Geometric responses of Quantum Hall systems

Size: px
Start display at page:

Download "Geometric responses of Quantum Hall systems"

Transcription

1 Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect

2 Fractional Quantum Hall state exotic fluid Two-dimensional electron gas in magnetic field forms a new type of quantum fluid It can be understood as quantum condensation of electrons coupled to vortices/fluxes Quasiparticles are gapped, have fractional charge and statistics The fluid is ideal no dissipation! Density is proportional to vorticity! Transverse transport: Hall conductivity and Hall viscosity, thermal Hall effect Protected chiral dynamics at the boundary

3 Transverse transport Signature of FQH states quantization and robustness of Hall conductance σ H j i = σ H ɛ ij E j, σ H = ν e2 h - Hall conductivity. Are there other universal transverse transport coefficients? Hall viscosity: transverse momentum transport Thermal Hall conductivity: transverse energy/heat transport What are the values of the corresponding kinetic coefficients for various FQH states? Are there corresponding protected boundary modes?

4 Acknowledgments and References A. G. Abanov and A. Gromov, Phys. Rev. B 90, (2014). Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field. A. Gromov and A. G. Abanov, Phys. Rev. Lett. 113, (2014). Density-Curvature Response and Gravitational Anomaly. A. Gromov and A. G. Abanov, Phys. Rev. Lett. 114, (2015). Thermal Hall Effect and Geometry with Torsion. A. Gromov, G. Cho, Y. You, A. G. Abanov, and E. Fradkin, Phys. Rev. Lett. 114, (2015). Framing Anomaly in the Effective Theory of the Fractional Quantum Hall Effect. A. Gromov, K. Jensen, and A.G. Abanov, arxiv: (2015). Boundary effective action for quantum Hall states.

5 Essential points of the talk Induced Action encodes linear responses of the system Coefficients of geometric terms of the induced action universal transverse responses. Hall conductivity, Hall viscosity, thermal Hall conductivity. These coefficients are computed for various FQH states. Framing anomaly is crucial in obtaining the correct gravitational Chern-Simons term!

6 Induced action Partition function of fermions in external e/m field A µ is: Z = DψDψ e is[ψ,ψ ;A µ] = e is ind[a µ] with S[ψ, ψ ; A µ ] = [ d 2 x dt ψ i t + ea 0 1 2m + interactions ( i e c A ) 2 ] ψ Induced action encodes current-current correlation functions j µ = δs ind δa µ, j µ j ν = δ2 S ind δa µ δa ν,... + various limits m 0, e 2 /l B,...

7 Induced action [phenomenological] Use general principles: gap+symmetries to find the form of S ind Locality expansion in gradients of A µ Gauge invariance written in terms of E and B Other symmetries: rotational, translational,... S ind = ν 4π AdA + d 2 x dt [ ɛ 2 E2 1 ] 2µ B2 + σb E +... Find responses in terms of phenomenological parameters ν, ɛ, µ, σ,... Compute these parameters from the underlying theory. For non-interacting particles in B with ν = N see AA, Gromov Any functional of E and B is gauge invariant, but...

8 Chern-Simons action S CS = ν 4π AdA

9 Linear responses from the Chern-Simons action In components S CS = ν 4π = ν 4π AdA ν d 2 x dt ɛ µνλ A µ ν A λ 4π [ ] d 2 x dt A 0 ( 1 A 2 2 A 1 ) +... Varying over A µ ρ = δs CS δa 0 = ν 2π B, j 1 = δs CS δa 1 = ν 2π E 2, We have: σ H = ν 2π and σ H = ρ B Streda formula.

