2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

Size: px
Start display at page:

Download "2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview"

Transcription

1 Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University 10:10-11:10 Abolhassan Vaezi Cornell University 11:10-11:30 Break 11:30-12:30 Eugene Demler Harvard University 12:30-1:30 Lunch 1:30-2:30 Poster Session Group I 2:30-3:30 Abolhassan Vaezi Cornell University 3:30-3:45 Break 3:45-4:45 Bryan Clark University Illinois Urbana Champaign Wednesday 8/5 9:00-10:00 Max Metlitski Perimeter Institute for Theoretical Physics 10:00-10:30 Break 10:30-11:30 Max Metlitski Perimeter Institute for Theoretical Physics 11:30-12:30 Kai Sun University of Michigan 12:30-1:30 Lunch 1:30-2:30 Poster Session Group II 2:30-3:30 Kristjan Haule Rutgers University 3:30-3:45 Break 3:45-4:45 Kristjan Haule Rutgers University Tuesday 8/4 9:00-10:00 Andrei Bernevig Princeton University 10:00-11:00 Subir Sachdev Harvard University 11:00-11:30 Break 11:30-12:30 Subir Sachdev Harvard University 12:30-1:30 Lunch 1:30-2:30 Poster Session Group I 2:30-3:30 Andrei Bernevig Princeton University 3:30-3:45 Break 3:45-4:45 Bryan Clark University Illinois Urbana Champaign Thursday 8/6 9:00-10:00 Kai Sun University of Michigan 10:00-11:00 Garnet Chan Princeton University 11:00-11:30 Break 11:30-12:30 Garnet Chan Princeton University 12:30-1:30 Lunch 1:30-2:30 Poster Session Group II 2:30-3:30 Maissam Barkeshli Microsoft Research Station Q 3:30-3:45 Break 3:45-4:45 Maissam Barkeshli Microsoft Research Station Q 4:45-5:00 Wrap Up - Awards

2

3 MONDAY 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Non equilibrium dynamics of many-body systems In these lectures I will discuss several problems of non-equilibrium dynamics of many-body systems in response to sudden localized perturbations. In the first part I will focus on fermions and review Anderson orthogonality catastrophe. I will discuss two types of current experiments in which this type of dynamics is important: Radio-Frequency spectroscopy of ultracold Fermi atoms and resonant soft Xray scattering in high temperature superconductors. In the second lecture I will discuss polarons, i.e. mobile impurities coupled to bosonic baths such as electrons coupled to phonons or magnetic excitations. I will review non-perturbative techniques for calculating properties of polarons including renormalization group approach and variational wavefunctions. As a concrete example I will discuss implications of these results to experiments with impurity atoms in Bose condensates. 10:10-11:10 Abolhassan Vaezi Part I: Universal Quantum Computation from Quantum Hall States In the first talk, I will present a brief introduction to fractional quantum Hall physics and its relation to quantum computation. First, I will review the topological properties of quantum Hall states, their classifications and their low energy effective descriptions. Next, I will describe anyon excitations,fusion rules, and braid statistics. Finally, I will comment on how anyons can be utilized to store and process quantum information. 11:10-11:30 Break

4 11:30-12:30 Eugene Demler Non equilibrium dynamics of many-body systems In these lectures I will discuss several problems of non-equilibrium dynamics of many-body systems in response to sudden localized perturbations. In the first part I will focus on fermions and review Anderson orthogonality catastrophe. I will discuss two types of current experiments in which this type of dynamics is important: Radio-Frequency spectroscopy of ultracold Fermi atoms and resonant soft Xray scattering in high temperature superconductors. In the second lecture I will discuss polarons, i.e. mobile impurities coupled to bosonic baths such as electrons coupled to phonons or magnetic excitations. I will review non-perturbative techniques for calculating properties of polarons including renormalization group approach and variational wavefunctions. As a concrete example I will discuss implications of these results to experiments with impurity atoms in Bose condensates. 12:30-1:30 Lunch 1:30-2:30 Poster Session Group I

5 2:30-3:30 Abolhassan Vaezi Part II: Universal Quantum Computation from Quantum Hall States In the second talk, I will focus on two recently proposed quantum Hall systems that are capable of performing quantum computation. First, I will consider parafermion zero modes, their topological properties and how to realize them. Secondly, I will talk about Fibonacci anyons and why they are capable of universal quantum computation. Finally, I will show that these exotic anyons can be realized in bilayer fractional quantum Hall systems with 2/3 filling fraction. 3:30-3:45 Break 3:45-4:45 Bryan Clark Talk I: A variational approach to strongly correlated systems. Strongly correlated systems are often hard to treat analytically. In this talk, I will describe how variational techniques give a non-perturbative approach to accessing quantum many-body physics. The talk will focus on both the important variational forms as well as the numerical methods, such as quantum Monte Carlo and DMRG, used to optimize them. Physical examples may include spin liquids, many-body localization, and fractional chern insulators.

