmbmad9qlzxwimofvietoo5vnbdbv+aalowuxayuraoybpxyccliiwofqlccqiesrlaocfrsg8caujpenmxywik+c/ydfm91zgoil9ajcznvm1o9nngmxmkalcyacxoigfeyqsh7d29bzqlkajco4hkicsnrlyu2wvcst9u2uwbf6q0vzzei1mlfx/tzc0gruxx0uieerwaldnodsskvzmq7c2eroisfbxrb/blvuzlxgvacl8zawzdixa9kpj/l6kcvfnpiz0m8pfqzhbzxnp3egj5rjyfbzujtds6qfzdkpqwdqzgmfxop/bdxfa/qhrzusnyrhc4lh5ppiabfxe26lzlaihdyranjrpbw4ckzjdu6wnpkku5ud11arg5p3seree/zbnwehpndf2ya/yd7y62qbhu3vlc+mfvq1nvspfuaxuiteuveprft7xrc/+l/8h/6v2a+1x7vntrgmjrjt3ceepei1vwnaugteq==</latexit> <latexit sha1_base64="c/xovl74roynoxdul6vugijr6gk=">aaadb3icdvjbaxnbfn5tvnr4a/xbb0eotkkcku42tvoeodqhc1ko2jt00za7e5idojo7zszwxiw/0wd/hfjgq3q2ibwvemdhcc7f9823j86lsc4ivvoztwvxb9ycvvw/fefuvftz8w/2bfyyjrs8k5k5ijlfkttuouekhuqgmyol7sfhr6v+/gkakzk940y59hqbajeqndkq9ef9nipxkhqphcrxgcf1qmrqg5lxy0gzirzsdolankb2jsthlcbagkzynmwvbl/a4k5/e15blmbmad9qlzxwimofvietoo5vnbdbv+aalowuxayuraoybpxyccliiwofqlccqiesrlaocfrsg8caujpenmxywik+c/ydfm91zgoil9ajcznvm1o9nngmxmkalcyacxoigfeyqsh7d29bzqlkajco4hkicsnrlyu2wvcst9u2uwbf6q0vzzei1mlfx/tzc0gruxx0uieerwaldnodsskvzmq7c2eroisfbxrb/blvuzlxgvacl8zawzdixa9kpj/l6kcvfnpiz0m8pfqzhbzxnp3egj5rjyfbzujtds6qfzdkpqwdqzgmfxop/bdxfa/qhrzusnyrhc4lh5ppiabfxe26lzlaihdyranjrpbw4ckzjdu6wnpkku5ud11arg5p3seree/zbnwehpndf2ya/yd7y62qbhu3vlc+mfvq1nvspfuaxuiteuveprft7xrc/+l/8h/6v2a+1x7vntrgmjrjt3ceepei1vwnaugteq==</latexit> <latexit sha1_base64="c/xovl74roynoxdul6vugijr6gk=">aaadb3icdvjbaxnbfn5tvnr4a/xbb0eotkkcku42tvoeodqhc1ko2jt00za7e5idojo7zszwxiw/0wd/hfjgq3q2ibwvemdhcc7f9823j86lsc4ivvoztwvxb9ycvvw/fefuvftz8w/2bfyyjrs8k5k5ijlfkttuouekhuqgmyol7sfhr6v+/gkakzk940y59hqbajeqndkq9ef9nipxkhqphcrxgcf1qmrqg5lxy0gzirzsdolankb2jsthlcbagkzynmwvbl/a4k5/e15blmbmad9qlzxwimofvietoo5vnbdbv+aalowuxayuraoybpxyccliiwofqlccqiesrlaocfrsg8caujpenmxywik+c/ydfm91zgoil9ajcznvm1o9nngmxmkalcyacxoigfeyqsh7d29bzqlkajco4hkicsnrlyu2wvcst9u2uwbf6q0vzzei1mlfx/tzc0gruxx0uieerwaldnodsskvzmq7c2eroisfbxrb/blvuzlxgvacl8zawzdixa9kpj/l6kcvfnpiz0m8pfqzhbzxnp3egj5rjyfbzujtds6qfzdkpqwdqzgmfxop/bdxfa/qhrzusnyrhc4lh5ppiabfxe26lzlaihdyranjrpbw4ckzjdu6wnpkku5ud11arg5p3seree/zbnwehpndf2ya/yd7y62qbhu3vlc+mfvq1nvspfuaxuiteuveprft7xrc/+l/8h/6v2a+1x7vntrgmjrjt3ceepei1vwnaugteq==</latexit> SYK models and black holes Black holes have an entropy and a temperature, T H = ~c 3 /(8 GMk B ). Black holes relax to thermal equilibrium in a time ~/(k B T H )=8 GM/c 3. The entropy of black holes is proportional to their surface area: the SYK model (in 0+1 dimensions) maps to a black hole in 1+1 dimensions. Black holes

