Optical Flux Lattices for Cold Atom Gases

Size: px
Start display at page:

Download "Optical Flux Lattices for Cold Atom Gases"

Transcription

1 for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner (MPIPKS Dresden)

2 Motivation: fractional quantum Hall regime 2D charged particle in magnetic field Landau levels Flux density n φ = qb h Density of States qb/h per unit area hω C E

3 Motivation: fractional quantum Hall regime 2D charged particle in magnetic field Landau levels Flux density n φ = qb h Density of States qb/h per unit area hω E C e-e repulsion fractional quantum Hall states, at certain ν n 2D n φ

4 Motivation: fractional quantum Hall regime 2D charged particle in magnetic field Landau levels Flux density n φ = qb h Density of States qb/h per unit area hω E C e-e repulsion fractional quantum Hall states, at certain ν n 2D n φ Bosons? (contact repulsion)

5 Motivation: fractional quantum Hall regime 2D charged particle in magnetic field Landau levels Flux density n φ = qb h Density of States qb/h per unit area hω E C e-e repulsion fractional quantum Hall states, at certain ν n 2D n φ Bosons? (contact repulsion) ν > ν c 6: vortex lattice (BEC) [NRC, Wilkin & Gunn 01; Sinova, Hanna & MacDonald 02; Baym 04] ν < ν c : FQH states (incl. non-abelian ) [NRC, Wilkin & Gunn 01]

6 Synthetic Magnetic Field: Rotation a Stir the atomic gas Rotating frame, angular velocity Ω Coriolis Force b Lorentz Force n φ qb h = c 2MΩ h 2D Cloud [Desbuquois et al. (2012)] Objective PBS Imaging Stirring beam [K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)] 10 µ

7 Synthetic Magnetic Field: Rotation a Stir the atomic gas Rotating frame, angular velocity Ω Coriolis Force b Lorentz Force n φ qb h = c 2MΩ h 2D Cloud [Desbuquois et al. (2012)] PBS Objective Ω < 2π 100Hz n < φ cm 2 Stirring beam [K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)] Imaging 10 µ

8 Synthetic Magnetic Field: Optically Dressed States [Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto & I.B. Spielman, Nature 462, 628 (2009)]

9 Synthetic Magnetic Field: Optically Dressed States [Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto & I.B. Spielman, Nature 462, 628 (2009)] But... n φ < 1 Rλ cm 2 [R cloud size]

10 Outline Optically Dressed States Design Principles

11 Optically Dressed States [J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, RMP 83, 1523 (2011)] Coherent optical coupling of N internal atomic states [e.g. 1 S 0 and 3 P 0 for Yb or alkaline earth atom] laser coupling Ω R e g ω 0 Forms the local dressed state of the atom 0 r = α r g + β r e = ( αr β r )

12 optical coupling ˆV (r) laser frequency ω e ω 0 coupling strength Ω R g Rotating Wave Approximation ω, Ω R ˆV (r) ( ΩR (r) 2 Ω R (r) )

13 In general ˆV = 2 Optically Dressed States ( (r) ΩR (r) Ω R (r) (r) ) E 1 (r), 1 r E 0 (r), 0 r

14 In general ˆV = 2 Optically Dressed States ( (r) ΩR (r) Ω R (r) (r) ) E 1 (r), 1 r E 0 (r), 0 r Adiabatic motion in lower energy dressed state, Ψ = ψ 0 (r) 0 r

15 In general ˆV = 2 Optically Dressed States ( (r) ΩR (r) Ω R (r) (r) ) E 1 (r), 1 r E 0 (r), 0 r Adiabatic motion in lower energy dressed state, Ψ = ψ 0 (r) 0 r [ ] p 2 H eff ψ 0 = 0 r 2M + (p qa)2 ˆV ψ 0 0 r H eff = + V 0 (r) 2M [ Berry connection vector potential qa = i 0 r 0 r ] [J. Dalibard, F. Gerbier, G. Juzeliūnas & P. Öhberg, RMP 83, 1523 (2011)]