6 TUESDAY 8/4 9:00-10:00 Andrei Bernevig I will present theoretical and experimental advances in the study and detection of Majorana fermions. I will show that a new majorana fermion platform can give rise to basically self tuned topological superconductors. I will show experimental data that confirms these advances and show that the new platform can be used to look at the interacting classification of topological superconductors with a special time reversal symmetry. I will also show robust braiding schemes as well as calculations showing the possibility of realizing two dimensional superconductors in the same platform. 10:00-11:00 Subir Sachdev Part I: The remarkable normal states of the high temperature superconductors I will give an overview of the present understanding and open questions on the two metallic states of the cuprate superconductors, the pseudogap and the strange metal. Topics to be covered 1. A quick overview of Fermi liquids 2. Introduction to spin liquids and topological order 3. The pseudogap metal as the co-existence of Fermi liquids and topological order 4. A mean-field model of a strange metal 5. More realistic models of strange metals.. 11:00-11:30 Break

7 11:30-12:30 Subir Sachdev Part II: The remarkable normal states of the high temperature superconductors 12:30-1:30 Lunch 1:30-2:30 Poster Session Group I 2:30-3:30 Andrei Bernevig I will present theoretical and experimental advances in the study and detection of Majorana fermions. I will show that a new majorana fermion platform can give rise to basically self tuned topological superconductors. I will show experimental data that confirms these advances and show that the new platform can be used to look at the interacting classification of topological superconductors with a special time reversal symmetry. I will also show robust braiding schemes as well as calculations showing the possibility of realizing two dimensional superconductors in the same platform. 3:30-3:45 Break 3:45-4:45 Bryan Clark Talk II: Beyond explicitly representable variational ansatz While the variational method is powerful, it is often restricted by the ingenuity of your variational manifold of wave-functions. In this talk, we will discuss quantum Monte Carlo methods, such as fixed-node quantum Monte Carlo and full configuration interaction quantum Monte Carlo which go beyond these ansatz. We will see that these many-body techniques allow us to accurately capture physics from both model as well as ab-initio systems.

8 WEDNESDAY 8/5 9:00-10:00 Max Metlitski Part I: Interaction effects on 3d topological insulators and superconductors I will discuss recent progress in understanding the effect of interactions on topological insulators (TIs) and topological superconductors (TSCs) in 3d. There are three qualitatively new effects that interactions bring: 1. Existence of new bulk TI and TSC phases absent in the non-interacting classification. 2. Certain non-interacting bulk TSC phases become continuously connected in the presence of interactions. 3. Existence of novel surface states. Unlike the surface states of non-interacting TIs and TSCs, which are always gapless or symmetry broken, these novel surface states are gapped and symmetry preserving at the cost of supporting fractional excitations. Suggested reading: T. Senthil, "Symmetry Protected Topological phases of Quantu Matter," arxiv: (and references therein). 10:00-10:30 Break 10:30-11:30 Max Metlitski Part II: Interaction effects on 3d topological insulators and superconductors 11:30-12:30 Kai Sun Part I: Topological States in Strongly Correlated Systems This lecture addresses the interplay between topological states of matter and strongly correlated materials, which are two of the major research areas in modern condensed matter physics. The lecture contains four parts. The first part reviews basic ideas about topology and topological states of matter, and the second part discusses basic concepts in strongly-correlated materials, using heavy fermion compounds as an example. The third part focuses on experimental techniques and summarizes key ingredients to identify