40 Black hole horizon SYK and black holes ~x Black holes with a near-horizon AdS2 geometry (described by quantum gravity in 1+1 spacetime dimensions) match the properties of the 0+1 dimensional SYK model in the previous slide: Ns0 is the Bekenstein-Hawking entropy S. Sachdev, PRL 105, (2010); A. Kitaev (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arxiv:

41 1. Disordered Hubbard model for Si:P 2. Solvable disordered models: (A) Random matrix model of a `quantum dot Metal with quasiparticles (B) SYK model of a `quantum dot Metal without quasiparticles 3. High temperature superconductivity and strange metals.

42 High temperature superconductors Cu O CuO 2 plane Described by a Hubbard model on the Cu sites YBa 2 Cu 3 O 6+x

43 SM FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

44 SM Strange Metal FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

45 <latexit sha1_base64="k7jx8efbma2lrujxy27hncmbd18=">aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==</latexit> Ubiquitous Strange, Bad, Incoherent, or Ultra-quantum metal has a resistivity,, which obeys T, and in some cases h/e 2 (in two dimensions), where h/e 2 is the quantum unit of resistance.

46 Ultra-quantum metals just got stranger B-linear magnetoresistance!? Ba-122 LSCO I. M. Hayes et. al., Nat. Phys P. Giraldo-Gallo et. al., arxiv:

47 Ultra-quantum metals just got stranger Scaling between B and T!? Ba-122 Ba-122 I. M. Hayes et. al., Nat. Phys. 2016

48 SYK building blocks for a strange metal SYK quantum dots of electrons with random hopping between them. t U H = X x X U ijkl,x c ix c jx c kx c lx i<j,k<l hxx 0 i i,j X X X X + t ij,xx 0c i,x c j,x 0 U ijkl 2 = 2U 2 N 3 Gaussian distrib d t ij,x,x 0 2 = t 2 0 /N. sm, one studies P Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119, (2017)

49 Low coherence scale E c t2 0 U (a) Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119, (2017)

50 Low coherence scale E c t2 0 U For E c <T <U,the resistivity,, and entropy density, s, are (a) h e 2 T E c, s = s 0 Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119, (2017)

51 Low coherence scale E c t2 0 U For T<E c,the resistivity,, and entropy density, s, are = h e 2 " c 1 + c 2 T E c 2 # (a) s s 0 T E c Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119, (2017)

52 Low coherence scale E c t2 0 U (a) But this model exhibits negligible magnetoresistivity! Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119, (2017)

53 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

54 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arxiv:

55 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! Large N solution (with or without microscopic disorder) yields a marginal Fermi liquid metal, with conductivities of the form: xx(b,t) = 1 B T L T xy(b,t) = B B T 2 H T where the scaling functions interpolate as L,H(b! 0) constant ; L,H(b!1) 1/b 2 This solution exhibits B/T scaling, but the magnetoresistance xx saturates for B T. <latexit sha1_base64="nvhrmartpt4gwjshxqwwoa/+row=">aaaedxicjvpfsyrheb7xtfq2vzr5pdikudekss5ucv6440ambb8kgfhzguntenpqzorr6r67a3sxyf/puz8i73kk6dlduymh6zcuurq+qvrqq7hu5dgmpy61ltuffb6y+qzzxzdfff3n2vq3fzhtwynn0ihjl2lhujhgcyzweffafews8g38/pfg//ygrsojhzwp8aoqmaaupgd/nfpvxufake5qc+du2ayh+1sxnffv44etw+icjixmnhvdqdiaj01jehjyxizot2fcqbihav4spazpoebxtawbouukkh+hqbzqz4yc0uikkkw3xiqotaqci6tgfq86uyw+vmzrlawvk2kncpqvylspx1pyot6b4tzsvtmeklvc1v1ppzxcdjbt6bqihslvltzhc4+llodt8c3qqojrqhtdi06eqgzi3g0wmcf/c7mtou4evhybo8vzs04kp5ym0krlhk0hpbltazrgbohuuvu8lkpmcsg5b7jjxj/unpjq4ku2j2xuifrjhruqfbez155fx0kzr+i6esnr+qwfdo9ipzxzypr343edeewpsg9zcvftx3fombgd7vhushvxzw7exghng42wki1fr00t0osnsrmztct/f1xz36lrzushimoyghz7o7wnsncfho693anvhid7ywpsvxwc/brcvxfozkawogejtb+ixmiq8bqvsjh32q9lvqqfzzikpwwvw1li9ylds29quac7qme7myuf/esyqya1mmh2+jcifovzkyl2pxsk3h99m16e8f1wnb5c1atlilhleak0usagmkxz22frspp4q0jrts5b5silyuvaizn0u6ozzuuiccy3lpg89c+kp56foxlg08b5ohfyc38fbbwdl4hadz4h3wdbqt/yd46ck+asoa9k60prn+wv5dxlv9sv2t325vxra2kr813w6lr3/wu613d1</latexit> Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

