Conformal Field Theory of Composite Fermions in the QHE

Size: px
Start display at page:

Download "Conformal Field Theory of Composite Fermions in the QHE"

Transcription

1 Conformal Field Theory of Composite Fermions in the QHE Andrea Cappelli (INFN and Physics Dept., Florence) Outline Introduction: wave functions, edge excitations and CFT CFT for Jain wfs: Hansson et al. results CFT for Jain wfs: W-infinity minimal models independent derivation of Jain wfs from symmetry arguments CFT suggests non-abelian statistics of quasi-holes

2 Quantum Hall Effect dim electron gas at low temperature T ~ 10 mk B y x and high magnetic field B ~ 10 Tesla J y E x Conductance tensor J i = ¾ ij E j ; ¾ ij = R 1 ij ; i; j = x; y Plateaux: ¾ xx = 0; R xx = 0 no Ohmic conduction gap ¾ xy = R xy 1 = e h º; º = 1( 10 8 ); ; 3; : : : 1 3 ; 5 ; : : : ; 5 ; High precision & universality Uniform density ground state: ½ o = eb hc º Incompressible fluid

3 Laughlin's quantum incompressible fluid Electrons form a droplet of fluid: incompressible = gap fluid = ½ ½ ½(x; y) = ½ o = const: x y q N º R # degenerate orbitals = # quantum fluxes D A = BA o ; o = hc e filling fraction: º = N D A = 1; ; : : : 1 3 ; 1 5 ; : : : density for quantum mech. º = 1 º = 1 3

4 Laughlin's wave function ª gs (z 1 ; z ; : : : ; z N ) = Y i<j (z i z j ) k+1 e P jz i j = º = 1 k+1 = 1; 1 3 ; 1 5 ; : : : º = 1 filled Landau level: obvious gap º = 1 3 non-perturbative gap due to Coulomb interaction effective theories! = eb mc À kt quasi-holes = vortices ª = Y i ( z i ) ª gs ª 1; = ( 1 ) 1 k+1 Y ( 1 z i ) ( z i ) ª gs i fractional charge Q = e k+1 & statistics µ ¼ = 1 k+1 Anyons vortices with long-range topological correlations

5 Conformal field theory of edge excitations The edge of the droplet can fluctuate: edge waves are massless t V ½ Fermi surface µ R / J edge ~ Fermi surface: linearize energy "(k) = v R (k k F ); k = 0; 1; : : : relativistic field theory in 1+1 dimensions, chiral (X.G.Wen '89) chiral compactified c=1 CFT (chiral Luttinger liquid)

6 CFT descriptions of QHE r z = re iµ ³ = e e iµ plane (bulk excit) cylinder (edge excit) µ (z 1 z ) anyon wavefunction h Á 1 Á i CF T (³ 1 ³ ) edge-excit. correlator wavefunctions: spectrum of anyons and braiding matrices edge correlators: physics of conduction experiments equivalence of descriptions: analytic continuation from the circle, use map CFT Chern-Simons theory in +1 dim general CFT is U(1) x neutral

7 Non-Abelian fractional statistics º = 5 described by Moore-Read Pfaffian state ~ Ising CFT x U(1) I Ã Ising fields: identity, Majorana = electron, spin = anyon fusion rules: Ã Ã = I electrons fuse into a bosonic bound state ¾ ¾ = I + Ã channels of fusion = conformal blocks h¾(0)¾(z)¾(1)¾(1)i = a 1 F 1 (z) + a F (z) ¾ state of 4 anyons is two-fold degenerate (Moore, Read '91) statistics of anyons ~ analytic continuation x matrix µ F1 F ze i¼ = µ µ F1 F 1 + (z 1)e i¼ = µ F1 (z) F µ µ F1 (z) F 0 z z 1 1 (all CFT redone for Q. Computation: M. Freedman, Kitaev, Nayak, Slingerland,...)

