Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Size: px
Start display at page:

Download "Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund"

Transcription

1 Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

2 Collaborators

3 Collaborators Benedikt Lechtenberg

4 Collaborators Benedikt Lechtenberg Fabian Güttge

5 Collaborators Benedikt Lechtenberg Avi Schiller Fabian Güttge Time-dependent NRG FBA, A. Schiller PRL 95, (2005), PRB 74, (2006)

6 Collaborators Benedikt Lechtenberg Fabian Güttge Time-dependent NRG FBA, A. Schiller PRL 95, (2005), PRB 74, (2006) Avi Schiller ( )

7 Outline 1. Kondo model spatial correlation: length scale ξk (R, t) =h ~ S imp ~s c (~r)i(t) 2. Real-time dynamics of quantum impurity systems TD numerical renormalization group 3. Mapping on a two-impurity problem for each distance R 4. Results equilibrium: Kondo cloud propagation of spin correlations 5. Conclusion

8 1. Spatial Kondo correlations

9 Kondo model: drosophila of solid state theory host H = X Z D D d""c " c " J. Kondo, Prog. Theor. Phys 32, 37 (1964)

10 Kondo model: drosophila of solid state theory host ~s c (~r) H = X Z D D d""c " c " J. Kondo, Prog. Theor. Phys 32, 37 (1964)

11 Kondo model: drosophila of solid state theory impurity spin host ~s c (~r) H = X Z D D d""c " c " J. Kondo, Prog. Theor. Phys 32, 37 (1964)

12 Kondo model: drosophila of solid state theory impurity spin host ~s c (~r) H = X Z D D d""c " c " J. Kondo, Prog. Theor. Phys 32, 37 (1964)

13 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) H = X Z D D d""c " c " + J ~ S imp ~s c (0) J. Kondo, Prog. Theor. Phys 32, 37 (1964)

14 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) H = X Z D D d""c " c " + J ~ S imp ~s c (0) J. Kondo, Prog. Theor. Phys 32, 37 (1964)

15 Kondo model: drosophila of solid state theory impurity spin J host distance R ~s c (~r) H = X Z D D d""c " c " + J ~ S imp ~s c (0) J. Kondo, Prog. Theor. Phys 32, 37 (1964)

16 Kondo model: drosophila of solid state theory impurity spin correlation function: (R, t) =h ~ S imp ~s c (~r)i(t) J host distance R ~s c (~r) H = X Z D D d""c " c " + J ~ S imp ~s c (0) J. Kondo, Prog. Theor. Phys 32, 37 (1964)

17 Kondo model: drosophila of solid state theory impurity spin correlation function: (R, t) =h ~ S imp ~s c (~r)i(t) J equilibrium: 1(R) = lim t!1 (R, t) host distance R ~s c (~r) H = X Z D D d""c " c " + J ~ S imp ~s c (0) J. Kondo, Prog. Theor. Phys 32, 37 (1964)

18 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r)

19 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) experimental evidence

20 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) experimental evidence Fe in Cu de Haas, de Boer, van den Berg! Physica 1,1115 (1934)

21 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) experimental evidence Fe in Cu Kondo scale TK T K = De 1 J de Haas, de Boer, van den Berg! Physica 1,1115 (1934)

22 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) experimental evidence Heavy Fermions Fe in Cu Kondo scale TK T K = De 1 J de Haas, de Boer, van den Berg! Physica 1,1115 (1934) Onuki et al (1987)

23 Kondo model: drosophila of solid state theory impurity spin J host ~s c (~r) experimental evidence Heavy Fermions G(V) in Ta-I-Al Kondo scale TK T K = De 1 J Wyatt, PRL 13,401 (1964) Onuki et al (1987)

24 Kondo model: drosophila of solid state theory impurity spin host J ~s c (~r) Quantum-Mirage:! Co on Cu experimental evidence G(V) in Ta-I-Al Kondo scale TK T K = De 1 J Wyatt, PRL 13,401 (1964) Manoharan et al,! Nature 403, 512 (2000)

25 Kondo model: drosophila of solid state theory T= : free spin K. Wilson, RMP 1975

26 Kondo model: drosophila of solid state theory T= : free spin T=0: Kondo singlet K. Wilson, RMP 1975

27 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet K. Wilson, RMP 1975

28 Kondo model: drosophila of solid state theory T= : free spin two length scales: crossover scale TK T=0: Kondo singlet K. Wilson, RMP 1975

29 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F K. Wilson, RMP 1975

30 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F Kondo length: ξk = 1/TK ξk K. Wilson, RMP 1975

31 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F Kondo length: ξk = 1/TK ξk K. Wilson, RMP 1975