56 Infecting a Fermi liquid and making it SYK Need mesoscopic disorder to obtain linear-in-b magnetoresistance Current path length increases linearly with B at large B due to local Hall effect, which causes the global resistance to increase linearly with B at large B. Exact numerical solution of charge-transport equations in a random-resistor network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))

57 Infecting a Fermi liquid and making it SYK n b /n a =0.8 b/ a =0.8 a =0.1k B T t/100 (B =0.0025) Scaling between B and T (T = t/100) ~ 50 T (a = 3.82 A) Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

58 <latexit sha1_base64="8ddjrrjnv7czdq/lbzn5isozyp8=">aaaegnicfvnlb9qwee53eztl0rbeicuicqli3vv2qz7epruvuo9f9cv1v5xjtbkrjh3zttml9j9w4gq/ghviyoufwx9gnn22gablksyznu/75ugokmk6mpw+02rfuhnr9uydzt179x/mzs88plc6nbz3uzbahexmohqk951weo8kgyypjb5gp9s+fnigxgqt9ty4wfhouiuswzkj18lc6/ewwlsowjjmxvu86ay91dnlhaur8kiiuep3uc4lrva5yhwmemk03igiltbqwif1zchobhlmhbqomseziawsiwk3hmgmkje7o5ufocblcctvoujnovwrlckuzrhxr9gqhlhybwi0vyky6gwzbbykddbveue1c/ocengocbfqhowrgaso0ajuobuzx7pjcfekj7j/q+9sx+zuh5dros/coeimzonheorebur175rrxew81vgjl8gsno2hs/f8cm+5qrlpk4vjtay43/qgpykgmmkwj3hm0ar+ffjzjjucbkm5awykklv2e16df1rvtncskponelfljcv+6kh0wjjegjquopo/tmq6sxkutubkfjhshatrg/uv8mzgbxwnji2vsb+g0o+fzvkmpmf3zp7hmna89jrcmmup+2hhrjx1rndpt6q0wdb+yli8jloxho2obvb3ap6rhwql7isaymq8v2bulld2ned0k0rn9s+yd/4tdly6zgnuc1wujsy4iupkcu6dfww0a0mtl2mygk0zaqwemb8o9gq6q4v0nltqsnro8nxviiaeekuo35/ljsc/jynbrx/2+q8hi1svp52adz4et4olob+sb1vbtrab7ae89a71ofwx9an9vv25/ax9dxk1ntpnert8dtrffglipl0u</latexit> <latexit sha1_base64="8ddjrrjnv7czdq/lbzn5isozyp8=">aaaegnicfvnlb9qwee53eztl0rbeicuicqli3vv2qz7epruvuo9f9cv1v5xjtbkrjh3zttml9j9w4gq/ghviyoufwx9gnn22gablksyznu/75ugokmk6mpw+02rfuhnr9uydzt179x/mzs88plc6nbz3uzbahexmohqk951weo8kgyypjb5gp9s+fnigxgqt9ty4wfhouiuswzkj18lc6/ewwlsowjjmxvu86ay91dnlhaur8kiiuep3uc4lrva5yhwmemk03igiltbqwif1zchobhlmhbqomseziawsiwk3hmgmkje7o5ufocblcctvoujnovwrlckuzrhxr9gqhlhybwi0vyky6gwzbbykddbveue1c/ocengocbfqhowrgaso0ajuobuzx7pjcfekj7j/q+9sx+zuh5dros/coeimzonheorebur175rrxew81vgjl8gsno2hs/f8cm+5qrlpk4vjtay43/qgpykgmmkwj3hm0ar+ffjzjjucbkm5awykklv2e16df1rvtncskponelfljcv+6kh0wjjegjquopo/tmq6sxkutubkfjhshatrg/uv8mzgbxwnji2vsb+g0o+fzvkmpmf3zp7hmna89jrcmmup+2hhrjx1rndpt6q0wdb+yli8jloxho2obvb3ap6rhwql7isaymq8v2bulld2ned0k0rn9s+yd/4tdly6zgnuc1wujsy4iupkcu6dfww0a0mtl2mygk0zaqwemb8o9gq6q4v0nltqsnro8nxviiaeekuo35/ljsc/jynbrx/2+q8hi1svp52adz4et4olob+sb1vbtrab7ae89a71ofwx9an9vv25/ax9dxk1ntpnert8dtrffglipl0u</latexit> <latexit