Holographic Kondo and Fano Resonances

Size: px
Start display at page:

Download "Holographic Kondo and Fano Resonances"

Transcription

1 Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017

2 Credits Johanna Erdmenger Würzburg Carlos Hoyos Oviedo Ioannis Papadimitriou Trieste Jonas Probst Oxford Jackson Wu Alabama

3 Credits Based on Erdmenger, Hoyos, A.O B., Papadimitriou, Probst, Wu Erdmenger, Flory, Hoyos, Newrzella, A.O B., Wu Erdmenger, Flory, Hoyos, Newrzella, Wu O B., Papadimitriou, Probst Erdmenger, Hoyos, O B., Wu

4 Outline: Kondo Effect Holographic Kondo Model Holographic Two-Point Functions Holography vs. Quantum Dots Summary and Outlook

5 Kondo Effect The screening of a magnetic moment by conduction electrons at low temperatures

6 µ gs

7 Kondo Hamiltonian 1 H K = k, (k) c k c k + g K S k k c k 2 c k c k, c k Conduction electrons =, Spin SU(2) c k e i c k Charge U(1) (k) = k2 2m F Dispersion relation

8 Kondo Hamiltonian 1 H K = k, (k) c k c k + g K S k k c k 2 c k S Spin of magnetic impurity Pauli matrices g K Kondo coupling g K < 0 Ferromagnetic g K > 0 Anti-Ferromagnetic

9 Running of the Coupling g K g 2 K + O(g3 K ) g K > 0 Asymptotic freedom! UV g K 0 IR g K Kondo Temperature T K QCD

10 Kondo Problem What is the ground state? What is the spectrum of excitations about the ground state? The coupling diverges at low energy! We know the answer!

11 Solutions of the Kondo Problem Numerical RG (Wilson 1975) Fermi liquid description (Nozières 1975) Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, s) Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, s) Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino, s) Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)

12 UV Fermi liquid + decoupled spin (a) T >> T K (b) T < T K size 1/T K IR Kondo screening cloud

13 UV Fermi liquid + decoupled spin (a) T >> T K (b) T < T K size 1/T K IR The NET spin of the Kondo screening cloud equals that of a single electron

14 UV Fermi liquid + decoupled spin The Kondo screening cloud spin binds with the impurity spin Anti-symmetric singlet of SU(2) 1 2 ( i e i e ) IR Kondo singlet

15 UV Fermi liquid + decoupled spin Fermi liquid + IR NON-MAGNETIC impurity

16 Kondo Effect in Many Systems Alloys Cu, Ag, Au, Mg, Zn,... doped with Cr, Fe, Mo, Mn, Re, Os,... Quantum dots 8 200nm Goldhaber-Gordon, et al., Nature 391 (1998), Cronenwett, et al., Science 281 (1998), no. 5376,

17 Generalizations Enhance the spin group SU(2) SU(N) Representation of impurity spin s imp =1/2 R imp Multiple channels or flavors c c =1,...,k U(1) SU(k)

18 Generalizations Kondo model specified by N, k, R imp Apply the techniques mentioned above IR fixed point: NOT always a fermi liquid Non-Fermi liquids

19 Open Problems Non-Equilibrium Physics Latta et al Entanglement Entropy Affleck, Laflorencie, Sørensen Kondo Lattice Kondo S i S j Form singlets with electrons Form singlets with each other Does the competition produce a quantum phase transition? What if we replace the Fermi liquid with STRONGLY INTERACTING degrees of freedom?

20 Open Problems Non-Equilibrium Physics Latta et al Entanglement Entropy Affleck, Laflorencie, Sørensen Let s try AdS/CFT! Kondo Lattice Kondo S i S j Form singlets with electrons Form singlets with each other Does the competition produce a quantum phase transition? What if we replace the Fermi liquid with STRONGLY INTERACTING degrees of freedom?

21 Open Problems Non-Equilibrium Physics THIS TALK Entanglement Entropy Erdmenger, Flory, Hoyos, Newrzella, Wu Kondo Lattice A. O B., Papadimitriou, Probst What if we replace the Fermi liquid with STRONGLY INTERACTING degrees of freedom? Erdmenger, Hoyos, O B., Wu

22 GOAL Compute 2-point functions in a holographic single-impurity Kondo model. Retarded Green s Function G(!) Spectral Function (!) 2ImG(!)