32 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F Kondo length: ξk = 1/TK ξk K. Wilson, RMP 1975

33 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F Kondo length: ξk = 1/TK ξk RKKY interaction K. Wilson, RMP 1975

34 Kondo model: drosophila of solid state theory T= : free spin crossover scale TK T=0: Kondo singlet two length scales: Fermi wave length : 1/k F Kondo length: ξk = 1/TK ξk KRKKY cos(2kfr)/r d RKKY interaction K. Wilson, RMP 1975

35 spatial correlations in 1D Borda PRB 2007

36 spatial correlations in 1D Borda PRB 2007 numerical renormalization group (NRG) calculations

37 spatial correlations in 1D h ~ SImp~s (R)i Borda PRB J =0.1 0 J = J =0.4 0 J =0.5 0 J = k F R/ Lechtenberg, FBA, arxiv: numerical renormalization group (NRG) calculations

38 spatial correlations in 1D h ~ SImp~s (R)i Borda PRB 2007 ferro and antiferromagnetic correlations J =0.1 0 J = J =0.4 0 J =0.5 0 J = k F R/ Lechtenberg, FBA, arxiv: numerical renormalization group (NRG) calculations

39 spatial correlations in 1D h ~ SImp~s (R)i Borda PRB 2007 ferro and antiferromagnetic correlations Z 1 exact sum rule: J =0.1 0 J = J =0.4 0 J =0.5 0 J = drr d 1 1(R) = 3 4 numerical renormalization group (NRG) calculations k F R/ Lechtenberg, FBA, arxiv:

40 spatial correlations in 1D χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π R< ξk Affleck et al Borda 2007 Lechtenberg, FBA, arxiv:

41 spatial correlations in 1D χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) 2 (ρj) ρ 0 J χ (0)Vu k F R/π ρ 0 J =0.5 ρ 0 J =0.6 ρ 0 J =0.7 R< ξk ξk<r Affleck et al Borda 2007 Lechtenberg, FBA, arxiv:

42 spatial correlations in 1D χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) 2 (ρj) ρ 0 J χ (0)Vu k F R/π ρ 0 J =0.5 ρ 0 J =0.6 ρ 0 J =0.7 R< ξk ξk<r crossover from 1/R d to 1/R d+1 around ξk Affleck et al Borda 2007 Lechtenberg, FBA, arxiv:

43 spatial correlations in 1D χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) 2 (ρj) ρ 0 J χ (0)Vu k F R/π ρ 0 J =0.5 ρ 0 J =0.6 ρ 0 J =0.7 R< ξk ξk<r crossover from 1/R d to 1/R d+1 around ξk correlation follow the RKKY interaction Affleck et al Borda 2007 Lechtenberg, FBA, arxiv:

44 2. Real-time dynamics in quantum impurity systems FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

45 Time-evolution of states i t (t) = H (t)

46 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const.

47 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const. eigenstates of H: H n = E n n

48 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const. eigenstates of H: H n = E n n time evolution: (t) = n e ie nt c n n

49 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const. eigenstates of H: H n = E n n time evolution: (t) = n e ie nt c n n initial conditions: c n = n 0

50 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const. eigenstates of H: H n = E n n time evolution: (t) = n e ie nt c n n initial conditions: dynamics c n = n 0 e ie nt

51 Time-evolution of states i t (t) = H (t) (t) = e iht 0 H=const. eigenstates of H: H n = E n n time evolution: (t) = n e ie nt c n n initial conditions: dynamics c n = n 0 e ie nt Can we calculate such a complete basis set?

52 Non-equilibrium dynamics quantum impurity systems System

53 Non-equilibrium dynamics quantum impurity systems system: small finite number of DOF System

54 Non-equilibrium dynamics quantum impurity systems system: small finite number of DOF System environment: infinitely large Bosonic or Fermionic baths environment

55 Non-equilibrium dynamics quantum impurity systems system: small finite number of DOF System environment: infinitely large Bosonic or Fermionic baths environment coupling between system and bath: entanglement Kondo effect decoherence

56 Wilson s numerical renormalisation group Impurity bath/environment: continuum

57 Wilson s numerical renormalisation group Impurity bath/environment: continuum quantum impurity model impurity coupled to a energy-continuum

58 Wilson s numerical renormalisation group t m m/2 Impurity reason: Kondo logarithm contribute equal at each interval I n = Z n (n+1) d" " = log( )

59 Wilson s numerical renormalisation group t m m/2 Impurity discretization of the energy-continuum reason: Kondo logarithm contribute equal at each interval I n = Z n (n+1) d" " = log( )