10 Properties of the Chern-Simons term Gauge invariant in the absence of the boundary (allowed in the induced action) Not invariant in the presence of the boundary Leads to protected gapless edge modes First order in derivatives (more relevant than F µν F µν, B 2 or E 2 at large distances) Relativistically invariant (accidentally!!!) Does not depend on metric g µν (topological, does not contribute to the stress-energy tensor)

11 Elastic responses: Strain and Metric Deformation of solid or fluid r r + u(r) u(r) - displacement vector u ik = 1 2 ( ku i + i u k ) - strain tensor u ik plays a role of the deformation metric deformation metric g ik δ ik + 2u ik with ds 2 = g ik dx i dx k stress tensor T ij - response to the deformation metric g ij

12 Stress tensor and induced action Studying responses Microscopic model S = S[ψ] Introduce gauge field and metric background S[ψ, A, g] Integrate out matter degrees of freedom and obtain and S ind [A, g] Obtain E/M, elastic, and mixed responses from δs ind = dx dt g (j µ δa µ + 12 ) T ij δg ij Elastic responses = gravitational responses Important: stress is present even in flat space!

13 Quantum Hall in Geometric Background (by Gil Cho) e e e e = electron = magnetic field

14 Geometric background For 2+1 dimensions and spatial metric g ij we introduce spin connection ω µ so that 1 gr 2 = 1 ω 2 2 ω 1 gravi-magnetic field, E i = ω i i ω 0 gravi-electric field, For small deviations from flat space g ik = δ ik + δg ik we have explicitly ω 0 = 1 2 ɛjk δg ij ġ ik, ω i = 1 2 ɛjk j δg ik Close analogy with E/M fields A µ ω µ!

15 Geometric terms of the induced action Terms of the lowest order in derivatives S ind = ν 4π Geometric terms: [ AdA + 2 s ωda + β ωdω]. AdA Chern-Simons term (ν: Hall conductance, filling factor) ωda Wen-Zee term ( s: orbital spin, Hall viscosity, Shift) ωdω gravitational CS term (β : Hall viscosity - curvature, thermal Hall effect, orbital spin variance) In the presence of the boundary β can be divided into chiral central charge c and s 2 (Bradlyn, Read, 2014). The latter does not correspond to an anomaly. (Gromov, Jensen, AA, 2015)

16 The Wen-Zee term Responses from the Wen-Zee term S W Z = ν s ωda. 2π Emergent spin (orbital spin) s ν (A + sω)d(a + sω) 4π Wen-Zee shift for sphere δn = νs; S = 2 s ν s 2π A 0dω δρ = ν s ν s dω δn = d 2 x gr = ν sχ = ν s(2 2g) 2π 4π Hall viscosity (per particle) η H = s 2 n e: ν s Bν s ωda 2π 2π ω s 0 = n e sω 0 = n e 2 ɛjk δg ij ġ ik

17 Hall viscosity Gradient correction to the stress tensor T ik = η H (ɛ in v nk + ɛ kn v ni ), where v ik = 1 2 ( iv k + k v i ) = 1 2ġik strain rate (a) Shear viscosity (b) η H Hall viscosity picture from Lapa, Hughes, 2013 Avron, Seiler, Zograf, 1995

18 Obtaining the effective field theory for FQH states Reduce problem to noninteracting fermions with ν - integer interacting with statistical Abelian and non-abelian gauge fields. Can be done, e.g., by flux attachment or parton construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991; Cho, You, Fradkin, 2014) Integrate out fermions and obtain the effective action S[a, A, g] using the results for free fermions. (AA, Gromov, 2014) Integrate out statistical gauge fields taking into account the framing anomaly. (Gromov et al., 2015) Obtain the induced action S geom ind [A, g] and study the corresponding responses.