16 Experimental Implementation Rubidium BEC [Lin, Compton, Jiménez-García, Porto & Spielman, Nature 462, 628 (2009)] beam 1 B z ω 2 beam 2 ω 1 gµ B B z k = k 1 ( k 2 ) 2 2π λ ˆV = ( 2 Ω R e i k x Ω R e i k x ) field gradient B z (y) y

17 Experimental Implementation Rubidium BEC [Lin, Compton, Jiménez-García, Porto & Spielman, Nature 462, 628 (2009)]

18 Experimental Implementation Rubidium BEC [Lin, Compton, Jiménez-García, Porto & Spielman, Nature 462, 628 (2009)] But... n φ < 1 Rλ cm 2 [R cloud size]

19 Maximum flux density: Back of the envelope Vector potential qa = i 0 r 0 r qa < Cloud of radius R λ N φ n φ d 2 r = q h n φ N φ πr 2 < h λ A ds = q h 1 Rλ cm 2 A dr < 1 λ (2πR) [R 10µm λ 0.5µm]

20 Maximum flux density: Carefully this time! Vector potential qa = i 0 r 0 r qa < A can have singularities if the optical fields have vortices h λ e.g. Ω R (r) (x + iy) Vanishing net flux. Can be (re)moved by a gauge transformation. [cf. Dirac strings ]

21 Gauge-Independent Approach (two-level system) Bloch vector n(r) = 0 r ˆ σ 0 r Flux density n φ = 1 8π ɛ ijkɛ µν n i µ n j ν n k r Region A n Solid Angle Ω area A n φ d 2 r = Ω 4π The number of flux quanta in region A is the number of times the Bloch vector wraps over the sphere.

22 Design Principles Optical flux lattices [NRC, Phys. Rev. Lett. 106, (2011)] Spatially periodic light fields for which the Bloch vector wraps the sphere a nonzero integer number, N φ, times in each unit cell. n φ = N φ A cell 1 λ cm 2 vectors (n x, n y ) contours n z N φ = 2 ( sin κx sin κy cos κx i cos κy ˆV = V cos κx + i cos κy sin κx sin κy )

23 Optically Dressed States Design Principles Lorentz Force: Semiclassical Picture y ei 6 λ/2? X XX XXX g i x Optical Artificial Flux Lattices Magnetism for Cold foratom Cold Atom GasesGases Colle ge de Fran

24 Optically Dressed States Design Principles Lorentz Force: Semiclassical Picture y ei 6 λ/2? X XX XXX g i x px (~k) y λ/2 Fx p x ~k vy λ/2 Optical Artificial Flux Lattices Magnetism for Cold foratom Cold Atom GasesGases Colle ge de Fran

25 Optically Dressed States Design Principles Lorentz Force: Semiclassical Picture y ei 6 λ/2? X XX XXX g i x px (~k) y λ/2 Lorentz force, with ~k vy λ/2 qb 2 nφ 2 h λ Fx p x qb 2h λ2 Optical Artificial Flux Lattices Magnetism for Cold foratom Cold Atom GasesGases Colle ge de Fran

26 Design Principles Example: Implementation for Hyperfine Levels [NRC & Jean Dalibard, EPL 95, (2011)] θ θ ω 2 ω 2 θ ω 2 ω 1 J g = 1/2 ω 1 σ pol. ω 2

27 Design Principles Example: Implementation for Hyperfine Levels [NRC & Jean Dalibard, EPL 95, (2011)] θ θ ω 2 ω 2 θ ω 2 ω 1 J g = 1/2 ω 1 σ pol. ω 2 ( E + ˆV 2 2 E 2 2 E2 z E 1 E2 z E 1 E E 2 2 ) N φ = 1 (two level system)

