Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University

Size: px
Start display at page:

Download "Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University"

Transcription

1 Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Cornell University, August 2015

2 Outline of part II Ex. 4: Laughlin fracaonal quantum Hall states Ex. 5: FracAonal Topological Superconductors & parafermion zero modes Ex. 6: Bilayer Fibonacci state at v=2/3 filling

3 Example 4 FracAonal Quantum Hall Effect (Abelian v=1/3 Laughlin state)

4 FracAonal Quantum Hall Effect = N e N = 1 3 N = Non- InteracAng picture: 0(e) = BA 2 e ~c GSD n.i. = Ne g LL e e = e 3N N e InteracAng picture: GSD n.i. =finite GSD depends on the topology of space, e.g. on sphere=1, and on torus=3

5 FracAonal Quantum Hall Effect Filling fracaon = N e N e e e e QuanAzed Hall conductance Protected gapless edge state Ground- state degeneracy (on torus) FracAonal charge Anyon staasacs =1/3 E

6 FracAonal Quantum Hall Effect e = e/3 e/3 e/3 c i = f 1,i f 2,i f 3,i q = N q N (q) N (q) = 0(q) = BA 2 q ~c N (e/3) =1/3N (e) N fi = N e fi =3 e =1 f i fully occupies its LLL à w.f. = Slater determinant fi =1: f i = Y i<j(z i z j )e e 3 B z i 2 4 z = x + iy e = f1 f2 f3 = Y i<j (z i z j ) 3 e e B z i 2 4 Laughlin w.f. (On infinite plane)

7 FracAonal Hall conductance IQH : xy(q) =n q2 xy(e) = xy (f 1 )+ xy (f 2 )+ xy (f 3 )= 1 3 h xy(f i )= (e/3)2 h e 2 h

8 B = r A FQH states on Torus A x = By, A y =0 E n,m = ~! c (n +1/2) n=0 m (x, y) =e i ( 2 Lx m )x e ( y 2 L x l 2 B 2 2 m Lx )2 /2 m = 2 m = 1 l B =1 m =0 m =1 m =2 y

9 1/3 Laughlin state Ideal Hamiltonian for 1/3 Laughlin state V 1 = X i X r>s V 1 U r,s c i+s c i+r c i+r+sc i Laughlin 1/3 =0 U r,s =(r 2 s 2 )e 2 2 (r 2 +s 2 )/L 2 x Haldane, 1983 Thin torus limit: L x l B : V 1 ' X i (U 1,0 n i n i+1 + U 2,0 n i n i+2 ) Bergholtz and Karlhede, JSM (2006);

10 1/3 FQH: Thin torus limit 2 L x l 2 B 2 l B =1 Effec2ve Hamiltonian: L x L y : V 1 ' X (U 1,0 n i n i+1 + U 2,0 n i n i+2 ) i Degenerate ground- states (CDW pa]erns) gi 1 = i [100] gi 2 = i [010] gi 3 = i [001] y Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

11 ExcitaAons: domain- walls [ ]! [ ] Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

12 ExcitaAons: domain- walls [ ]! [ ] { Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

13 ExcitaAons: domain- walls [ ]! [ ] { Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

14 ExcitaAons: domain- walls [ ]! [ ] { Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

15 ExcitaAons: domain- walls [ ]! [ ] { q = e/3 Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

16 ExcitaAons: domain- walls [ ]! [ ] { q = e/3 Energy cost = U 2 à bulk gap = U 2 Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

17 ExcitaAons: domain- walls [ ] =V 1 (j)v 1(i) gi 1! i! j [ ] =V 2 (i)... gi 1! q =2e/3 q = ke/3 : gi a! gi a+k%3 Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009), Bernevig & Haldan, PRLe (2008)

18 FracAonalizaAon e e/3 e/3 e/3 (r) e Charge distribuaon t =0 r (r) t 1 E g e/3 e/3 e/3 d l B r

19 FracAonal charge and staasacs 3 flux à 1 electron (q=e) 1 flux à anyon with q=e/3 2 flux à anyon with q=2e/3 e/3 e e e e 2e/3 Aharanov- Bohom Effect: taking charge q around flux (full braid):! e i AB AB = q

20 Exchanging 2 anyons of & flux (half braid) : = 2 n e Topological spin q = ne m charge n =2 q 2 = n2 m q q Similarly: Rota2ng an anyons of q = ne charge & flux one around m = 2 n itself amounts to e n = n 2 m s n = n 2 = n2 2m Topological spin