8 ª º= 1 p+1 = Y i<j z p ij Jain composite fermion Correspondence FQHE IQHE generalize to n filled Landau levels ª º= n np+1 = P LLL Y i<j z ij = Y i<j N N e = 1 º = p º = 1 B 1 º = p + 1 n Y z p ij ª º =n (¹z i ; z i ) i<j z p ij ª º=1; p even z ij = z i z j composite fermion: quasiparticle feeling the reduced B = B p ½ o 1 º = 1 n B many experimental confirmations + mean field theory (Lopez, Fradkin;...) ª º= n written directly in LLL using projection ¹z zi in np+1 ª º =n (Jain, Kamilla '97)

9 CFT for Jain: Hansson et al. ('07-'11) ª º= p+1 = A 4 N= Y w p+1 zn= 3 N= N= Y Y z p+1 ij (zi w j ) p 5 1 º = p + 1 result based on non-trivial algebraic identites recover Abelian two-component edge theory ª º= p+1 = A (@ z1 V + zn= V + V V but there is more: K = µ p + 1 p p p + 1 (Wen, Zee; Read,...) V = e ip p+ 1 ' e i 1 p Á charged neutral A : two fermions V + ; V one fermion descendant fields needed for non-vanishing result, yield correct shift Next: find improved CFT that complete the derivation

10 W-infinity symmetry Area-preserving diffeomorphisms of incompressible fluid Z d x ½(x) = N = ½ o A A = constant A A W-infinity symmetry can be implemented in the edge CFT CFT with higher currents characteristic of 1d fermions (+ bosonization) W k =: ¹F (@ z ) k F :; W 0 = ¹F F = J; W 1 = T =: J :; W =: J 3 :; representations completely known classification (V.Kac, A. Radul '9) c = n generically reproduce Abelian theories [U(1) n with K matrices but special representations for enhanced symmetry [U(1) \ SU(n) 1

11 W-infinity minimal models repres. with enhanced symmetry are degenerate and should be projected: W 1 minimal models (A.C., Trugenberger, Zemba '93-'99) [U(1) n! [ U(1) \ SU(n) 1! [ U(1) \ SU(n) 1 SU(n) = [ U(1) W n these edge theories reproduce Jain fillings, with usual K matrices for charge and statistics extra projection of SU(n) amounts to keeping edge excitations completely symmetric w.r.t. layer exchanges: single electron excitation reduced multiplicities of edge states non-abelian statistics of quasi-particles & electron (see later) º = n p n 1

12 Ex: c= minimal model [U(1) \ SU() 1! [ U(1) \ SU() 1 SU() = [ U(1) Vir c = ; 1 º = p + 1 Vir = SU() Casimir subalgebra take edge excitations symmetric w.r.t. two layers only neutral part is described by the Virasoro minimal model for c! 1 fields characterized by dimension h = k 4 i.e. total spin s = k ; NO electron has s = 1 s z identify two vertex operators by Dotsenko-Fateev screening operators V = e i p Á ; s z = 1 ; V» V + = Q + V ; Q + = J + 0 = I duj + (u) Q (Felder)

13 Derivation of Jain wf in Hansson et al. form use W-infinity minimal models to describe ground state wf 4-el. wf has two channels,, given by choices of ª = I C 1 J + 1 ª 1 ª = f0g + f1g I À J + V (z 1 )V (z )V (z 3 )V (z 4 ) C C C 1 C i z 1 z z 3 z 4 impose antisymm of electrons ª = 0 consider descendant with same charge: J + 0! J+ 1 = L 1J + 0 ; J + 1 z V + ª 0 = J + 1 V (z 1 ) J + 1 V (z ) V (z 3 ) V (z 4 ) + perm = ª Jain Underlying theory of Jain wf is W-infinity minimal model + Fermi statistics for electrons Indipendent, exact derivation of Jain state from symmetry principles universality, robustness, etc.