23 GOAL Compute 2-point functions in a holographic single-impurity Kondo model. Retarded Green s Function G(!) Z!! p pole Spectral Function (!) 2ImG(!) peak

24 Advertisement Compute 2-point functions in a holographic single-impurity Kondo model. Quantum Quenches in a Holographic Kondo Model Erdmenger, Flory, Newrzella, Strydom, Wu

25 Solutions of the Kondo Problem Numerical RG (Wilson 1975) Fermi liquid description (Nozières 1975) Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, s) Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, s) Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino, s) Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)

26 CFT Approach to the Kondo Effect Affleck and Ludwig 1990s Reduction to one dimension Kondo interaction preserves spherical symmetry g K 3 (x ) S c (x ) 1 2 c (x ) restrict to s-wave linearize around k F c(x ) 1 r e ik F r L (r) e +ik F r R (r)

27 L r r =0 R R(+r) L( r) L L r r =0

28 CFT Approach to the Kondo Effect H K = v F 2 + dr L i r L + (r) g K S L L g K k 2 F 2 2 v F g K RELATIVISTIC chiral fermions v F = speed of light chiral CFT! Single left-moving Virasoro algebra

29 Spin SU(N) k>1 J = L L U(1) J = L L SU(N) J A = L ta L SU(k) Kac-Moody Algebra SU(N) k SU(k) N U(1) kn

30 CFT Approach to the Kondo Effect H K = v F 2 + dr L i r L + (r) g K S L L Full symmetry: single Virasoro algebra SU(N) k SU(k) N U(1) kn

31 CFT Approach to the Kondo Effect H K = v F 2 + dr L i r L + (r) g K S L L J = L L U(1) J = L L SU(N) J A = L ta L SU(k) Kondo coupling: S J classically marginal

32 UV SU(N) k SU(k) N U(1) Nk Eigenstates are representations of the Kac-Moody algebra Determine mapping between UV and IR eigenstates R UV highest weight R imp = R IR highest weight IR SU(N) k SU(k) N U(1) Nk

33 CFT Approach to the Kondo Effect Take-Away Messages Central role of the Kac-Moody Algebra Kondo coupling: S J classically marginal

34 Solutions of the Kondo Problem Numerical RG (Wilson 1975) Fermi liquid description (Nozières 1975) Bethe Ansatz/Integrability (Andrei, Wiegmann, Tsvelick, Destri, s) Large-N expansion (Anderson, Read, Newns, Doniach, Coleman, s) Quantum Monte Carlo (Hirsch, Fye, Gubernatis, Scalapino, s) Conformal Field Theory (CFT) (Affleck and Ludwig 1990s)

35 Large-N Approach to the Kondo Effect Spin SU(N) N with Ng K fixed R imp = anti-symm. R imp =. } Q

36 Large-N Approach to the Kondo Effect Spin SU(N) N with Ng K fixed R imp = anti-symm. S = Abrikosov pseudo-fermions Abrikosov, Physics 2, p.5 (1965)

37 Large-N Approach to the Kondo Effect Spin SU(N) N with Ng K fixed R imp = anti-symm. S = U(1) : c! c! e i t j =0

38 Large-N Approach to the Kondo Effect Spin SU(N) N with Ng K fixed R imp = anti-symm. } R imp =. Q = hji

39 Large-N Approach to the Kondo Effect R imp = anti-symm. S = ~S ~J = ~ c ~ c ~ ij ~ kl = il jk ij kl /N = 1 2 c 2 + O(1/N ) O c = 1 2 O O + O(1/N )

40 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) SU(N) {z } singlet SU(k) U(1) {z } U(1) {z } bi-fundamental

41 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, (2003) T>T c O =0 T<T c Tc TK O =0

42 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, (2003) T>T c O =0 T<T c O =0 hoi /(T c T ) 1/2

43 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, (2003) T>T c O =0 T<T c O =0 Represents the screening of the impurity spin

44 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, (2003) T>T c O =0 T<T c O =0 SU(k) U(1) U(1)! SU(k) U(1) (0+1)-DIMENSIONAL SYMMETRY BREAKING