21 Example 5 FracAonal Topological Superconductors with fracaonalized Majorana (parafermion) zero modes

22 Frac2onal Topological Superconductor (FTSC) FTSC= FQH + SC hc 2e v=1/m FQH Superconductor a. Associated to every TWO voraces à Zero energy level (E=0) b. 2 electrons = 2m anyons of charge e/m c. Pauli exclusion: E=0 level can be occupied by 0,1,2,, (2m- 1) anyons d. E=0 level defines a 2m- dimensional Hilbert space e. GSD increases by 2m with pinseraon of two voraces f. Each vortex contributes 2m to GSD. g. Quantum dimension of vortex: d v = p 2m Vaezi, 2012 hc 2e

23 Frac2onal Topological Superconductor (FTSC) hc 2e hc 2e FTSC= FQH + SC v=1/m FQH Superconductor v =1/m Vortex carries Z 2m Parafermion (a.k.a fracaonalized Majorana) zero mode with d v = p 2m quantum dimension Vaezi, 2012 m=1 case can be solved exactly and it is known that IQH+SC à TSC (p+ip) Qi, Hughes, Zhang, 2010

24 Domain walls: Parafermion zero modes SC v=1/m FQH FM SC v=1/m FQH = parafermion zero mode (a.k.a frac2onalized Majorana zero mode) Linder et al, (2012); Clark et al (2012), Cheng (2012) Barkeshli, Qi (2012); Barkeshli et al (2012)

25 Parafermions (fracaonalized Majorana fermions) 2m 1 = 2 2m =1 i = 2m 1 i 1 2 = e i /m 2 1 e i 2m 1 2 qi = e i q m qi qi = 1q 0i Vaezi, PRB, 2013

26 Braid staasacs ni : =1+V 1 + V V 2m 1 Contains n anyons (V n ) s n = n2 2m Exchanging voraces CCW = rotaang zero mode by 2 RotaAng V 1 around itself CCW one round à RotaAng V 2 around itself CCW one round à RotaAng V n around itself CCW one round à e i /m e i4 /m e in2 /m phase change phase change phase change B 12 ni = e in2 /m ni Vaezi, PRB, 2013

27 Braid StaAsAcs Type I! Exchange! time! n 12 n 34 B 1,2 n 12,n 34 i = e i n B 3,4 n 12,n 34 i = e i n 2 12 m 2 34 m n12,n 34 i n12,n 34 i

28 Braid StaAsAcs Type II! Exchange! time! n 12 n 34 B 2,3 n 12,n 34 i =? n (1) Basis transformaaon to diagonalize (equivalently ) (2) transform back to the original basis

29 Braid StaAsAcs Type II! Exchange! time! B 2,3 = S US n 12 n 34 Uq p = p,q e i q2 m S p q = eiqp/m p 2m B 2,3 n 12,n 34 i = Maximally entangled state

30 Example 6 v=2/3 Bilayer Fibonacci FQH state Emergence of Fibonacci anyons & Universal quantum computaaon

31 Acknowledgement Maissam Barkeshli Microsoe StaAon Q Eun- Ah Kim Cornell Zhao Liu Princeton Kyungmin Lee Cornell

32 Outline for Example 6 FQH states at 2/3: Fibonacci phase Thin torus limit Parton construcaon Numerical results Experimental signatures

33 Experimental setup of perturbed 1/3+1/3 FQH a) Layer index 1/3 FQH B? 1/3 FQH Suen et al, PRL, 1994 Monaharan et al, PRL, 1996 B k Charge distribuaon of 2DEG in a wide quantum well b) Spin index c) Valley index: graphene 1 3 (")+1 3 (#) FQH Du et al, Nature, 2009 BoloAn et al, Nature, 2009 Eisenstein et al, PRB, 1990

34 Previous studies Fradkin, Nayak, Schoutens, Nuc. Phys. B, 1999 Wen, PRL, 2000 Ardonne & Schoutens, PRL, 2000 Cappelli et al, Nuc. Phys. B, 2001 Papic et al, PRB, 2010 Peterson & Das Sarma, PRB 2010 Wen, Rezayi & Read, arxiv, 2010 Barkeshli & Wen, PRB, 2010