14 ª º= p+1 = A 4 N= Jain wf vs. Pfaffian wf Y w p+1 zn= 3 N= N= Y Y z p+1 ij (zi w j ) p 5 ; 1 º = p + 1 reminds of Paffian state in Abelian version (A.C, Georgiev, Todorov '01) N= Y ª Pfa = A 4 w M+ ij 3 N= N= Y Y z M+ ij (zi w j ) M 5 ; M odd; K = µ M + M M M + same vanishing behaviour: ª» z p 1 1 z 13 z 14 ; ª» (z 1 z 13 z 3 ) p 1 z 14 z 15 ; 1 º = p º = p p = 1 Jain is excited state of the M = 0 Pfaffian same pairing? fractional statistics? cf. Simon, Rezayi, Cooper '07; Regnault, Bernevig, Haldane '09

15 Pfaffian state & excitations 3 N= N= Y Y NY ª Pfa = S 4 w ij z ij 5 = zij Pf µ 1 z ij ; M = 0; projection = symmetric layers, Â 1 Â! Â 1 Weyl Majorana ground state & excitations are singlets distinguishable excit. (Abelian) identical excit. (non-abelian) 3-body pseudo-potential (Read, Rezayi '99) Jain state & excitations ground state: SU() singlet (up to short-distance deformation ) excitations: distinguishable Abelian also singlets ( irrep.) non-abelian W 1

16 Non-Abelian statistics of Jain quasiholes smallest q-hole, e.g. Q = 1 at, has neutral part : 5 º = s = 1 5 two components s z = 1 identified by the projection H +» J 0 + H i.e. q-holes in two layers are symmetrized f H H» H s=1 H + H» H s=0 = I HH» I + H s=1 fusion non-abelian statistics first non-trivial case is 4 q-holes: three independent states ª (1;34) = A zi DH + ( 1)H + ( )H ( 3)H ( 4) Y E V e (z i ) + (+ $ ) ª (13;4) = A zi h(+ + )i ; ª (14;3) = A zi h(+ +)i they trasform among themselves under monodromy multidimensional representation projection: permutation of different excit. exchange of identical excit.

17 Remarks k quasiholes have quantum dimension d k» k (not Rational CFT) other Jain q-holes: h(+ + ++)i, odd no., antisymm combinations, are projected out in the minimal theory. W 1 Jain quasi-particles & hierarchy (after Hansson et al.) also fit in edge is consistently non-abelian (long-distance physics) p k But W 1 energetics of projection not understood (in the bulk) entaglement spectrum does not seem to show projection

18 Conclusions CFT + W-infinity symmetry rederive Jain states independently of composite fermion picture Jain states are consistent & universal same CFT hints at non-abelian q-hole excitations open problems: investigate space of states and energy spectrum relation to Pfaffian and Gaffnian states and their CFTs experimental tests: thermopower, if measure can be extended to higher B puzzles in known experiments?

Non-Abelian Anyons in the Quantum Hall Effect

Non-Abelian Anyons in the Quantum Hall Effect Non-Abelian Anyons in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with L. Georgiev (Sofia), G. Zemba (Buenos Aires), G. Viola (Florence) Outline Incompressible Hall fluids:

More information

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence)

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence) Anyon Physics Andrea Cappelli (INFN and Physics Dept., Florence) Outline Anyons & topology in 2+ dimensions Chern-Simons gauge theory: Aharonov-Bohm phases Quantum Hall effect: bulk & edge excitations

More information

Nonabelian hierarchies

Nonabelian hierarchies Nonabelian hierarchies collaborators: Yoran Tournois, UzK Maria Hermanns, UzK Hans Hansson, SU Steve H. Simon, Oxford Susanne Viefers, UiO Quantum Hall hierarchies, arxiv:1601.01697 Outline Haldane-Halperin

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Multipole Expansion in the Quantum Hall Effect

Multipole Expansion in the Quantum Hall Effect Multipole Expansion in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with E. Randellini (Florence) Outline Chern-Simons effective action: bulk and edge Wen-Zee term: shift

More information

From Luttinger Liquid to Non-Abelian Quantum Hall States

From Luttinger Liquid to Non-Abelian Quantum Hall States From Luttinger Liquid to Non-Abelian Quantum Hall States Jeffrey Teo and C.L. Kane KITP workshop, Nov 11 arxiv:1111.2617v1 Outline Introduction to FQHE Bulk-edge correspondence Abelian Quantum Hall States