9 12:30-1:30 Lunch 2015 Summer School on a strongly-correlated topological material as well as its experimental signature. Finally, in the last part, we will review possible new phenomena that might arise in strongly correlated topological states. 1:30-2:30 Poster Session Group II 2:30-3:30 Kristjan Haule Part I: Understanding Correlated Electron Materials: The Functional Dynamical Mean Field Approach Materials with strong electronic correlations have long resisted abinitio modeling due to their complexity arising from non-perturbative strength of the interaction. The Dynamical Mean Field Theory in combination with the Density Functional Theory has recently changed this position, and enabled detailed modeling of the electronic structure of many complex materials, such as the heavy fermions, transition metal oxides, iron superconductors, etc. I will give basic foundation of this theory from the functional point of view, and an overview on the recent advances in this field, such as the exact double-counting, and stationary implementation of the total free energy, which opens the door for structural optimizations at finite temperatures. 3:30-3:45 Break 3:45-4:45 Kristjan Haule Part II: Understanding Correlated Electron Materials: The Functional Dynamical Mean Field Approach

10 THURSDAY 8/6 9:00-10:00 Kai Sun Part II: Topological States in Strongly Correlated Systems 10:00-11:00 Garnet Chan Matrix product states, DMRG, and tensor networks I will give a general introduction to the subject of tensor networks, using matrix product states as the introductory example, and developing towards tensor networks such as PEPS and MERA. 11:00-11:30 Break 11:30-12:30 Garnet Chan Numerical aspects of DMRG, quantum embedding, and the realistic description of strongly correlated materials I will discuss numerical aspects of DMRG calculations, the extension to ab-initio Hamiltonians, and its combination with quantum embedding techniques such as density matrix embedding theory to give a description of realistic correlated materials. 12:30-1:30 Lunch

11 1:30-2:30 Poster Session Group II 2:30-3:30 Maissam Barkeshli Part I: Boundaries, defects, and exotic zero modes in topological phases of matter I will describe recent progress over the last few years regarding the study of various extrinsic line and point defects in 2+1 D topological phases of matter. The line defects include the possibility of topologically distinct boundaries of a given topological phase of matter, or of distinct interfaces between different topological states. These line defects couple to the topological properties in non-trivial ways, and allow the possibility of (1) directly coupling electrons from an external system to fractionalized excitations of a topological state, and (2) creating high genus surfaces in an experimentally realizable manner. The extrinsic point-like defects localize exotic zero modes and give rise to topologically protected degeneracies, giving them some of the properties of non-abelian quasiparticles, even though they are not elementary excitations of the phase. I will describe various physical systems, such as fractional quantum Hall states, where such defects can be created. 3:30-3:45 Break 3:45-4:45 Maissam Barkeshli Part II: Boundaries, defects, and exotic zero modes in topological phases of matter 4:45-5:00 Awards & Wrap Up

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Modern Aspects of Superconductivity

Modern Aspects of Superconductivity 2014 Boulder Summer School Modern Aspects of Superconductivity June 30-July 25, 2014 Detailed schedule All Lectures are in Duane Physics Room G125 Public Lectures are in Duane Physics Room G1B20 Sunday,

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Exploring new aspects of

Exploring new aspects of Exploring new aspects of orthogonality catastrophe Eugene Demler Harvard University Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE, MURI ATOMTRONICS, MURI POLAR MOLECULES Outline Introduction: Orthogonality

More information

Program. 09:00 09:45 Tilman Esslinger A cold grip on topology: the Haldane model

Program. 09:00 09:45 Tilman Esslinger A cold grip on topology: the Haldane model Sunday, 8 May 2016 17:00 21:00 Registration 18:00 DINNER / Informal get together Monday, 9 May 2016 08:50 09:00 Axel Pelster Opening and Welcome Session 1: Topology 09:00 09:45 Tilman Esslinger A cold

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Interacting Electrons and Quantum Magnetism

Interacting Electrons and Quantum Magnetism Monday, June 20: Butler Auditorium, Ne'eman Inst., 9:00-9:30 Opening Words Session 1: Quantum Matter 1 9:30-10:00 Steve Kivelson Stanford 10:00-10:30 Dan Arovas U.C. San Diego What I know about the solution

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Maissam Barkeshli. Phone USA. Citizenship

Maissam Barkeshli.  Phone USA. Citizenship Maissam Barkeshli Email mbarkeshli@gmail.com Phone +1 408 621 2556 Citizenship USA Degrees and Positions Held University of Maryland, College Park College Park, Maryland, USA Assistant Professor, Department

More information

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Outline 1. Introduction: phase transitions and order. 2. The Landau symmetry