35 Candidate states at 2/3 filling Abelian states: McDonald & Haldane, PRB, 1996 Interlayer Pfaffian: Graedts, Zaletel, Papic & Mong, arxiv: Z4 RR state: Peterson, Wu, Cheng, Barkeshli, Wang & Das Sarma, arxiv: Bilayer Fibonacci: Liu, Vaezi, Lee, Kim, arxiv: ; to appear in PRB(R)

36 A. Thin torus limit

37 B = r A FQH states on Torus A x = By, A y =0 E n,m = ~! c (n +1/2) n=0 m (x, y) =e i ( 2 Lx m )x e ( y 2 L x l 2 B 2 2 m Lx )2 /2 m = 2 m = 1 l B =1 m =0 m =1 m =2 y

38 1/3 Laughlin state Ideal Hamiltonian for 1/3 Laughlin state V 1 = X i X r>s V 1 U r,s c i+s c i+r c i+r+sc i Laughlin 1/3 =0 U r,s =(r 2 s 2 )e 2 2 (r 2 +s 2 )/L 2 x Haldane, 1983 Thin torus limit: L x l B : V 1 ' X i (U 1,0 n i n i+1 + U 2,0 n i n i+2 ) Bergholtz and Karlhede, JSM (2006);

39 1/3 FQH: Thin torus limit 2 L x l 2 B 2 l B =1 Effec2ve Hamiltonian: L x L y : V 1 ' X (U 1,0 n i n i+1 + U 2,0 n i n i+2 ) i Degenerate ground- states (CDW pa]erns) gi 1 = i [100] gi 2 = i [010] gi 3 = i [001] y Seidel et al, PRL (2005); Bergholtz and Karlhede, JSM (2006); Bergholtz and Karlhede, PRB (2008); Seidel and Yang, PRL (2008); Ardonne, PRL (2009)

40 Bilayer (330) state: Thin torus limit gi 1 =[2, 0, 0, 2, 0, 0, 2, 0, 0, ] gi 2 =[0, 2, 0, 0, 2, 0, 0, 2, 0, ] gi 3 =[0, 0, 2, 0, 0, 2, 0, 0, 2, ] gi 4 =[", #, 0, ", #, 0, ", #, 0, ] gi 5 =[#, 0, ", #, 0, ", #, 0, ", ] gi 6 =[0, ", #, 0, ", #, 0, ", #, ] gi 7 =[#, ", 0, #, ", 0, #, ", 0, ] gi 8 =[", 0, #, ", 0, #, ", 0, #, ] gi 9 =[0, #, ", 0, #, ", 0, #, ", ] GSD = 9 =3 x 3 3 : Transla2on symmetry in Layer 1 (Abelian) 3 : Transla2on symmetry in Layer 2 (Abelian)

41 Bilayer Fibonacci state: : Thin torus limit gi 1 =[2, 0, 0, 2, 0, 0, 2, 0, 0, ] gi 2 =[0, 2, 0, 0, 2, 0, 0, 2, 0, ] gi 3 =[0, 0, 2, 0, 0, 2, 0, 0, 2, ] gi 4 =[1, 1, 0, 1, 1, 0, 1, 1, 0, ] gi 5 =[1, 0, 1, 1, 0, 1, 1, 0, 1, ] gi 6 =[0, 1, 1, 0, 1, 1, 0, 1, 1, ] 1, 1 ", #i #, "i p 2 GSD = 6 =3 x 2 3 : Transla2on symmetry (Abelian) 2 : Non- Abelian sector: 1, X anyons X X =1+nX Vaezi, Barkeshli, PRL, 2014 Vaezi, PRX, 2014 Mong et al, PRX, 2014

42 Quasi- hole excitaaons [ ] [ ] [ ] q = e 3 (mod e) : [200] [110] [020] [101] [011] [200] [011] [002] [110] [110] [002] [110] GSD(n)=Fib(n) Vaezi, Barkeshli, PRL, 2014

43 Quasi- hole excitaaons [ ] [ ] [ ] q = e 3 (mod e) : [200] [110] [020] [101] [011] [200] [011] [002] [110] [110] [002] [110] GSD(n)=Fib(n) Vaezi, Barkeshli, PRL, 2014

44 GSD: Adjacency matrix A e/3 = 0 [200] [020] [002] [110] [101] [011] C A [200] [020] [002] [110] [101] [011] [200] [110] 1 st row: 4 th row: [110] [020] [101] GSD(n qh ) ' Tr(A n qh ) n qh d 1 e/3 = 1 = 1+p 5 2