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Unified Description of (Some) Unitary and Nonunitary FQH States

Unified Description of (Some) Unitary and Nonunitary FQH States Unified Description of (Some) Unitary and Nonunitary FQH States B. Andrei Bernevig Princeton Center for Theoretical Physics UIUC, October, 2008 Colaboration with: F.D.M. Haldane Other parts in collaboration

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Topological Quantum Computation A very basic introduction

Topological Quantum Computation A very basic introduction Topological Quantum Computation A very basic introduction Alessandra Di Pierro alessandra.dipierro@univr.it Dipartimento di Informatica Università di Verona PhD Course on Quantum Computing Part I 1 Introduction

More information

Fractional Quantum Hall States with Conformal Field Theories

Fractional Quantum Hall States with Conformal Field Theories Fractional Quantum Hall States with Conformal Field Theories Lei Su Department of Physics, University of Chicago Abstract: Fractional quantum Hall (FQH states are topological phases with anyonic excitations

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Partition Functions of Non-Abelian Quantum Hall States

Partition Functions of Non-Abelian Quantum Hall States DIPARTIMENTO DI FISICA E ASTRONOMIA UNIVERSITÀ DEGLI STUDI DI FIRENZE Scuola di Dottorato in Scienze Dottorato di Ricerca in Fisica - XXIII ciclo SSD FIS/02 Dissertation in Physics to Obtain the Degree

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

Topological Quantum Computation from non-abelian anyons

Topological Quantum Computation from non-abelian anyons Topological Quantum Computation from non-abelian anyons Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Quantum numbers and collective phases of composite fermions

Quantum numbers and collective phases of composite fermions Quantum numbers and collective phases of composite fermions Quantum numbers Effective magnetic field Mass Magnetic moment Charge Statistics Fermi wave vector Vorticity (vortex charge) Effective magnetic

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

MPS formulation of quasi-particle wave functions

MPS formulation of quasi-particle wave functions MPS formulation of quasi-particle wave functions Eddy Ardonne Hans Hansson Jonas Kjäll Jérôme Dubail Maria Hermanns Nicolas Regnault GAQHE-Köln 2015-12-17 Outline Short review of matrix product states

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE:

THE CASES OF ν = 5/2 AND ν = 12/5. Reminder re QHE: LECTURE 6 THE FRACTIONAL QUANTUM HALL EFFECT : THE CASES OF ν = 5/2 AND ν = 12/5 Reminder re QHE: Occurs in (effectively) 2D electron system ( 2DES ) (e.g. inversion layer in GaAs - GaAlAs heterostructure)

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev. B92 (2015) 235105 Huajia Wang University of Illinois Urbana Champaign Introduction/Motivation

More information

Criticality in topologically ordered systems: a case study

Criticality in topologically ordered systems: a case study Criticality in topologically ordered systems: a case study Fiona Burnell Schulz & FJB 16 FJB 17? Phases and phase transitions ~ 194 s: Landau theory (Liquids vs crystals; magnets; etc.) Local order parameter

More information

Composite 21

Composite 21 Composite fermions @ 21 A recap of the successes of the CF theory as it steps into adulthood, with emphasis on some aspects that are not widely known or appreciated. CF pairing at 5/2? Nature of FQHE for

More information

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics F.E. Camino, W. Zhou and V.J. Goldman Stony Brook University Outline Exchange statistics in 2D,

More information

Classify FQH states through pattern of zeros

Classify FQH states through pattern of zeros Oct 25, 2008; UIUC PRB, arxiv:0807.2789 PRB, arxiv:0803.1016 Phys. Rev. B 77, 235108 (2008) arxiv:0801.3291 Long range entanglement and topological order We used to believe that symmetry breaking describe

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015 Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015 Contents Why are the fractional quantum Hall liquids amazing! Abelian quantum Hall liquids: Laughlin