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Chiral Majorana fermion from quantum anomalous Hall plateau transition Chiral Majorana fermion from quantum anomalous Hall plateau transition Phys. Rev. B, 2015 王靖复旦大学物理系 wjingphys@fudan.edu.cn Science, 2017 1 Acknowledgements Stanford Biao Lian Quan Zhou Xiao-Liang Qi Shou-Cheng

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. B92 (2015) 235105 Huajia Wang University of Illinois Urbana Champaign Introduction/Motivation

More information

5th Friday 6th Saturday 7th Sunday 8th Monday. 9:00-9:05 Sishen Xie Chairman Xincheng Xie Fuchun Zhang Thomas Palstra 9:05-9:40 Ruirui Du

5th Friday 6th Saturday 7th Sunday 8th Monday. 9:00-9:05 Sishen Xie Chairman Xincheng Xie Fuchun Zhang Thomas Palstra 9:05-9:40 Ruirui Du Schedule 5th Friday 6th Saturday 7th Sunday 8th Monday Chairman Wei Bao 9:00-9:05 Sishen Xie Chairman Xincheng Xie Fuchun Zhang Thomas Palstra 9:05-9:40 Ruirui Du 9:00-9:35 Wei Bao 9:00-9:35 Jian Wang

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian

Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian Microsoft Station Q Aspen Winter Conference, 3/21/2018 Acknowledgements Collaborators: Zhen Bi (MIT) Alex Thomson (Harvard)

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Workshop on Correlations and Coherence in Quantum Systems

Workshop on Correlations and Coherence in Quantum Systems Workshop on Correlations and Coherence in Quantum Systems Évora, Portugal, 8-12 October 2012 Scientific Program Monday, 8 October 09:00 Welcome 09:10 9:40 Invited: Hans-Peter Büchler Anomalous behavior

More information

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Cornell University, August 2015 Outline of part II Ex. 4: Laughlin fracaonal quantum Hall states Ex. 5:

More information

arxiv: v1 [cond-mat.str-el] 6 May 2010

arxiv: v1 [cond-mat.str-el] 6 May 2010 MIT-CTP/4147 Correlated Topological Insulators and the Fractional Magnetoelectric Effect B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil Department of Physics, Massachusetts Institute of Technology,

More information

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Haldane phase and magnetic end-states in 1D topological Kondo insulators Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Workshop on Next Generation Quantum Materials ICTP-SAIFR,

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

2013 Boulder Summer School Disorder and dynamics in quantum systems. Detailed schedule All Lectures are in Duane Physics Room G125.

2013 Boulder Summer School Disorder and dynamics in quantum systems. Detailed schedule All Lectures are in Duane Physics Room G125. 2013 Boulder Summer School Disorder and dynamics in quantum systems Detailed schedule All Lectures are in Duane Physics Room G125 Sunday, July 7 th 6:30pm 8:30pm Registration mixer with appetizers. Beer/wine

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

REFLECTIONS ON THE PAST, PRESENT AND FUTURE OF CONDENSED MATTER PHYSICS. A. J. Leggett

REFLECTIONS ON THE PAST, PRESENT AND FUTURE OF CONDENSED MATTER PHYSICS. A. J. Leggett REFLECTIONS ON THE PAST, PRESENT AND FUTURE OF CONDENSED MATTER PHYSICS A. J. Leggett Department of Physics University of Illinois at Urbana-Champaign American Physical Society March Meeting March 2016

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

Criticality in topologically ordered systems: a case study

Criticality in topologically ordered systems: a case study Criticality in topologically ordered systems: a case study Fiona Burnell Schulz & FJB 16 FJB 17? Phases and phase transitions ~ 194 s: Landau theory (Liquids vs crystals; magnets; etc.) Local order parameter

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Quantum Computing: the Majorana Fermion Solution. By: Ryan Sinclair. Physics 642 4/28/2016

Quantum Computing: the Majorana Fermion Solution. By: Ryan Sinclair. Physics 642 4/28/2016 Quantum Computing: the Majorana Fermion Solution By: Ryan Sinclair Physics 642 4/28/2016 Quantum Computation: The Majorana Fermion Solution Since the introduction of the Torpedo Data Computer during World

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms SMR 1666-2 SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 11-22 July 2005 Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms Presented by: Eugene

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information