19 Flux attachment in geometric background Cho, You, Fradkin, 2014 Flux attachment is based on the identity: { Db Da exp i 2p bdb i 1 4π 2π adb + i L } (a + pω) Here L is a link. The last term pω is due to the framing regularization (Polyakov, 1988). Integrating over b (wrong!) { 1 Da exp i ada + i (2p)2π L } (a + pω) = 1 = 1 Integrating over b (correct!) { 1 Da exp i ada + i (a + pω) i 1 (2p)2π 48π L } ωdω = 1 Integrating over b (correct!) { 1 1 }

20 Explicit calculation for free fermions at ν = N Starting point S[ψ, ψ ; A µ, g ij ] = dt d 2 x [ g ψ i ] D t 2 2m gij (D i ψ) (D j ψ). Straightforward computation at ν = N (Gromov, AA, 2014) S (geom) eff = N 4π ( AdA + N Adω + 2N or equivalently (as a sum over Landau levels) S (geom) eff = N n=1 ) ωdω [ 1 4π (A + s nω)d(a + s n ω) c ] 48π ωdω s n = 2n 1 2, c = 1.

21 Geometric effective action for ν = 1 [ S (geom) 1 eff = (A + 12 ) 4π ω d (A + 12 ) ω 1 ] 48π ωdω Is there an intuitive way to obtain this result?

22 The Wen-Zee construction for ν = 1 Integrate out fermions but leave currents j = 1 2π da (Wen, Zee, 1992) S[a; A, ω] = 1 [ ada + 2 (A + 12 ) ] 4π ω da. (Wen, Zee, 1992) + framing anomaly: solve for a: a = ( A ω) substitute back into the action take into account framing anomaly (Gromov et.al., 2015) S ind = 1 (A + 12 ) 4π ω d (A + 12 ) ω 1 48π ωdω

23 Digression: the quantum Chern-Simons theory The partition function for Chern-Simons theory in the metric background (Witten, 1989) { Da exp i k } { c ada = exp i tr (ΓdΓ + 23 )} 4π 96π Γ3 { } c = exp i ωdω, 48π where c = sgn(k) and the last equality is correct for our background. We specialized Witten s results to the Abelian CS theory The result is obtained from the fluctuation determinant det(d) The dependence on metric comes from the gauge fixing dv φd µ a µ Action does not depend on metric, path integral does: anomaly (framing anomaly)

24 Consistency check (for ν = 1) Basic idea: two routes to effective action. Route 1: Route 2: 1 4π S 0 [ψ; A, g] 1 4π (A + 12 ) ω d (A + 12 ) ω 1 48π ωdω S 0 [ψ; A, g] S 0 [ψ; A + a + ω, g] + 1 8π ada 1 48π ωdω Introducing A = A + a + ω (A 12 ) ω d 1 4π (A + 12 ω ) d (A 12 ω ) π ωdω + 1 8π ada 1 48π ωdω (A + 12 ) ω π ωdω π ωdω Consistent only if the framing anomaly is taken into account (twice)!

25 Obtaining the effective field theory for FQH states Reduce problem to noninteracting fermions with ν - integer interacting with statistical Abelian and non-abelian gauge fields. Can be done, e.g., by flux attachment or parton construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991; Cho, You, Fradkin, 2014) Integrate out fermions and obtain the effective action S[a, A, g] using the results for free fermions. (Gromov, AA, 2014) Integrate out statistical gauge fields taking into account the framing anomaly. (Gromov et al., 2015) Obtain the induced action S geom ind [A, g] and study the corresponding responses.

26 Example: Laughlin s states Flux attachment for Laughlin s states ν = 1 2m+1 [ 2m S 0 [ψ, A + a + mω, g] 4π bdb + 1 ] 2π adb Integrating out ψ, a, b ( S geom 1 1 ind = A + 2m + 1 ω 4π 2m Coefficients ν = ) ( d A + 2m + 1 ω 2 1 2m + 1, s =, c = 1. 2m ) 1 48π ωdω

27 Other states Geometric effective actions have been obtained for: Free fermions at ν = N Laughlin s states Jain series Arbitrary Abelian QH states Read-Rezayi non-abelian states The method can be applied to other FQH states A. Gromov et.al., PRL 114, (2015). Framing Anomaly in the Effective Theory of the Fractional Quantum Hall Effect.