More information

The Moore-Read Quantum Hall State: An Overview

The Moore-Read Quantum Hall State: An Overview The Moore-Read Quantum Hall State: An Overview Nigel Cooper (Cambridge) [Thanks to Ady Stern (Weizmann)] Outline: 1. Basic concepts of quantum Hall systems 2. Non-abelian exchange statistics 3. The Moore-Read

More information

Non-abelian statistics

Non-abelian statistics Non-abelian statistics Paul Fendley Non-abelian statistics are just plain interesting. They probably occur in the ν = 5/2 FQHE, and people are constructing time-reversal-invariant models which realize

More information

Topology driven quantum phase transitions

Topology driven quantum phase transitions Topology driven quantum phase transitions Dresden July 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Charlotte Gils Alexei Kitaev Andreas Ludwig Matthias Troyer Zhenghan Wang Topological quantum

More information

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study IASSNS-HEP-90/70 Sep. 1990 Non-Abelian Statistics in the Fractional Quantum Hall States * X. G. Wen School of Natural Sciences Institute of Advanced Study Princeton, NJ 08540 ABSTRACT: The Fractional Quantum

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Hall Viscosity of Hierarchical Quantum Hall States

Hall Viscosity of Hierarchical Quantum Hall States M. Fremling, T. H. Hansson, and J. Suorsa ; Phys. Rev. B 89 125303 Mikael Fremling Fysikum Stockholm University, Sweden Nordita 9 October 2014 Outline 1 Introduction Fractional Quantum Hall Eect 2 Quantum

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2

Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Neutral Fermions and Skyrmions in the Moore-Read state at ν =5/2 Gunnar Möller Cavendish Laboratory, University of Cambridge Collaborators: Arkadiusz Wójs, Nigel R. Cooper Cavendish Laboratory, University

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Cornell University, August 2015 Outline of part II Ex. 4: Laughlin fracaonal quantum Hall states Ex. 5:

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

Physics 250 Fall 2014: Set 4 of lecture notes

Physics 250 Fall 2014: Set 4 of lecture notes Physics 250 Fall 2014: Set 4 of lecture notes Joel E. Moore, UC Berkeley and LBNL (Dated: October 13, 2014) I. FRACTIONAL QUANTUM HALL BASICS (VERY BRIEF) FQHE background: in class we gave some standard

More information

Realizing non-abelian statistics in quantum loop models

Realizing non-abelian statistics in quantum loop models Realizing non-abelian statistics in quantum loop models Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Anyons and topological quantum computing

Anyons and topological quantum computing Anyons and topological quantum computing Statistical Physics PhD Course Quantum statistical physics and Field theory 05/10/2012 Plan of the seminar Why anyons? Anyons: definitions fusion rules, F and R

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Jiannis K. Pachos. Introduction. Berlin, September 2013

Jiannis K. Pachos. Introduction. Berlin, September 2013 Jiannis K. Pachos Introduction Berlin, September 203 Introduction Quantum Computation is the quest for:» neat quantum evolutions» new quantum algorithms Why? 2D Topological Quantum Systems: How? ) Continuum

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

arxiv: v1 [cond-mat.str-el] 21 Apr 2009

arxiv: v1 [cond-mat.str-el] 21 Apr 2009 , Effective field theories for the ν = 5/2 edge. Alexey Boyarsky,,2 Vadim Cheianov, 3 and Jürg Fröhlich Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich, Switzerland 2 Bogolyubov Institute

More information

Aharonov-Bohm effect in the non-abelian quantum Hall fluid

Aharonov-Bohm effect in the non-abelian quantum Hall fluid PHYSICAL REVIEW B 73, 0530 006 Aharonov-Bohm effect in the non-abelian quantum Hall fluid Lachezar S. Georgiev Michael R. Geller Institute for Nuclear Research Nuclear Energy, 7 Tsarigradsko Chaussee,

More information

Modular Invariant Partition Functions in the Quantum Hall Effect

Modular Invariant Partition Functions in the Quantum Hall Effect Modular Invariant Partition Functions in the Quantum Hall Effect DFF 249/5/96 hep-th/960527 Andrea CAPPELLI I.N.F.N. and Dipartimento di Fisica, Largo E. Fermi 2, I-5025 Firenze, Italy Guillermo R. ZEMBA