45 Neutral excitaaons (Fibonacci anyons) [ ] [ ] [ ] [ ] [ ] [ ] A e/3, e/3 = 0 [200] [011] [020] [101][002] [110] C A [200] [011] [020] [101] [002] [110] GSD(n qh ) ' Tr(A n qh ) n qh 1 d e/3, e/3 = 1 = 1+p 5 2 Vaezi, Barkeshli, PRL, 2014

46 Bilayer Fibonacci state =2/3 c tot = 14/5 Operator Charge Topological spin Quantum dimension V 1 2e/3 1/ V 2 e/3 1/ / V 1 2e/3 11/ V 2 e/3 11/ V a V b = V a+b =1+

47 B. Parton construcaon of the bilayer Fibonacci state

48 e =1/3 Parton construc2on: 1/3 FQH c i = f 1,i f 2,i f 3,i e/3 e/3 e/3 c = volume of the complex space of f a à SU(3) gauge invariance X.- G. Wen, PRB (1999).

49 e =1/3 Parton construc2on: 1/3 FQH c i = f 1,i f 2,i f 3,i e/3 e/3 e/3 c = volume of the complex space of f a à SU(3) gauge invariance e/3 =1 e/3 = Y i<j(z i z j )e e 3 B z i 2 4 X.- G. Wen, PRB (1999).

50 Parton construc2on: 1/3 FQH e =1/3 c i = f 1,i f 2,i f 3,i e/3 e/3 e/3 c = volume of the complex space of f a à SU(3) gauge invariance e/3 =1 e/3 = Y i<j(z i z j )e e 3 B z i 2 4 e = e/3 3 = Y i<j (z i z j ) 3 e e B z i 2 4 X.- G. Wen, PRB (1999).

51 Parton construc2on: 1/3 FQH Bulk theory: Integra2ng out gapped fermions: SU(3) 1 CS ac2on 1 L CS = 4 µ Tr A A + 23 A µa A X.- G. Wen, PRB (1999). Edge theory: 3 chiral fermions à U(3) 1 symmetry. SU(3) 1 subgroup is redundant (gauge symmetry) Edge CFT= U(3) 1 /SU(3) 1 =U(1) 3

52 Parton construc2on: 1/3+1/3 FQH t=0 à Gauge symmetry: SU(3) " SU(3) # Bulk theory: Integra2ng out fermions: SU(3) 1 x SU(3) 1 CS ac2on L CS = X =",# 1 4 µ Tr A A + 23 A µa A Vaezi & Barkeshli, PRL (2014)

53 Parton construc2on: 1/3+1/3 FQH t=0 à Gauge symmetry: SU(3) " SU(3) # Bulk theory: Integra2ng out fermions: SU(3) 1 x SU(3) 1 CS ac2on L CS = X =",# ab = f operator carries charge under a," f b,# A " A # < ab >6= µ Tr à Higgs mechanism: A A + 23 A µa A A " = A # = A Vaezi & Barkeshli, PRL (2014)

54 Parton construc2on: 1/3+1/3 FQH t=0 à Gauge symmetry: SU(3) " SU(3) # Bulk theory: Integra2ng out fermions: SU(3) 1 x SU(3) 1 CS ac2on L CS = X =",# 1 4 µ Tr A A + 23 A µa A ab = f operator carries charge under a," f b,# A " A # < ab >6= 0 à Higgs mechanism: A " = A # = A L CS! µ Tr A A A µa A 4 SU(3) 2 CS Vaezi & Barkeshli, PRL (2014)

55 Parton construc2on: 1/3+1/3 FQH Edge theory: 6 chiral fermions à U(6) 1 SU(3) 2 subgroup is redundant (gauge symmetry) Edge CFT= U(6) 1 /SU(3) 2 = SU(2) 3 x U(1) 6 Vaezi & Barkeshli, PRL (2014)

56 C. Coupled wires construcaon

57 Coupled wires construcaon FQH = FQH H 0 = X I v F 1 4 Z dx x I 2 x ' I 2i g BS Z dx cos r! 2 I Teo & Kane, PRB, 2014; Vaezi, PRX, 2014;

58 Coupled wires construcaon 1,L 2,L 1,R 2,R H e = 1 4 Z dx h (@ x ' s ) 2 +(@ x s ) 2i Z u dx h t? cos( p 3' s )+t k cos( p i 3 s ) Vaezi & Barkeshli, PRL (2014); Vaezi, PRX, 2014; Mong et al, PRX, 2014