45 Large-N Approach to the Kondo Effect R imp = anti-symm. S = O(t) c (0,t) (t) Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, (2003) T>T c O =0 T<T c O =0 The phase transition is an ARTIFACT of the large-n limit! The actual Kondo effect is a crossover

46 Large-N Approach to the Kondo Effect Take-Away Messages S = O(t) c (0,t) (t) Kondo coupling: S J = 1 2 O O + O(1/N ) Kondo Effect: Condensation of O

47 Outline: Kondo Effect Holographic Kondo Model Holographic Two-Point Functions Holography vs. Quantum Dots Summary and Outlook

48 Holography CFT + large-n + Additional Degrees of Freedom Kac-Moody Symmetry Kondo coupling S J = 1 2 O O + O(1/N ) Kondo effect: Condensation of O

49 Holography H = 1 2 Z +1 dx L i@ x L 1 single Virasoro algebra SU(N) k SU(k) N U(1) kn no impurity yet

50 Holography H = 1 2 Z +1 dx 1 h i L id x L + (gauge fields) single Virasoro algebra SU(N) k SU(k) N U(1) kn Gauge SU(N) k Gauge Anomaly! Probe limit k N

51 Holography H = 1 2 Z +1 dx 1 h i L id x L + (gauge fields) single Virasoro algebra SU(N) k SU(k) N U(1) kn Gauge SU(N) k restricted to gauge singlets (zero net spin)

52 Holography H = 1 2 Z +1 dx 1 h i L id x L + (gauge fields) single Virasoro algebra SU(N) k SU(k) N U(1) kn Gauge SU(N) k D x iga x gauge coupling g

53 Holography H = 1 2 Z +1 dx 1 h i L id x L + (gauge fields) single Virasoro algebra SU(N) k SU(k) N U(1) kn Gauge SU(N) k large-n limit N!1 Ng 2 fixed

54 Holography H = 1 2 Z +1 dx 1 h i L id x L + (gauge fields) single Virasoro algebra SU(N) k SU(k) N U(1) kn Gauge SU(N) k Breaks (chiral) conformal symmetry

55 Holography H CFT = 1 2 Z 1 dx 1 h i L id x L + (gauge fields) +... two Virasoro algebras SU(N) k SU(k) N U(1) kn ADD degrees of freedom (1 + 1)d CFT Maldacena limit N!1!1

56 Holography H CFT = 1 2 Z 1 dx 1 h i L id x L + (gauge fields) +... two Virasoro algebras SU(N) k SU(k) N U(1) kn ADD degrees of freedom (1 + 1)d CFT (1 + 1)d CFT = AdS 3

57 ds 2 = d 2 2 f( ) + 2 f( )dt 2 + dx 2 f( ) =1 2 H/ 2 T = H /(2 ) x = 1 boundary = H horizon

58 Holography H CFT = 1 2 Z 1 dx 1 h i L id x L + (gauge fields) +... two Virasoro algebras SU(N) k SU(k) N U(1) kn Current = J Gauge field A Kac-Moody current = Chern-Simons gauge field rank and level = rank and level

59 k =1 SU(k) N U(1) kn! U(1) N S = N 4 Z A ^ da x = 1 boundary = H horizon

60 Holography H CFT! H CFT Z +1 dx 1 (x) K ~ S ~ J R imp = anti-symm. S = U(1) : c! c! e i t j =0 Current j = Gauge field a

61 f = da S = N 4 Z A ^ da N Z d 2 x p g 1 4 f mn f mn x =0 = 1 boundary = H horizon

62 hji = Q p gf 2 = Q x =0 = 1 boundary = H horizon

63 Holography H CFT! H CFT Z +1 dx (x) 1 K ~ S ~ J R imp = anti-symm. S = O(t) (0,t) (t) L ~S ~J = 1 2 O O + O(1/N )

64 Holography H CFT! H CFT Z +1 dx (x) 1 K ~ S ~ J R imp = anti-symm. S = O(t) (0,t) (t) L SU(N) {z k=1 } U(1) U(1) N {z } singlet bi-fundamental

65 Holography H CFT! H CFT Z +1 dx (x) 1 K ~ S ~ J R imp = anti-symm. S = O(t) (0,t) (t) L bi-fundamental scalar O = bi-fundamental scalar