60 Wilson s numerical renormalisation group t m m/2 Impurity discretization of the energy-continuum separation of energy scales: tm Λ -m/2 reason: Kondo logarithm contribute equal at each interval I n = Z n (n+1) d" " = log( )

61 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization

62 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis

63 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis

64 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis

65 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis

66 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis kept states discarded states

67 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis kept states discarded states RG: discarding + rescaling

68 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis kept states discarded states RG: discarding + rescaling

69 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis kept states discarded states RG: discarding + rescaling

70 Wilson s numerical renormalisation group t m m/2 Impurity iterative diagonalization: approx. eigenbasis kept states discarded states RG: discarding + rescaling

71 complete basis set FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

72 complete basis set the sum of all discarded high-energy states in the NRG iteration form a complete basis set { l,e;m>} ˆ1 = NX X m l e X l, e; mihl, e; m FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

73 complete basis set the sum of all discarded high-energy states in the NRG iteration form a complete basis set { l,e;m>} ˆ1 = NX X m l e an approximate eigenbasis X l, e; mihl, e; m H l, e; mi E l l, e; mi FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

74 Real-time evolution of observables Ô (t) = m l or l discarded l,l l Ô l e i(e l E l )t red l l (m) FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

75 Real-time evolution of observables Ô (t) = m l or l discarded l,l l Ô l e i(e l E l )t red l l (m) reduced density matrix: red ll (m) = contains information on dissipation entanglement with the environment e l, e; m ˆ0 l, e; m FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

76 Real-time evolution of observables Ô (t) = m l or l discarded l,l l Ô l e i(e l E l )t red l l (m) reduced density matrix: red ll (m) = contains information on dissipation entanglement with the environment e l, e; m ˆ0 l, e; m RG concept upside down: discarded states contain information on the real-time evolution FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

77 spin-boson model: decoherence by dephasing time-depended NRG ρ 01 (t)/ρ 01 (0) 1 0,8 0,6 0,4 s=1.5 s=1.0 s=0.8 s=0.6 s=0.4 s=0.2 0,2 0 0,001 0,01 0, t*t X H = x + z 2 q q(b q + b q )+ X q b qb q q Δ=0 FBA, A. Schiller, PRL 95, (2005) FBA, A. Schiller, PRB 74, (2006)

78 spin-boson model: decoherence by dephasing time-depended NRG plus analytic solution ρ 01 (t)/ρ 01 (0) s=1.5 s=1.0 s=0.8 s=0.6 s=0.4 s= t*t exact solution and TD-NRG: excellent agreement FBA und A. Schiller, PRB 74, (2006)

79 3. Spatial correlations: mapping to a two-impurity Kondo Problem

80 mapping of the Kondo problem substrate

81 mapping of the Kondo problem impurity spin substrate -R/2

82 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2

83 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2 correlation function: (R, t) =h ~ S imp ~s c (~r)i(t)

84 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2 correlation function: (R, t) =h ~ S imp ~s c (~r)i(t) Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

85 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2 correlation function: (R, t) =h ~ S imp ~s c (~r)i(t) mirror symmetry: even and odd parity! Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

86 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2 correlation function: (R, t) =h ~ S imp ~s c (~r)i(t) mirror symmetry: even and odd parity! two band, two impurity model Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

87 mapping of the Kondo problem impurity spin substrate ~s c (~r) -R/2 R/2 correlation function: e(") = o(") = 1 p 2Ne (") 1 p 2No (") (R, t) =h ~ S imp ~s c (~r)i(t) R ( ~! R 2 )+ ( ~ 2 ) ( ~ R 2 ) ( ~ R 2 )! two band, two impurity model Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

88 mapping of the Kondo problem impurity spin substrate ~s c (~r) H = X X + J 8 =e,o Z D D d""c ", c ", X Ne (R)f 0,e + N o (R)f 0,o 0 X [~ ] 0 Ne (R)f 0,e + N o (R)f 0,o ~ Simp Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

89 mapping of the Kondo problem impurity spin substrate ~s c (~r) H = X X + J 8 =e,o ~s( ~ R 2 )= 1 8V u X Z D D d""c ", c ", X Ne (R)f 0,e + N o (R)f 0,o [~ ] 0 Ne (R)f 0,e + N o (R)f 0,o Simp ~ 0 0 Ne (R)f 0,e N o (R)f 0,o [~ ] 0 Ne (R)f 0,e No (R)f 0,o Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