28 Consequences of the gravitational CS term S gcs = c 96π tr (ΓdΓ + 23 ) Γ3 = c 48π ωdω. 1. From CS and WZ term [shift] (Wen, Zee, 1992) n = ν 2π B + ν s 4π R N = ν(n φ + sχ) From WZ and gcs term [Hall viscosity shift] (Gromov, AA, 2014 cf. Hughes, Leigh, Parrikar, 2013) η H = s 2 n c R 24 4π 2. Thermal Hall effect [from the boundary!] (Kane, Fisher, 1996; Read, Green, 2000; Cappelli, Huerta, Zemba, 2002) K H = c πk2 B T 6.

29 Some recent closely related works Geometric terms from adiabatic transport and adiabatic deformations of trial FQH wave functions (Bradlyn, Read, 2015; Klevtsov, Wiegmann, 2015) QH wave functions in geometric backgrounds (Can, Laskin, Wiegmann, 2014; Klevtsov, Ma, Marinescu, Wiegmann, 2015) Newton-Cartan geometric background and Galilean invariance (Hoyos, Son, 2011; Gromov, AA, 2014; Jensen, 2014) Thermal transport in quantum Hall systems (Geracie, Son, Wu, Wu, 2014; Gromov, AA, 2014; Bradlyn, Read, 2014)

30 Main results Response functions can be encoded in the form of the induced action for FQHE. S ind = ν [ (A + sω)d(a + sω) + βωdω] 4π c tr [ΓdΓ + 23 ] 96π Γ3 +..., where ν is the filling fraction, s is the average orbital spin, β is the orbital spin variance, and c is the chiral central charge. The coefficients ν, s, β, c are computed for various known Abelian and non-abelian FQH states. Framing anomaly is crucial in obtaining the correct gravitational Chern-Simons term!

31 Quantum Hall at the Edge (by Gil Cho)

Multipole Expansion in the Quantum Hall Effect

Multipole Expansion in the Quantum Hall Effect Multipole Expansion in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with E. Randellini (Florence) Outline Chern-Simons effective action: bulk and edge Wen-Zee term: shift

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

Nematic Order and Geometry in Fractional Quantum Hall Fluids

Nematic Order and Geometry in Fractional Quantum Hall Fluids Nematic Order and Geometry in Fractional Quantum Hall Fluids Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory University of Illinois, Urbana, Illinois, USA Joint Condensed

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Gravitational response of the Quantum Hall effect

Gravitational response of the Quantum Hall effect Gravitational response of the Quantum Hall effect Semyon Klevtsov University of Cologne arxiv:1309.7333, JHEP01(2014)133 () Gravitational response of QHE Bad Honnef 30.05.14 1 / 18 Gravitational response

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study IASSNS-HEP-90/70 Sep. 1990 Non-Abelian Statistics in the Fractional Quantum Hall States * X. G. Wen School of Natural Sciences Institute of Advanced Study Princeton, NJ 08540 ABSTRACT: The Fractional Quantum

More information

Physics 250 Fall 2014: Set 4 of lecture notes

Physics 250 Fall 2014: Set 4 of lecture notes Physics 250 Fall 2014: Set 4 of lecture notes Joel E. Moore, UC Berkeley and LBNL (Dated: October 13, 2014) I. FRACTIONAL QUANTUM HALL BASICS (VERY BRIEF) FQHE background: in class we gave some standard

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

Hall Viscosity of Hierarchical Quantum Hall States

Hall Viscosity of Hierarchical Quantum Hall States M. Fremling, T. H. Hansson, and J. Suorsa ; Phys. Rev. B 89 125303 Mikael Fremling Fysikum Stockholm University, Sweden Nordita 9 October 2014 Outline 1 Introduction Fractional Quantum Hall Eect 2 Quantum

More information

Constraints on Fluid Dynamics From Equilibrium Partition Func

Constraints on Fluid Dynamics From Equilibrium Partition Func Constraints on Fluid Dynamics From Equilibrium Partition Function Nabamita Banerjee Nikhef, Amsterdam LPTENS, Paris 1203.3544, 1206.6499 J. Bhattacharya, S. Jain, S. Bhattacharyya, S. Minwalla, T. Sharma,