66 S = N Z N 4 Z d 2 x p A ^ da g Z N d 2 x p g 1 4 f mn f mn h i (D m ) (D m )+V D m =(@ m + ia m ia m ) x =0 = 1 boundary = H horizon

67 S = N Z N 4 Z d 2 x p A ^ da g Z N d 2 x p g 1 4 f mn f mn h i (D m ) (D m )+V V = M 2 x =0 = 1 boundary = H horizon

68 Holography M 2 = Breitenlohner-Freedman bound of AdS 2 O O is classically marginal ( ) = c 1/2 + c 1/2 log +... Kondo coupling c = K c Witten hep-th/ Berkooz, Sever, Shomer hep-th/

69 Phase Transition Erdmenger, Hoyos, O B., Wu T>T c O =0 T<T c O =0 T c T K hoi /(T c T ) 1/2

70 Outline: Kondo Effect Holographic Kondo Model Holographic Two-Point Functions Holography vs. Quantum Dots Summary and Outlook

71 Two-point functions G(!) = retarded Green s function (!) i G(!) G (!) = 2ImG(!) poles in G(!)! ) peaks in (!) (complex ) (real! )

72 G(!) Z Two-point functions )!! p (!) 2Z! I (!! R ) 2 +! 2 I (!)! p =! R + i! I 2Z/! I 2! I! R!

73 Kondo Resonance electron spectral function in energy: at Fermi energy e (!) in real space: at the impurity as T! T + K rises logarithmically height saturates at T K (Friedel sum rule)! T =0 width / T K " F many-body resonance

74 Holography G O O(!) =ho (!)O(!)i ret. hoi =0 D(!) H G O O(!) = N K apple iq i! 2 T 1 H 1 KD(!) apple iq + ln T T c Harmonic Numbers H[x] E + 0 [x + 1] [x + 1]

75 Holography G O O(!) =ho (!)O(!)i ret. hoi 6=0 Only numerical results Q & N/2

76 Poles hoi =0 T =5.5 T c 1!/(2 T ) G OO (!) -3 G O O(!) -4

77 Poles hoi =0 T =1.5 T c 1!/(2 T )

78 Poles hoi =0 T = T c 1!/(2 T )

79 Poles hoi =0 T = T c 1!/(2 T ) ! p =!-2 R + i! I! R / T T c -3! I / T T c -4

80 Poles hoi =0 T =0.75 T c 1!/(2 T )

81 Poles hoi =0 T =0.75 T c 1!/(2 T ) INSTABILITY

82 Poles hoi =0 T =0.50 T c 1!/(2 T ) INSTABILITY

83 Spectral Function O O(!)/N hoi =0 60 T/T c = T/T c = T/T c = T/T c =1.15 T/T c = !/T K

84 Spectral Function O O(!)/N hoi = peak / T 1 T c NOT a Kondo resonance power law, not logarithm !/T K

85 Poles hoi 6=0 T = T c!/(2 T )

86 Poles hoi 6=0 T<T c 1!/(2 T ) ! p / ihoi

87 Poles hoi 6=0 T<T c 1!/(2 T ) ! p / ihoi large-n Kondo resonance! Coleman Intro. to Many-Body -4 Physics CUP 2015

88 Spectral Function hoi 6=0 OO (!)/N T/T c = T/T c = T/T c = ! 2 T

89 Spectral Function hoi 6=0 OO (!)/N T/T c = T/T c = T/T c = Fano Resonance ! 2 T

90 Fano Resonances!

91 Fano Resonances resonance(s) interacts with a continuum Example: light scattering off an atom Fano (!) =!! q 2 (!! 0 ) q = Fano or asymmetry parameter probability of resonant scattering q 2 / probability of non-resonant scattering

92 Fano Resonances!! 0 + q 2 2 (!! 0 ) (!! 0 ) 2 = + q (!! 0 ) (!! 0 ) q 2 (!! 0 ) (!! 0 ) (!! 0 ) = (q 2 1) 2 (!! 0 ) q 2 (!! 0 ) (!! 0 ) = + + interference ( mixing )