90 mapping of the Kondo problem impurity spin substrate ~s c (~r) H = X X + J 8 =e,o ~s( ~ R 2 )= 1 8V u X Z D D d""c ", c ", X Ne (R)f 0,e + N o (R)f 0,o [~ ] 0 Ne (R)f 0,e + N o (R)f 0,o Simp ~ 0 0 Ne (R)f 0,e N o (R)f 0,o [~ ] 0 Ne (R)f 0,e No (R)f 0,o for each distance R one independent two band NRG calculation Borda, PRB 2007, Jones, Varma PRB 1987, Lechtenberg, FBA 2014

91 4. Results

92 equilibrium: antiferromagnetic coupling χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π 1D: Lechtenberg, FBA arxiv:

93 equilibrium: antiferromagnetic coupling χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π 1D: 1/R Lechtenberg, FBA arxiv:

94 equilibrium: antiferromagnetic coupling χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) k F R/π ρj =0.05 ρj =0.1 ρj =0.15 RKKY in a.u. 1D: 1/R 2D: Lechtenberg, FBA arxiv:

95 equilibrium: antiferromagnetic coupling χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) k F R/π ρj =0.05 ρj =0.1 ρj =0.15 RKKY in a.u. 1D: 1/R 2D: 1/R 2 Lechtenberg, FBA arxiv:

96 equilibrium: antiferromagnetic coupling χ (R)Vu(kFR/π) ρ 0 J =0.05 ρ 0 J =0.075 ρ 0 J =0.1 K RKKY in a.u k F R/π χ (R)Vu(kFR/π) k F R/π ρj =0.05 ρj =0.1 ρj =0.15 RKKY in a.u. 1D: 1/R 2D: 1/R 2 Z 1 0 drr d 1 1(R) = 3 4 Lechtenberg, FBA arxiv:

97 equilibrium: ferromagnetic coupling χ (R)VukFR/π ρ 0 J = 0.5 ρ 0 J = 0.1 ρ 0 J k F R/π χ (0)Vu Z 1 0 drr d 1 1(R) =0 Lechtenberg, FBA arxiv:

98 equilibrium: ferromagnetic coupling χ (R)VukFR/π ρ 0 J = 0.5 ρ 0 J = 0.1 ρ 0 J k F R/π χ (0)Vu Z 1 0 drr d 1 1(R) =0 Lechtenberg, FBA arxiv:

99 non-equilibrium dynamics (R, t) =h ~ S imp ~s c (~r)i(t) 0 J =0.3 Lechtenberg, FBA arxiv:

100 non-equilibrium dynamics (R, t) =h ~ S imp ~s c (~r)i(t) 0 J =0.3 light-cone physics R=v Ft Lechtenberg, FBA arxiv:

101 non-equilibrium dynamics (R, t) =h ~ S imp ~s c (~r)i(t) 0 J =0.3 light-cone physics R=v Ft surprice: buildup of correlations outside the light-cone Lechtenberg, FBA arxiv:

102 non-equilibrium dynamics (R, t) =h ~ S imp ~s c (~r)i(t) 0 J =0.3 light-cone physics R=v Ft surprice: buildup of correlations outside the light-cone fast short time scale and thermalisation inside the lightcone Lechtenberg, FBA arxiv:

103 perturbation theory Lechtenberg, FBA arxiv:

104 perturbation theory second order perturbation theory no Kondo effect Lechtenberg, FBA arxiv:

105 perturbation theory second order perturbation theory no Kondo effect TD-NRG Kondo effect included Lechtenberg, FBA arxiv:

106 perturbation theory second order perturbation theory no Kondo effect TD-NRG Kondo effect included qualitative very good agreement: correlations outside the light cone persist Lechtenberg, FBA arxiv:

107 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea

108 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea s(0) s(r) V u 2 (kfr/π) k F R/π NRG theory spatial spin-density correlation function: NRG vs analytic

109 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea s(0) s(r) V u 2 (kfr/π) k F R/π NRG theory χ(r, t)vu(kfr) 2 /(tdπ) order 2. order order spatial spin-density correlation function: NRG vs analytic k F R/π perturbation theory

110 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea s(0) s(r) V u 2 (kfr/π) k F R/π NRG theory χ(r, t)vu(kfr) 2 /(tdπ) order 2. order order spatial spin-density correlation function: NRG vs analytic k F R/π perturbation theory time scale 1/D

111 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea s(0) s(r) V u 2 (kfr/π) k F R/π NRG theory χ(r, t)vu(kfr) 2 /(tdπ) order 2. order order spatial spin-density correlation function: NRG vs analytic k F R/π perturbation theory time scale 1/D

112 correlations outside of the light cone? Medvedyeva et al PRB 2013: intrinsic correlations of the Fermi sea s(0) s(r) V u 2 (kfr/π) k F R/π NRG theory χ(r, t)vu(kfr) 2 /(tdπ) order 2. order order spatial spin-density correlation function: NRG vs analytic k F R/π perturbation theory time scale 1/D maxima and minima coincide: AF coupling