sha1_base64="8ddjrrjnv7czdq/lbzn5isozyp8=">aaaegnicfvnlb9qwee53eztl0rbeicuicqli3vv2qz7epruvuo9f9cv1v5xjtbkrjh3zttml9j9w4gq/ghviyoufwx9gnn22gablksyznu/75ugokmk6mpw+02rfuhnr9uydzt179x/mzs88plc6nbz3uzbahexmohqk951weo8kgyypjb5gp9s+fnigxgqt9ty4wfhouiuswzkj18lc6/ewwlsowjjmxvu86ay91dnlhaur8kiiuep3uc4lrva5yhwmemk03igiltbqwif1zchobhlmhbqomseziawsiwk3hmgmkje7o5ufocblcctvoujnovwrlckuzrhxr9gqhlhybwi0vyky6gwzbbykddbveue1c/ocengocbfqhowrgaso0ajuobuzx7pjcfekj7j/q+9sx+zuh5dros/coeimzonheorebur175rrxew81vgjl8gsno2hs/f8cm+5qrlpk4vjtay43/qgpykgmmkwj3hm0ar+ffjzjjucbkm5awykklv2e16df1rvtncskponelfljcv+6kh0wjjegjquopo/tmq6sxkutubkfjhshatrg/uv8mzgbxwnji2vsb+g0o+fzvkmpmf3zp7hmna89jrcmmup+2hhrjx1rndpt6q0wdb+yli8jloxho2obvb3ap6rhwql7isaymq8v2bulld2ned0k0rn9s+yd/4tdly6zgnuc1wujsy4iupkcu6dfww0a0mtl2mygk0zaqwemb8o9gq6q4v0nltqsnro8nxviiaeekuo35/ljsc/jynbrx/2+q8hi1svp52adz4et4olob+sb1vbtrab7ae89a71ofwx9an9vv25/ax9dxk1ntpnert8dtrffglipl0u</latexit> <latexit sha1_base64="8ddjrrjnv7czdq/lbzn5isozyp8=">aaaegnicfvnlb9qwee53eztl0rbeicuicqli3vv2qz7epruvuo9f9cv1v5xjtbkrjh3zttml9j9w4gq/ghviyoufwx9gnn22gablksyznu/75ugokmk6mpw+02rfuhnr9uydzt179x/mzs88plc6nbz3uzbahexmohqk951weo8kgyypjb5gp9s+fnigxgqt9ty4wfhouiuswzkj18lc6/ewwlsowjjmxvu86ay91dnlhaur8kiiuep3uc4lrva5yhwmemk03igiltbqwif1zchobhlmhbqomseziawsiwk3hmgmkje7o5ufocblcctvoujnovwrlckuzrhxr9gqhlhybwi0vyky6gwzbbykddbveue1c/ocengocbfqhowrgaso0ajuobuzx7pjcfekj7j/q+9sx+zuh5dros/coeimzonheorebur175rrxew81vgjl8gsno2hs/f8cm+5qrlpk4vjtay43/qgpykgmmkwj3hm0ar+ffjzjjucbkm5awykklv2e16df1rvtncskponelfljcv+6kh0wjjegjquopo/tmq6sxkutubkfjhshatrg/uv8mzgbxwnji2vsb+g0o+fzvkmpmf3zp7hmna89jrcmmup+2hhrjx1rndpt6q0wdb+yli8jloxho2obvb3ap6rhwql7isaymq8v2bulld2ned0k0rn9s+yd/4tdly6zgnuc1wujsy4iupkcu6dfww0a0mtl2mygk0zaqwemb8o9gq6q4v0nltqsnro8nxviiaeekuo35/ljsc/jynbrx/2+q8hi1svp52adz4et4olob+sb1vbtrab7ae89a71ofwx9an9vv25/ax9dxk1ntpnert8dtrffglipl0u</latexit> This simple two-component model describes a new state of matter which is realized by electrons in the presence of strong interactions and disorder. Can such a model be realized as a fixed-point of a generic theory of strongly-interacting electrons in the presence of disorder? Can we start from a single-band Hubbard model with (or without) disorder, and end up with such two-band fixed point, with emergent local conservation laws? Experiments on Si:P indicate an a rmative answer.