93 Fano Resonances 1!

94 Fano Resonances q 2 1! 0!

95 Fano Resonances q 2 +1 q 2 1!! 0! q 2

96 Fano Resonances q 2 +1 q 2 1! 0 q 2!! 0! q 2

97 Fano Resonances q =0 q =1 q = 1 probability of resonant scattering q 2 / probability of non-resonant scattering

98 Spectral Function hoi =0 T =1.5 T c O O(!)/N 10! T K T K 5 q !/T K

99 Spectral Function hoi =0 T =1.5 T c O O(!)/N! p =! R + i! I 10! 0! R 2! I 5 q = q(t,q) !/T K

100 Spectral Function O O(!)/N hoi =0 60 T/T c = T/T c = T/T c = T/T c =1.15 T/T c = !/T K

101 Spectral Function hoi =0 T just above q T c Q

102 Spectral Function hoi 6=0 OO (!)/N T/T c = T/T c = T/T c = ! 2 T -100 q =1-200! p / ihoi 2

103 Outline: Kondo Effect Holographic Kondo Model Holographic Two-Point Functions Holography vs. Quantum Dots Summary and Outlook

104 Quantum Dots Fano Resonances observed in quantum dots Göres et al. PRB (2000) q = 1 serial q finite side-coupled

105 Quantum Dots vs. Holography O O(!)/N 10 q 3.31 K 5 ~S !/T K q finite side-coupled

106 Holography AdS 2 ) (0 + 1) scale invariance OO /! 2 1 continuum! Break scale invariance (relevant deformation, RG flow) + Resonance = Fano Generic to RG flows between (0+1)-dimensional fixed points

107 Outline: Kondo Effect Holographic Kondo Model Holographic Two-Point Functions Holography vs. Quantum Dots Summary and Outlook

108 Summary and Outlook Holographic single-impurity Kondo model Green s and spectral functions Kondo resonance T<T c! p / ihoi 2 Fano resonances Generic to (0+1)-dimensional RG flows SYK models?

109 Summary and Outlook Non-Equilibrium Physics Latta et al Entanglement Entropy Affleck, Laflorencie, Sørensen Kondo Lattice Kondo Form singlets with electrons S i S j Form singlets with each other Does the competition between these produce a quantum phase transition?

110 Thank You.

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

A Holographic Model of the Kondo Effect

A Holographic Model of the Kondo Effect A Holographic Model of the Kondo Effect Andy O Bannon University of Oxford October 29, 2013 71 High Street, Oxford OUT OF BUSINESS Credits Based on 1310.3271 Johanna Erdmenger Max Planck Institute for

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Entanglement entropy in a holographic model of the Kondo effect

Entanglement entropy in a holographic model of the Kondo effect Entanglement entropy in a holographic model of the Kondo effect Mario Flory Max-Planck-Institut für Physik University of Oxford 05.05.2015 Mario Flory Entanglement entropy & Kondo 1 / 30 Overview Part

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Mott Problem emergent gravity Mott Problem What interacting problems can we solve in quantum mechanics?

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Holography and Mottness: a Discrete Marriage

Holography and Mottness: a Discrete Marriage Holography and Mottness: a Discrete Marriage Thanks to: NSF, EFRC (DOE) Ka Wai Lo M. Edalati R. G. Leigh Seungmin Hong Mott Problem Mott Problem + # + Mott Problem + # + σ(ω) Ω -1 cm -1 VO 2 T=360 K T=295

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre Holographic renormalization and reconstruction of space-time Southampton Theory Astrophysics and Gravity research centre STAG CH RESEARCH ER C TE CENTER Holographic Renormalization and Entanglement Paris,

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Towards solution of string theory in AdS3 x S 3

Towards solution of string theory in AdS3 x S 3 Towards solution of string theory in AdS3 x S 3 Arkady Tseytlin based on work with Ben Hoare: arxiv:1303.1037, 1304.4099 Introduction / Review S-matrix for string in AdS3 x S3 x T4 with RR and NSNS flux

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Kondo Effect in Coupled Quantum Dots. Abstract

Kondo Effect in Coupled Quantum Dots. Abstract Kondo Effect in Coupled Quantum Dots A. M. Chang +, J. C. Chen + Department of Physics, Duke University, Durham, NC 27708-0305 Institute of Physics, Academia Sinica, Taipei, Taiwan + Department of Physics,

More information

Thanks to: NSF, EFRC (DOE)

Thanks to: NSF, EFRC (DOE) From Fermi Arcs to Holography Thanks to: NSF, EFRC (DOE) Seungmin Hong and S. Chakraborty T.-P. Choy M. Edalati R. G. Leigh Fermi Arcs P. Johnson, PRL 2011 Na-CCOC (Shen, Science 2006) La-Bi2201 (Meng,

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 1207.4194, 12xx.xxxx in collaboration with Jerome Gauntlett & Toby Wiseman Benjamin Simons Miraculous

More information

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam)

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam) The holographic approach to critical points Johannes Oberreuter (University of Amsterdam) Scale invariance power spectrum of CMB P s (k) / k n s 1 Lambda archive WMAP We need to understand critical points!