28 Bandstructure: Optically Dressed States p 2 2M Î + ˆV (r) Design Principles

29 Bandstructure: Optically Dressed States p 2 2M Î + ˆV (r) Design Principles J g = 1/2 (e.g. 171 Yb, 199 Hg, 6 Li) [E R = h2 2Mλ 2 ] DoS (arb.) x 1/10 V = 2E R, θ = π/4, ɛ = E/E R

30 Design Principles J g = 1/2 (e.g. 171 Yb, 199 Hg, 6 Li) [E R = h2 2Mλ 2 ] DoS (arb.) x 1/10 V = 2E R, θ = π/4, ɛ = E/E R J g = 1 (e.g. 23 Na, 39 K, 87 Rb) LLL } V = 8E R, ɛ = 0.8, θ = 0.2, γ 1 = 0, γ 2 = 0.15E R DoS E/E R Narrow topological bands: analogous to lowest Landau level

31 Design Principles Designing [NRC & Roderich Moessner, PRL (2012)]

32 Design Principles Designing Ĥ = p2 2M Î + ˆV (r) [NRC & Roderich Moessner, PRL (2012)] Optical lattices are conveniently defined in reciprocal space Couplings V α α k k α, k ˆV α, k of internal states α = 1,..., N

33 Design Principles Designing Ĥ = p2 2M Î + ˆV (r) [NRC & Roderich Moessner, PRL (2012)] Optical lattices are conveniently defined in reciprocal space Couplings V α α k k α, k ˆV α, k of internal states α = 1,..., N 1 Vκ 12 1 Vκ Reciprocal lattice {G} G 1, q 2, q + κ 1 1, q + G G = κ 1 + κ 2

34 Design Principles Bloch s theorem ψ nq = α,g c nq αg α, q + g α + G E nq c nq αg = 2 q + G + g α 2 c nq 2M αg + V αα G+g α G g cnq α α G α,g

35 Design Principles Bloch s theorem ψ nq = α,g c nq αg α, q + g α + G E nq c nq αg = 2 q + G + g α 2 c nq 2M αg + V αα G+g α G g cnq α α G α,g Adiabatic limit (K.E. 0) E nq c nq αg = α,g V αα G+g α G g α cnq α G Tight-binding model in reciprocal space

36 Design Principles Tight-binding model in reciprocal space E nq c nq αg = α,g V αα G+g α G g α cnq α G Bandstructure determines the dressed states in real space [Ĥ = ˆV (r)]

37 Design Principles Tight-binding model in reciprocal space E nq c nq αg = α,g V αα G+g α G g α cnq α G Bandstructure determines the dressed states in real space [Ĥ = ˆV (r)] conserved momentum real space position, r Brillouin zone real space unit cell Bloch wavefunction dressed state, n r band energies local dressed state energies, E n (r) Berry curvature local flux density, n φ Chern number, C flux through unit cell, N φ

38 Design Principles Tight-binding model in reciprocal space E nq c nq αg = α,g V αα G+g α G g α cnq α G Bandstructure determines the dressed states in real space [Ĥ = ˆV (r)] conserved momentum real space position, r Brillouin zone real space unit cell Bloch wavefunction dressed state, n r band energies local dressed state energies, E n (r) Berry curvature local flux density, n φ Chern number, C flux through unit cell, N φ For an optical flux lattice, the lowest energy band of the reciprocal-space tight-binding model has non-zero Chern number

39 Design Principles OFLs with uniform Magnetic Field and Scalar Potential DoS (arb. units) x 1/10 N = 4 V = E R E/E R Low energy spectrum closely analogous to Landau levels Narrow bands strongly correlated phases N = 3 scheme for 87 Rb shows robust Laughlin, CF/hierarchy and Moore-Read phases of bosons, even for weak two-body repulsion [NRC & Jean Dalibard, PRL 110, (2013)]

40 Outlook Strong magnetic field, n φ 1 λ 2 Novel FQH states of 2D bosons [NRC & J. Dalibard, PRL (2013)] Correlated bosonic phases in 3D? [NRC, van Lankvelt, Reijnders & Schoutens, PRA 05] Strong-coupling superconductivity vs. FQH, ξ pair ā n 1/2 φ [for a cuprate superconductor, would need B > 10 5 T!]