59 III. Inter- wire coupling Vaezi, (2014); Mong et al., (2014); Vaezi and Barkeshli, (2014)

60 III. Parafermion edge state c =2+4/5 U(6) 1 /SU(3) 2 = SU(2) 3 U(1) 6 Vaezi, (2014); Mong et al., (2014); Vaezi and Barkeshli, (2014)

61 D. Numerical results

62 Two- body interacaon P nll U ee P nll = X l c l V l U ee = e2 4 0 r Papic & Regnault, 2009; Goerbig, Moessner & Doucot, 2006; Haldane, 1983; Haldane & Rezayi, 1988

63 Model Hamiltonian 1 (a) (b) (6) (3) (3) (9) (9) (c) (6) (9) H = V intra 1 + U 0 V inter 0 + U 1 V inter 1 + H t Liu, Vaezi, Lee, and Kim; arxiv: (to appear in PRB (R)

64 Model Hamiltonian 2 U0 = 0.4 U1 =0.6 H = Hcoulomb intra + Hcoulomb inter + U 0 V0 inter + U 1 V1 inter Liu, Vaezi, Lee, and Kim; arxiv: (to appear in PRB (R)

65 Entanglement measurements Finite size scaling of energy gap Entanglement Entropy Level Coun2ng (Even sector) Level Coun2ng (Odd sector) Liu, Vaezi, Lee, and Kim; arxiv: (to appear in PRB (R)

66 ParAcle Entanglement Spectrum N e =8 N ea =4 N qh =12 N e =10 N ea =4 N qh =18 Liu, Vaezi, Lee, and Kim; arxiv: (to appear in PRB (R)

67 Wave- funcaon overlap 6- fold degenerate state: Negligible overlap with Z4 Read- Rezayi state Small overlap with interlayer Paffian à decreases with increasing N e Small overlap with Abelian states

68 Experimental relevance P nll U ee P nll = X l c l V l U ee = e2 4 0 r Papic & Regnault, 2009; Goerbig, Moessner & Doucot, 2006; Haldane, 1983; Haldane & Rezayi, 1988

69

70 Experimental signatures

71 Experimental probes of Bilayer Fibonacci state (1) Detec2ng topological phase transi2on Phase transiaon happens in the neutral sector Neutral Excitons carry electric dipole dipole- dipole correlaaon diverges at criacal point Surface acous2c phonon measurment?

72 Experimental probes of Bilayer Fibonacci state (2) Thermal Hall conduc2vity: apple xy /T = c 2 k 2 B 3h (3) Edge tunneling: 2/3 FQH 2/3 FQH (a) I- V curve I / V 2g qh 1 (b) Zero bias conductance: xy / T 2g qh 2 Fib : g qh =7/15 c = 14/5 (4) Interferometry experiments

73 a. A novel NA state at 2/3 filling with Fibonacci anyons b. Fibonacci anyons à Universal quantum computaaon via braiding c. 2- body interacaon with large interlayer V 1 component à Bilayer Fibonacci state a. Large interlayer V 1 component: Second Landau level in graphene- like systems?

74 Thanks for your apenaon

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

From Luttinger Liquid to Non-Abelian Quantum Hall States

From Luttinger Liquid to Non-Abelian Quantum Hall States From Luttinger Liquid to Non-Abelian Quantum Hall States Jeffrey Teo and C.L. Kane KITP workshop, Nov 11 arxiv:1111.2617v1 Outline Introduction to FQHE Bulk-edge correspondence Abelian Quantum Hall States

More information

Classify FQH states through pattern of zeros

Classify FQH states through pattern of zeros Oct 25, 2008; UIUC PRB, arxiv:0807.2789 PRB, arxiv:0803.1016 Phys. Rev. B 77, 235108 (2008) arxiv:0801.3291 Long range entanglement and topological order We used to believe that symmetry breaking describe

More information

Nonabelian hierarchies

Nonabelian hierarchies Nonabelian hierarchies collaborators: Yoran Tournois, UzK Maria Hermanns, UzK Hans Hansson, SU Steve H. Simon, Oxford Susanne Viefers, UiO Quantum Hall hierarchies, arxiv:1601.01697 Outline Haldane-Halperin

More information

Conformal Field Theory of Composite Fermions in the QHE

Conformal Field Theory of Composite Fermions in the QHE Conformal Field Theory of Composite Fermions in the QHE Andrea Cappelli (INFN and Physics Dept., Florence) Outline Introduction: wave functions, edge excitations and CFT CFT for Jain wfs: Hansson et al.