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

!#$%& IIT Kanpur. !#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport!"#$%&. Kanpur, 1857. How spins become

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

3d GR is a Chern-Simons theory

3d GR is a Chern-Simons theory 3d GR is a Chern-Simons theory An identity in three dimensions p g R + 1`2 = abc (R ab e c + 1`2 ea e b e c )= A a da a + 13 abca a A b A Ā c a dā a + 13 abcāa Ā b Ā c + db with 1 ` ea = A a Ā a, a bc

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

On higher-spin gravity in three dimensions

On higher-spin gravity in three dimensions On higher-spin gravity in three dimensions Jena, 6 November 2015 Stefan Fredenhagen Humboldt-Universität zu Berlin und Max-Planck-Institut für Gravitationsphysik Higher spins Gauge theories are a success

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

Boundaries, Interfaces and Dualities

Boundaries, Interfaces and Dualities Boundaries, Interfaces and Dualities Dualities I Complementary weakly coupled descriptions in a space of exactly marginal couplings T1 T5 T2 T4 T3 Dualities II IR free effective description of asymptotically

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Yoshiyuki Nakagawa Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku,

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

A Solvable Irrelevant

A Solvable Irrelevant A Solvable Irrelevant Deformation of AdS $ / CFT * A. Giveon, N. Itzhaki, DK arxiv: 1701.05576 + to appear Strings 2017, Tel Aviv Introduction QFT is usually thought of as an RG flow connecting a UV fixed

More information

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory, University of Illinois

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Beyond the unitarity bound in AdS/CFT

Beyond the unitarity bound in AdS/CFT Beyond the unitarity bound in AdS/CFT Tomás Andrade in collaboration with T. Faulkner, J. Jottar, R. Leigh, D. Marolf, C. Uhlemann October 5th, 2011 Introduction 1 AdS/CFT relates the dynamics of fields

More information

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS Tin Sulejmanpasic North Carolina State University Erich Poppitz, Mohamed Anber, TS Phys.Rev. D92 (2015) 2, 021701 and with Anders Sandvik,

More information

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space Igor Klebanov Talk at New England Strings Meeting Brown University November 6, 2015 Based mainly on L. Fei, S. Giombi, IK, arxiv:1404.1094

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Universal Dynamics from the Conformal Bootstrap

Universal Dynamics from the Conformal Bootstrap Universal Dynamics from the Conformal Bootstrap Liam Fitzpatrick Stanford University! in collaboration with Kaplan, Poland, Simmons-Duffin, and Walters Conformal Symmetry Conformal = coordinate transformations

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

(Im)possible emergent symmetry and conformal bootstrap

(Im)possible emergent symmetry and conformal bootstrap (Im)possible emergent symmetry and conformal bootstrap Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki Phys.Rev.Lett. 117 (2016) Symmetries in nature The great lesson from string

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

The ground state wave function of Matrix Theory

The ground state wave function of Matrix Theory KITP January 30, 2014 The ground state wave function of Matrix Theory Revisited Xi Yin Harvard University work in progress with Ying-Hsuan Lin It has become increasingly evident that to understand semi-classical

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Modern Statistical Mechanics Paul Fendley

Modern Statistical Mechanics Paul Fendley Modern Statistical Mechanics Paul Fendley The point of the book This book, Modern Statistical Mechanics, is an attempt to cover the gap between what is taught in a conventional statistical mechanics class

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Exact holography and entanglement entropy from one-point functions

Exact holography and entanglement entropy from one-point functions Exact holography and entanglement entropy from one-point functions O-Kab Kwon (Sungkyunkwan University) In collaboration with Dongmin Jang, Yoonbai Kim, Driba Tolla arxiv:1612.05066, 1610.01490 1605.00849

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information