41 Outlook Strong magnetic field, n φ 1 λ 2 Novel FQH states of 2D bosons [NRC & J. Dalibard, PRL (2013)] Correlated bosonic phases in 3D? [NRC, van Lankvelt, Reijnders & Schoutens, PRA 05] Strong-coupling superconductivity vs. FQH, ξ pair ā n 1/2 φ [for a cuprate superconductor, would need B > 10 5 T!] Other Topological Bandstructures Chern insulators with C > 1 Z 2 Topological Insulators in 2D and 3D Exploration of fractional topological insulators

42 Summary Coherent optical coupling of internal states provides a powerful way to create topological bands for cold atoms. Ĥ = p2 2M Î + ˆV (r) Simple laser set-ups lead to optical flux lattices : periodic magnetic flux with very high mean density, n φ 1/λ 2. The bandstructure can be designed with significant control. These lattices offer a practical route to the study of novel strongly correlated topological phases in ultracold gases.

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Mapping the Berry Curvature of Optical Lattices

Mapping the Berry Curvature of Optical Lattices Mapping the Berry Curvature of Optical Lattices Nigel Cooper Cavendish Laboratory, University of Cambridge Quantum Simulations with Ultracold Atoms ICTP, Trieste, 16 July 2012 Hannah Price & NRC, PRA 85,

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Artificial gauge potentials for neutral atoms Fabrice Gerbier Workshop Hadrons and Nuclear Physics meet ultracold atoms, IHP, Paris January

More information

Artificial magnetism and optical flux lattices for ultra cold atoms

Artificial magnetism and optical flux lattices for ultra cold atoms Artificial magnetism and optical flux lattices for ultra cold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania Kraków, QTC, 31 August 2011

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Adiabatic Control of Atomic Dressed States for Transport and Sensing

Adiabatic Control of Atomic Dressed States for Transport and Sensing Adiabatic Control of Atomic Dressed States for Transport and Sensing N. R. Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 HE, United Kingdom A.

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

Creating novel quantum phases by artificial magnetic fields

Creating novel quantum phases by artificial magnetic fields Creating novel quantum phases by artificial magnetic fields Gunnar Möller Cavendish Laboratory, University of Cambridge Theory of Condensed Matter Group Cavendish Laboratory Outline A brief introduction

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Will be published: Phys. Rev. Lett. 96, (2006)

Will be published: Phys. Rev. Lett. 96, (2006) Will be published: Phys. Rev. Lett. 96, 230402 (2006) Vortex-lattice melting in a one-dimensional optical lattice Michiel Snoek and H. T. C. Stoof Institute for Theoretical Physics, Utrecht University,

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Measuring many-body topological invariants using polarons

Measuring many-body topological invariants using polarons 1 Anyon workshop, Kaiserslautern, 12/15/2014 Measuring many-body topological invariants using polarons Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Ψ(r 1, r 2 ) = ±Ψ(r 2, r 1 ).

Ψ(r 1, r 2 ) = ±Ψ(r 2, r 1 ). Anyons, fractional charges, and topological order in a weakly interacting system M. Franz University of British Columbia franz@physics.ubc.ca February 16, 2007 In collaboration with: C. Weeks, G. Rosenberg,

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Artificial electromagnetism and spin-orbit coupling for ultracold atoms

Artificial electromagnetism and spin-orbit coupling for ultracold atoms Artificial electromagnetism and spin-orbit coupling for ultracold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania *******************************************************************

More information

Experimental reconstruction of the Berry curvature in a topological Bloch band

Experimental reconstruction of the Berry curvature in a topological Bloch band Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015) Topological Insulators

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

The Half-Filled Landau Level

The Half-Filled Landau Level Nigel Cooper Department of Physics, University of Cambridge Celebration for Bert Halperin s 75th January 31, 2017 Chong Wang, Bert Halperin & Ady Stern. [C. Wang, NRC, B. I. Halperin & A. Stern, arxiv:1701.00007].