More information

arxiv: v1 [cond-mat.str-el] 3 Oct 2011

arxiv: v1 [cond-mat.str-el] 3 Oct 2011 Quasiparticles and excitons for the Pfaffian quantum Hall state Ivan D. Rodriguez 1, A. Sterdyniak 2, M. Hermanns 3, J. K. Slingerland 1,4, N. Regnault 2 1 Department of Mathematical Physics, National

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 27 Sep 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 27 Sep 2006 arxiv:cond-mat/0607743v2 [cond-mat.mes-hall] 27 Sep 2006 Topological degeneracy of non-abelian states for dummies Masaki Oshikawa a Yong Baek Kim b,c Kirill Shtengel d Chetan Nayak e,f Sumanta Tewari g

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Quantum computation in topological Hilbertspaces A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Introduction In two words what is it about? Pushing around fractionally

More information

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017

Fractional quantum Hall effect and duality. Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Fractional quantum Hall effect and duality Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 Plan Fractional quantum Hall effect Halperin-Lee-Read (HLR) theory Problem

More information

Topological quantum computation and quantum logic

Topological quantum computation and quantum logic Topological quantum computation and quantum logic Zhenghan Wang Microsoft Station Q UC Santa Barbara Microsoft Project Q: Search for non-abelian anyons in topological phases of matter, and build a topological

More information

Holographic Anyonic Superfluids

Holographic Anyonic Superfluids Holographic Anyonic Superfluids Matt Lippert (Amsterdam) with Niko Jokela (USC) and Gilad Lifschytz (Haifa) Plan Anyons, SL(2,Z), and Quantum Hall Effect Superfluids and Anyon Superfliuds A Holographic

More information

Detecting signatures of topological order from microscopic Hamiltonians

Detecting signatures of topological order from microscopic Hamiltonians Detecting signatures of topological order from microscopic Hamiltonians Frank Pollmann Max Planck Institute for the Physics of Complex Systems FTPI, Minneapolis, May 2nd 2015 Detecting signatures of topological

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Boundary Degeneracy of Topological Order

Boundary Degeneracy of Topological Order Boundary Degeneracy of Topological Order Juven Wang (MIT/Perimeter Inst.) - and Xiao-Gang Wen Mar 15, 2013 @ PI arxiv.org/abs/1212.4863 Lattice model: Toric Code and String-net Flux Insertion What is?

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Infinite Symmetry in the Fractional Quantum Hall Effect

Infinite Symmetry in the Fractional Quantum Hall Effect BONN-HE-93-29 hep-th/9309083 September 993 arxiv:hep-th/9309083v 5 Sep 993 Infinite Symmetry in the Fractional Quantum Hall Effect Michael Flohr and Raimund Varnhagen Physikalisches Institut der Universität

More information

Topological Phases under Strong Magnetic Fields

Topological Phases under Strong Magnetic Fields Topological Phases under Strong Magnetic Fields Mark O. Goerbig ITAP, Turunç, July 2013 Historical Introduction What is the common point between graphene, quantum Hall effects and topological insulators?...

More information

arxiv: v2 [cond-mat.str-el] 3 Jan 2019

arxiv: v2 [cond-mat.str-el] 3 Jan 2019 Emergent Commensurability from Hilbert Space Truncation in Fractional Quantum Hall Fluids arxiv:1901.00047v2 [cond-mat.str-el] 3 Jan 2019 Bo Yang 1, 2 1 Division of Physics and Applied Physics, Nanyang

More information

The Haldane-Rezayi Quantum Hall State and Conformal Field. Theory

The Haldane-Rezayi Quantum Hall State and Conformal Field. Theory IASSNS-HEP-97/5, NSF-ITP-97-014, cond-mat/9701212 The Haldane-Rezayi Quantum Hall State and Conformal Field Theory V. Gurarie and M. Flohr Institute for Advanced Study, Olden Lane, Princeton, N.J. 08540