More information

Non-Abelian Anyons in the Quantum Hall Effect

Non-Abelian Anyons in the Quantum Hall Effect Non-Abelian Anyons in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with L. Georgiev (Sofia), G. Zemba (Buenos Aires), G. Viola (Florence) Outline Incompressible Hall fluids:

More information

Unified Description of (Some) Unitary and Nonunitary FQH States

Unified Description of (Some) Unitary and Nonunitary FQH States Unified Description of (Some) Unitary and Nonunitary FQH States B. Andrei Bernevig Princeton Center for Theoretical Physics UIUC, October, 2008 Colaboration with: F.D.M. Haldane Other parts in collaboration

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Detecting signatures of topological order from microscopic Hamiltonians

Detecting signatures of topological order from microscopic Hamiltonians Detecting signatures of topological order from microscopic Hamiltonians Frank Pollmann Max Planck Institute for the Physics of Complex Systems FTPI, Minneapolis, May 2nd 2015 Detecting signatures of topological

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

The uses of Instantons for classifying Topological Phases

The uses of Instantons for classifying Topological Phases The uses of Instantons for classifying Topological Phases - anomaly-free and chiral fermions Juven Wang, Xiao-Gang Wen (arxiv:1307.7480, arxiv:140?.????) MIT/Perimeter Inst. 2014 @ APS March A Lattice

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study IASSNS-HEP-90/70 Sep. 1990 Non-Abelian Statistics in the Fractional Quantum Hall States * X. G. Wen School of Natural Sciences Institute of Advanced Study Princeton, NJ 08540 ABSTRACT: The Fractional Quantum

More information

MPS formulation of quasi-particle wave functions

MPS formulation of quasi-particle wave functions MPS formulation of quasi-particle wave functions Eddy Ardonne Hans Hansson Jonas Kjäll Jérôme Dubail Maria Hermanns Nicolas Regnault GAQHE-Köln 2015-12-17 Outline Short review of matrix product states

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence)

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence) Anyon Physics Andrea Cappelli (INFN and Physics Dept., Florence) Outline Anyons & topology in 2+ dimensions Chern-Simons gauge theory: Aharonov-Bohm phases Quantum Hall effect: bulk & edge excitations

More information

Topological Quantum Computation A very basic introduction

Topological Quantum Computation A very basic introduction Topological Quantum Computation A very basic introduction Alessandra Di Pierro alessandra.dipierro@univr.it Dipartimento di Informatica Università di Verona PhD Course on Quantum Computing Part I 1 Introduction

More information

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Chiral Majorana fermion from quantum anomalous Hall plateau transition Chiral Majorana fermion from quantum anomalous Hall plateau transition Phys. Rev. B, 2015 王靖复旦大学物理系 wjingphys@fudan.edu.cn Science, 2017 1 Acknowledgements Stanford Biao Lian Quan Zhou Xiao-Liang Qi Shou-Cheng

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Fractional Quantum Hall States with Conformal Field Theories

Fractional Quantum Hall States with Conformal Field Theories Fractional Quantum Hall States with Conformal Field Theories Lei Su Department of Physics, University of Chicago Abstract: Fractional quantum Hall (FQH states are topological phases with anyonic excitations

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden TOPMAT 2018 CEA & CNRS, Saclay, France June 14, 2018 Inti Sodemann MPI - PKS Dresden Part I New phase transitions of Composite Fermions Part II Bosonization and shear sound in 2D Fermi liquids New phase

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

arxiv: v2 [cond-mat.str-el] 3 Jan 2019

arxiv: v2 [cond-mat.str-el] 3 Jan 2019 Emergent Commensurability from Hilbert Space Truncation in Fractional Quantum Hall Fluids arxiv:1901.00047v2 [cond-mat.str-el] 3 Jan 2019 Bo Yang 1, 2 1 Division of Physics and Applied Physics, Nanyang

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Bell-like non-locality from Majorana end-states

Bell-like non-locality from Majorana end-states Bell-like non-locality from Majorana end-states Alessandro Romito with Yuval Gefen (WIS) 07.09.2016, Daejeon, Workshop on Anderson Localiation in Topological Insulators Outline Topological superconductors