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

Quantum matter without quasiparticles

Quantum matter without quasiparticles HARVARD Quantum matter without quasiparticles Frontiers in Many Body Physics: Memorial for Lev Petrovich Gor kov National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 13, 2018 Talk

More information

From the SYK model to a theory of the strange metal

From the SYK model to a theory of the strange metal HARVARD From the SYK model to a theory of the strange metal International Centre for Theoretical Sciences, Bengaluru Subir Sachdev December 8, 2017 Talk online: sachdev.physics.harvard.edu Magnetotransport

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Chaos and Order: from Strongly Correlated Systems to Black Holes, Kavli Institute for Theoretical Physics University

More information

Strange metals and black holes

Strange metals and black holes HARVARD Strange metals and black holes Homi Bhabha Memorial Public Lecture Indian Institute of Science Education and Research, Pune November 14, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Equilibrium and non-equilibrium dynamics of SYK models

Equilibrium and non-equilibrium dynamics of SYK models Equilibrium and non-equilibrium dynamics of SYK models Strongly interacting conformal field theory in condensed matter physics, Institute for Advanced Study, Tsinghua University, Beijing, June 25-27, 207

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Superconductor, levitated by an unseen magnet, in which countless

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Sorry, Einstein. Quantum Study Suggests Spooky Action Is Real. By JOHN MARKOFF OCT. 21, 2015 In a landmark

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

arxiv: v1 [cond-mat.str-el] 16 Mar 2016

arxiv: v1 [cond-mat.str-el] 16 Mar 2016 Numerical study of fermion and boson models with infinite-range random interactions Wenbo Fu and Subir Sachdev, 2 Department of Physics, Harvard University, arxiv:63.5246v [cond-mat.str-el] 6 Mar 26 Cambridge,

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Emergence of Causality Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Bounds on quantum dynamics Quantum dynamics is a large subject, but one natural anchor point is to ask

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Building a theory of transport for strange metals. Andrew Lucas

Building a theory of transport for strange metals. Andrew Lucas Building a theory of transport for strange metals Andrew Lucas Stanford Physics 290K Seminar, UC Berkeley February 13, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev Harvard Physics

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Topology, quantum entanglement, and criticality in the high temperature superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation,

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Dynamical thermalization in isolated quantum dots and black holes

Dynamical thermalization in isolated quantum dots and black holes Dynamical thermalization in isolated quantum dots and black holes Dima Shepelyansky (CNRS, Toulouse) www.quantware.ups-tlse.fr/dima with A.R.Kolovsky (RAS Krasnoyarsk) EPL 117, 10003 (2017) Duality relation

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Eternal traversable worm hole in 2D

Eternal traversable worm hole in 2D Eternal traversable worm hole in 2D Xiao-Liang Qi Stanford University Strings2018, OIST, 6/27/2018 Ref: J. Maldacena & XLQ, arxiv: 1804.00491 Goal: dual Coupled SYK Global AdS2 Outline: 1. Overview of

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Fermi liquid theory. Abstract

Fermi liquid theory. Abstract Fermi liquid theory Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Landau-Fermi liquid theory

Landau-Fermi liquid theory Landau-Fermi liquid theory Shreyas Patankar Chennai Mathematical Institute Abstract We study the basic properties of Landau s theory of a system of interacting fermions (a Fermi liquid). The main feature

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information