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

Geometric Aspects of Quantum Hall States

Geometric Aspects of Quantum Hall States Geometric Aspects of Quantum Hall States ADissertationPresented by Andrey Gromov to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Conformal Field Theory of Composite Fermions in the QHE

Conformal Field Theory of Composite Fermions in the QHE Conformal Field Theory of Composite Fermions in the QHE Andrea Cappelli (INFN and Physics Dept., Florence) Outline Introduction: wave functions, edge excitations and CFT CFT for Jain wfs: Hansson et al.

More information

arxiv:hep-th/ v2 31 Jul 2000

arxiv:hep-th/ v2 31 Jul 2000 Hopf term induced by fermions Alexander G. Abanov 12-105, Department of Physics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A. arxiv:hep-th/0005150v2 31 Jul 2000 Abstract We derive an effective

More information

From Luttinger Liquid to Non-Abelian Quantum Hall States

From Luttinger Liquid to Non-Abelian Quantum Hall States From Luttinger Liquid to Non-Abelian Quantum Hall States Jeffrey Teo and C.L. Kane KITP workshop, Nov 11 arxiv:1111.2617v1 Outline Introduction to FQHE Bulk-edge correspondence Abelian Quantum Hall States

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Fractional quantum Hall effect and duality Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Plan Fractional quantum Hall effect Halperin-Lee-Read (HLR) theory Problem

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Vacuum degeneracy of chiral spin states in compactified. space. X.G. Wen

Vacuum degeneracy of chiral spin states in compactified. space. X.G. Wen Vacuum degeneracy of chiral spin states in compactified space X.G. Wen Institute for Theoretical Physics University of California Santa Barbara, California 93106 ABSTRACT: A chiral spin state is not only

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Massive and Newton-Cartan Gravity in Action

Massive and Newton-Cartan Gravity in Action Massive and Newton-Cartan Gravity in Action Eric Bergshoeff Groningen University The Ninth Aegean Summer School on Einstein s Theory of Gravity and its Modifications: From Theory to Observations based

More information

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015 Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015 Contents Why are the fractional quantum Hall liquids amazing! Abelian quantum Hall liquids: Laughlin

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

A sky without qualities

A sky without qualities A sky without qualities New boundaries for SL(2)xSL(2) Chern-Simons theory Bo Sundborg, work with Luis Apolo Stockholm university, Department of Physics and the Oskar Klein Centre August 27, 2015 B Sundborg

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Nonabelian hierarchies

Nonabelian hierarchies Nonabelian hierarchies collaborators: Yoran Tournois, UzK Maria Hermanns, UzK Hans Hansson, SU Steve H. Simon, Oxford Susanne Viefers, UiO Quantum Hall hierarchies, arxiv:1601.01697 Outline Haldane-Halperin

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

The uses of Instantons for classifying Topological Phases

The uses of Instantons for classifying Topological Phases The uses of Instantons for classifying Topological Phases - anomaly-free and chiral fermions Juven Wang, Xiao-Gang Wen (arxiv:1307.7480, arxiv:140?.????) MIT/Perimeter Inst. 2014 @ APS March A Lattice

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Non-Abelian Anyons in the Quantum Hall Effect

Non-Abelian Anyons in the Quantum Hall Effect Non-Abelian Anyons in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with L. Georgiev (Sofia), G. Zemba (Buenos Aires), G. Viola (Florence) Outline Incompressible Hall fluids:

More information

The Half-Filled Landau Level

The Half-Filled Landau Level Nigel Cooper Department of Physics, University of Cambridge Celebration for Bert Halperin s 75th January 31, 2017 Chong Wang, Bert Halperin & Ady Stern. [C. Wang, NRC, B. I. Halperin & A. Stern, arxiv:1701.00007].