More information

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 24 Jan 2000

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 24 Jan 2000 Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries, and the fractional quantum Hall effect arxiv:cond-mat/9906453v3 [cond-mat.mes-hall] 24 Jan 2000 N. Read

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Nematic Order and Geometry in Fractional Quantum Hall Fluids

Nematic Order and Geometry in Fractional Quantum Hall Fluids Nematic Order and Geometry in Fractional Quantum Hall Fluids Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory University of Illinois, Urbana, Illinois, USA Joint Condensed

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo University of Oxford 12-15 April, 2016 Exchange statistics Basic concepts Jon Magne Leinaas Department of Physics University of Oslo Outline * configuration space with identifications * from permutations

More information

Creating novel quantum phases by artificial magnetic fields

Creating novel quantum phases by artificial magnetic fields Creating novel quantum phases by artificial magnetic fields Gunnar Möller Cavendish Laboratory, University of Cambridge Theory of Condensed Matter Group Cavendish Laboratory Outline A brief introduction

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Topological Entanglement Entropy from the Holographic Partition Function

Topological Entanglement Entropy from the Holographic Partition Function Journal of Statistical Physics, Vol. 126, No. 6, March 2007 ( C 2007 ) DOI: 10.1007/s10955-006-9275-8 Topological Entanglement Entropy from the Holographic Partition Function Paul Fendley, 1 Matthew P.

More information

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Outline 1. Introduction: phase transitions and order. 2. The Landau symmetry

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z2 topological order

Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z2 topological order Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z topological order The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Topology of electronic bands and Topological Order

Topology of electronic bands and Topological Order Topology of electronic bands and Topological Order R. Shankar The Institute of Mathematical Sciences, Chennai TIFR, 26 th April, 2011 Outline IQHE and the Chern Invariant Topological insulators and the

More information

Modern Statistical Mechanics Paul Fendley

Modern Statistical Mechanics Paul Fendley Modern Statistical Mechanics Paul Fendley The point of the book This book, Modern Statistical Mechanics, is an attempt to cover the gap between what is taught in a conventional statistical mechanics class

More information

Fractional Charge. Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks.

Fractional Charge. Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks. Fractional Charge Particles with charge e/3 and e/5 have been observed experimentally......and they re not quarks. 1 Outline: 1. What is fractional charge? 2. Observing fractional charge in the fractional

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Sep 1998

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Sep 1998 Persistent Edge Current in the Fractional Quantum Hall Effect Kazusumi Ino arxiv:cond-mat/989261v1 cond-mat.mes-hall] 19 Sep 1998 Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1,

More information

arxiv:hep-th/ v1 2 Feb 1999

arxiv:hep-th/ v1 2 Feb 1999 hep-th/9902026 arxiv:hep-th/9902026v 2 Feb 999 U() SU(m) Theory and c = m W + Minimal Models in the Hierarchical Quantum Hall Effect Marina HUERTA Centro Atómico Bariloche and Instituto Balseiro, C. N.

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Edge Transport in Quantum Hall Systems

Edge Transport in Quantum Hall Systems Lectures on Mesoscopic Physics and Quantum Transport, June 15, 018 Edge Transport in Quantum Hall Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Theory of edge states in IQHE Edge excitations

More information

Anyonic Quantum Computing

Anyonic Quantum Computing Anyonic Quantum Computing 1. TQFTs as effective theories of anyons 2. Anyonic models of quantum computing (anyon=particle=quasi-particle) Topological quantum computation: 1984 Jones discovered his knot

More information

The Quantum Hall Effect

The Quantum Hall Effect The Quantum Hall Effect David Tong (And why these three guys won last week s Nobel prize) Trinity Mathematical Society, October 2016 Electron in a Magnetic Field B mẍ = eẋ B x = v cos!t! y = v sin!t!!

More information

An origin of light and electrons a unification of gauge interaction and Fermi statistics

An origin of light and electrons a unification of gauge interaction and Fermi statistics An origin of light and electrons a unification of gauge interaction and Fermi statistics Michael Levin and Xiao-Gang Wen http://dao.mit.edu/ wen Artificial light and quantum orders... PRB 68 115413 (2003)

More information