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Phases of strongly-interacting bosons on a two-leg ladder

Phases of strongly-interacting bosons on a two-leg ladder Phases of strongly-interacting bosons on a two-leg ladder Marie Piraud Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich April 20, 2015 M. Piraud Phases of strongly-interacting bosons on a

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

ĝ r = {R v} r = R r + v.

ĝ r = {R v} r = R r + v. SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS134 Topological semimetal in a fermionic optical lattice Kai Sun, 1 W. Vincent Liu,, 3, 4 Andreas Hemmerich, 5 and S. Das Sarma 1 1 Condensed Matter Theory Center

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Φ q Φ q Φ q T. Dubček 1, M. Todorić 1, B. Klajn 1, C. J. Kennedy 2, L. Lu 2, R. Pezer 5, D. Radić 1, D. Jukić 4, W. Ketterle 2, M. Soljačić

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

Quantum simulation of an extra dimension

Quantum simulation of an extra dimension Quantum simulation of an extra dimension Alessio Celi based on PRL 108, 133001 (2012), with O. Boada, J.I. Latorre, M. Lewenstein, Quantum Technologies Conference III QTC III, Warzsawa, 14/09/2012 p. 1/14

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES

TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES Pietro Massignan Quantum Optics Theory Institute of Photonic Sciences Barcelona QuaGATUA (Lewenstein) 1 in collaboration with Maciej Lewenstein Anna Kubasiak

More information

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015 Synthetic gauge fields in Bose-Einstein Condensates 1 Alexander Fetter Stanford University University of Hannover, May 2015 1. Two-component trapped spin-orbit coupled Bose-Einstein condensate (BEC) 2.

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

The Quantum Hall Effect

The Quantum Hall Effect The Quantum Hall Effect David Tong (And why these three guys won last week s Nobel prize) Trinity Mathematical Society, October 2016 Electron in a Magnetic Field B mẍ = eẋ B x = v cos!t! y = v sin!t!!

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Gunnar Möller Cavendish Laboratory, University of Cambridge Collaborators: Arkadiusz Wójs, Nigel R. Cooper Cavendish Laboratory, University

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime CHINESE JOURNAL OF PHYSICS VOL. 42, NO. 3 JUNE 2004 Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime Tse-Ming Chen, 1 C.-T.

More information

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo University of Oxford 12-15 April, 2016 Exchange statistics Basic concepts Jon Magne Leinaas Department of Physics University of Oslo Outline * configuration space with identifications * from permutations

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Spin-orbit coupling and topological phases for ultracold atoms

Spin-orbit coupling and topological phases for ultracold atoms Spin-orbit coupling and topological phases for ultracold atoms Long Zhang 1, 2 and Xiong-Jun Liu 1, 2 1 International Center for Quantum Materials, School of Physics, Peing University, Beijing 100871,

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cost{ e g + g e }  = q e r g E e = h" 0 The Two Level Atom h" e h" h" 0 E g = " h# 0 g H A = h" 0 { e e # g g } r " = q e r g { } + r $ E r cos"t{ e g + g e } The Two Level Atom E e = µ bb 0 h" h" " r B = B 0ˆ z r B = B " cos#t x

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Synthetic topology and manybody physics in synthetic lattices

Synthetic topology and manybody physics in synthetic lattices Synthetic topology and manybody physics in synthetic lattices Alessio Celi EU STREP EQuaM May 16th, 2017 Atomtronics - Benasque Plan Integer Quantum Hall systems and Edge states Cold atom realizations:

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information