More information

A Brief Introduction to Duality Web

A Brief Introduction to Duality Web A Brief Introduction to Duality Web WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note is prepared for the journal club talk given on

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Applied Newton-Cartan Geometry: A Pedagogical Review

Applied Newton-Cartan Geometry: A Pedagogical Review Applied Newton-Cartan Geometry: A Pedagogical Review Eric Bergshoeff Groningen University 10th Nordic String Meeting Bremen, March 15 2016 Newtonian Gravity Free-falling frames: Galilean symmetries Earth-based

More information

Spectral Action from Anomalies

Spectral Action from Anomalies Spectral Action from Anomalies Fedele Lizzi Università di Napoli Federico II and Insitut de Ciencies del Cosmo, Universitat de Barcelona Work in collaboration with A.A. Andrianov & M. Kurkov (St. Petersburg)

More information

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo University of Oxford 12-15 April, 2016 Exchange statistics Basic concepts Jon Magne Leinaas Department of Physics University of Oslo Outline * configuration space with identifications * from permutations

More information

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. B92 (2015) 235105 Huajia Wang University of Illinois Urbana Champaign Introduction/Motivation

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Xiao-Gang Wen, MIT Sept., Quantum entanglement, topological order, and tensor category

Xiao-Gang Wen, MIT Sept., Quantum entanglement, topological order, and tensor category Quantum entanglement, topological order, and tensor category theory Xiao-Gang Wen, MIT Sept., 2014 Topological order beyond symmetry breaking We used to believe that all phases and phase transitions are

More information

arxiv: v1 [cond-mat.str-el] 11 Dec 2011

arxiv: v1 [cond-mat.str-el] 11 Dec 2011 Fractional charge and statistics in the fractional quantum spin Hall effect Yuanpei Lan and Shaolong Wan nstitute for Theoretical Physics and Department of Modern Physics University of Science and Technology

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Emergence and Mechanism in the Fractional Quantum Hall Effect

Emergence and Mechanism in the Fractional Quantum Hall Effect Emergence and Mechanism in the Fractional Quantum Hall Effect Jonathan Bain Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York 1. Two Versions

More information

arxiv: v2 [cond-mat.str-el] 3 Jan 2019

arxiv: v2 [cond-mat.str-el] 3 Jan 2019 Emergent Commensurability from Hilbert Space Truncation in Fractional Quantum Hall Fluids arxiv:1901.00047v2 [cond-mat.str-el] 3 Jan 2019 Bo Yang 1, 2 1 Division of Physics and Applied Physics, Nanyang

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

Infinite Symmetry in the Fractional Quantum Hall Effect

Infinite Symmetry in the Fractional Quantum Hall Effect BONN-HE-93-29 hep-th/9309083 September 993 arxiv:hep-th/9309083v 5 Sep 993 Infinite Symmetry in the Fractional Quantum Hall Effect Michael Flohr and Raimund Varnhagen Physikalisches Institut der Universität

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

SPT order - new state of quantum matter. Xiao-Gang Wen, MIT/Perimeter Taiwan, Jan., 2015

SPT order - new state of quantum matter. Xiao-Gang Wen, MIT/Perimeter Taiwan, Jan., 2015 Xiao-Gang Wen, MIT/Perimeter Taiwan, Jan., 2015 Symm. breaking phases and topo. ordered phases We used to believe that all phases and phase transitions are described by symmetry breaking Counter examples:

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Instantons and Sphalerons in a Magnetic Field

Instantons and Sphalerons in a Magnetic Field Stony Brook University 06/27/2012 GB, G.Dunne & D. Kharzeev, arxiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arxiv:1202.2161, PRD 85 086012 Outline Motivation & some lattice results General facts on Dirac

More information

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia D-branes and Topological Charge in QCD University of Virginia E-mail: hbt8r@virginia.edu The recently observed long-range coherent structure of topological charge fluctuations in QCD is compared with theoretical