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Creating novel quantum phases by artificial magnetic fields

Creating novel quantum phases by artificial magnetic fields Creating novel quantum phases by artificial magnetic fields Gunnar Möller Cavendish Laboratory, University of Cambridge Theory of Condensed Matter Group Cavendish Laboratory Outline A brief introduction

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Topological quantum computation

Topological quantum computation NUI MAYNOOTH Topological quantum computation Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Tutorial Presentation, Symposium on Quantum Technologies, University

More information

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Fractional quantum Hall effect and duality Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Plan Fractional quantum Hall effect Halperin-Lee-Read (HLR) theory Problem

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE:

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE: LECTURE 6 THE FRACTIONAL QUANTUM HALL EFFECT : THE CASES OF ν = 5/2 AND ν = 12/5 Reminder re QHE: Occurs in (effectively) 2D electron system ( 2DES ) (e.g. inversion layer in GaAs - GaAlAs heterostructure)

More information

The Moore-Read Quantum Hall State: An Overview

The Moore-Read Quantum Hall State: An Overview The Moore-Read Quantum Hall State: An Overview Nigel Cooper (Cambridge) [Thanks to Ady Stern (Weizmann)] Outline: 1. Basic concepts of quantum Hall systems 2. Non-abelian exchange statistics 3. The Moore-Read

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Non-abelian statistics

Non-abelian statistics Non-abelian statistics Paul Fendley Non-abelian statistics are just plain interesting. They probably occur in the ν = 5/2 FQHE, and people are constructing time-reversal-invariant models which realize

More information

KITP miniprogram, Dec. 11, 2008

KITP miniprogram, Dec. 11, 2008 1. Magnetoelectric polarizability in 3D insulators and experiments! 2. Topological insulators with interactions (3. Critical Majorana fermion chain at the QSH edge) KITP miniprogram, Dec. 11, 2008 Joel

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Coulomb Drag in Graphene

Coulomb Drag in Graphene Graphene 2017 Coulomb Drag in Graphene -Toward Exciton Condensation Philip Kim Department of Physics, Harvard University Coulomb Drag Drag Resistance: R D = V 2 / I 1 Onsager Reciprocity V 2 (B)/ I 1 =

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform. Zhen Bi University of California, Santa Barbara

Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform. Zhen Bi University of California, Santa Barbara Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform Zhen Bi University of California, Santa Barbara Acknowledgements Collaborators from UCSB: Cenke Xu, Leon Balents,

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Effects of Interactions in Suspended Graphene

Effects of Interactions in Suspended Graphene Effects of Interactions in Suspended Graphene Ben Feldman, Andrei Levin, Amir Yacoby, Harvard University Broken and unbroken symmetries in the lowest LL: spin and valley symmetries. FQHE Discussions with

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

arxiv: v1 [cond-mat.str-el] 1 Jun 2017

arxiv: v1 [cond-mat.str-el] 1 Jun 2017 Symmetric-Gapped Surface States of Fractional Topological Insulators arxiv:1706.0049v1 [cond-mat.str-el] 1 Jun 017 Gil Young Cho, 1, Jeffrey C. Y. Teo, 3 and Eduardo Fradkin 4 1 School of Physics, Korea

More information

Maissam Barkeshli. Phone USA. Citizenship

Maissam Barkeshli.  Phone USA. Citizenship Maissam Barkeshli Email mbarkeshli@gmail.com Phone +1 408 621 2556 Citizenship USA Degrees and Positions Held University of Maryland, College Park College Park, Maryland, USA Assistant Professor, Department

More information

Neural Network Representation of Tensor Network and Chiral States

Neural Network Representation of Tensor Network and Chiral States Neural Network Representation of Tensor Network and Chiral States Yichen Huang ( 黄溢辰 ) 1 and Joel E. Moore 2 1 Institute for Quantum Information and Matter California Institute of Technology 2 Department

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Gunnar Möller Cavendish Laboratory, University of Cambridge Collaborators: Arkadiusz Wójs, Nigel R. Cooper Cavendish Laboratory, University

More information

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

Many-body entanglement witness

Many-body entanglement witness Many-body entanglement witness Jeongwan Haah, MIT 21 January 2015 Coogee, Australia arxiv:1407.2926 Quiz Energy Entanglement Charge Invariant Momentum Total spin Rest Mass Complexity Class Many-body Entanglement

More information