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

arxiv:hep-th/ v1 15 Aug 2000

arxiv:hep-th/ v1 15 Aug 2000 hep-th/0008120 IPM/P2000/026 Gauged Noncommutative Wess-Zumino-Witten Models arxiv:hep-th/0008120v1 15 Aug 2000 Amir Masoud Ghezelbash,,1, Shahrokh Parvizi,2 Department of Physics, Az-zahra University,

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Irrational anyons under an elastic membrane

Irrational anyons under an elastic membrane Irrational anyons under an elastic membrane Claudio Chamon Collaborators: Siavosh Behbahani Ami Katz Euler Symposium on Theoretical and Mathematical Physics D.I. Diakonov Memorial Symposium Fractionalization

More information

Recovering General Relativity from Hořava Theory

Recovering General Relativity from Hořava Theory Recovering General Relativity from Hořava Theory Jorge Bellorín Department of Physics, Universidad Simón Bolívar, Venezuela Quantum Gravity at the Southern Cone Sao Paulo, Sep 10-14th, 2013 In collaboration

More information

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Central extensions in flat spacetimes Duality & Thermodynamics of BH dyons New classical central extension in asymptotically

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, Lecture A3 Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, S CS = k tr (AdA+ 3 ) 4π A3, = k ( ǫ µνρ tr A µ ( ν A ρ ρ A ν )+ ) 8π 3 A µ[a ν,a ρ

More information

Entanglement Chern numbers for random systems

Entanglement Chern numbers for random systems POSTECH, Korea, July 31 (2015) Ψ = 1 D D Entanglement Chern numbers for random systems j Ψ j Ψj Yasuhiro Hatsugai Institute of Physics, Univ. of Tsukuba Ref: T. Fukui & Y. Hatsugai, J. Phys. Soc. Jpn.

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Single particle Green s functions and interacting topological insulators

Single particle Green s functions and interacting topological insulators 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011 Topological insulators are free fermion systems characterized by topological invariants. 2 In

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

Hund s rule for monopole harmonics, or why the composite fermion picture works

Hund s rule for monopole harmonics, or why the composite fermion picture works PERGAMON Solid State Communications 110 (1999) 45 49 Hund s rule for monopole harmonics, or why the composite fermion picture works Arkadiusz Wójs*, John J. Quinn The University of Tennessee, Knoxville,

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract SU-ITP # 96/ Chiral sound waves from a gauge theory of D generalized statistics Silvio J. Benetton Rabello arxiv:cond-mat/9604040v 6 Apr 996 Department of Physics, Stanford University, Stanford CA 94305

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Boundary Degeneracy of Topological Order

Boundary Degeneracy of Topological Order Boundary Degeneracy of Topological Order Juven Wang (MIT/Perimeter Inst.) - and Xiao-Gang Wen Mar 15, 2013 @ PI arxiv.org/abs/1212.4863 Lattice model: Toric Code and String-net Flux Insertion What is?

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Sep 1998

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Sep 1998 Persistent Edge Current in the Fractional Quantum Hall Effect Kazusumi Ino arxiv:cond-mat/989261v1 cond-mat.mes-hall] 19 Sep 1998 Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1,

More information

Beyond the unitarity bound in AdS/CFT

Beyond the unitarity bound in AdS/CFT Beyond the unitarity bound in AdS/CFT Tomás Andrade in collaboration with T. Faulkner, J. Jottar, R. Leigh, D. Marolf, C. Uhlemann October 5th, 2011 Introduction 1 AdS/CFT relates the dynamics of fields

More information

Holography for non-relativistic CFTs

Holography for non-relativistic CFTs Holography for non-relativistic CFTs Herzog, Rangamani & SFR, 0807.1099, Rangamani, Son, Thompson & SFR, 0811.2049, SFR & Saremi, 0907.1846 Simon Ross Centre for Particle Theory, Durham University Liverpool

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics F.E. Camino, W. Zhou and V.J. Goldman Stony Brook University Outline Exchange statistics in 2D,

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 12/20/15 (11:00-11:30) Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 12/20/15 (11:00-11:30)

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information