113 ferromagnetic coupling 0 J = 0.1 TD-NRG

114 ferromagnetic coupling 0 J = 0.1 TD-NRG second order perturbation theory

115 conclusion

116 real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG conclusion

117 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations

118 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule

119 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule non-equilibrium AF(FM): (anti)ferromagnetic wave propagation, speed vf

120 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule non-equilibrium AF(FM): (anti)ferromagnetic wave propagation, speed vf correlations outside the light cone: entanglement of the Fermi sea

121 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule non-equilibrium AF(FM): (anti)ferromagnetic wave propagation, speed vf correlations outside the light cone: entanglement of the Fermi sea excellent agreement with perturbation theory on short time scales

122 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule non-equilibrium AF(FM): (anti)ferromagnetic wave propagation, speed vf correlations outside the light cone: entanglement of the Fermi sea excellent agreement with perturbation theory on short time scales fast initial time scale: 1/D, thermalisation

123 conclusion real-time dynamics of the spin-correlation χ(r,t) using the TD-NRG equilibrium: improved mapping: AF and FM correlations correct sum-rule non-equilibrium AF(FM): (anti)ferromagnetic wave propagation, speed vf correlations outside the light cone: entanglement of the Fermi sea excellent agreement with perturbation theory on short time scales fast initial time scale: 1/D, thermalisation outlook: hybrid method: NRG+DMRG (Güttge, FBA, Schollwöck, Eidelstein,Schiller, PRB 87, (2013)) pulses: (Eidelstein, Schiller, Güttge, FBA, PRB 85, (2012)) general Hamiltonians by Costi and coworkers (PRB 2014) Thank you for your attention!

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Numerical renormalization group and multi-orbital Kondo physics

Numerical renormalization group and multi-orbital Kondo physics Numerical renormalization group and multi-orbital Kondo physics Theo Costi Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich 25th September

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla* Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Dephasing, relaxation and thermalization in one-dimensional quantum systems Dephasing, relaxation and thermalization in one-dimensional quantum systems Fachbereich Physik, TU Kaiserslautern 26.7.2012 Outline 1 Introduction 2 Dephasing, relaxation and thermalization 3 Particle

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Haldane phase and magnetic end-states in 1D topological Kondo insulators Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Workshop on Next Generation Quantum Materials ICTP-SAIFR,

More information

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University Quantum Criticality in Heavy Fermion Metals Qimiao Si Rice University CM Seminar, Texas A&M U, College Station, Oct. 2, 2009 Pallab Goswami, Jed Pixley Seiji Yamamoto Stefan Kirchner Jian-Xin Zhu, Lijun

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

arxiv: v1 [cond-mat.str-el] 20 Mar 2008 arxiv:83.34v1 [cond-mat.str-el] 2 Mar 28 A Numerical Renormalization Group approach to Non-Equilibrium Green s Functions for Quantum Impurity Models Frithjof B. Anders Institut für Theoretische Physik,

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Impurity-Induced States in 2DEG and d-wave Superconductors

Impurity-Induced States in 2DEG and d-wave Superconductors Impurity-Induced States in 2DEG and d-wave Superconductors Symposium on Quantum Phenomena Condensed Matter Theory Center Physics Department, University of Maryland September 27th-28th 2007 Enrico Rossi

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations Collaborators: Luis O. Manuel Instituto de Física Rosario Rosario, Argentina Adolfo E. Trumper (Rosario)

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Real-Space RG for dynamics of random spin chains and many-body localization

Real-Space RG for dynamics of random spin chains and many-body localization Low-dimensional quantum gases out of equilibrium, Minneapolis, May 2012 Real-Space RG for dynamics of random spin chains and many-body localization Ehud Altman, Weizmann Institute of Science See: Ronen

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

Properties of many-body localized phase

Properties of many-body localized phase Properties of many-body localized phase Maksym Serbyn UC Berkeley IST Austria QMATH13 Atlanta, 2016 Motivation: MBL as a new universality class Classical systems: Ergodic ergodicity from chaos Quantum

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method PHYSICAL REVIEW B VOLUME 59, NUMBER 9 1 MARCH 1999-I Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method Stefan Rommer and Sebastian Eggert Institute of Theoretical

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

Entanglement entropy in a holographic model of the Kondo effect

Entanglement entropy in a holographic model of the Kondo effect Entanglement entropy in a holographic model of the Kondo effect Mario Flory Max-Planck-Institut für Physik University of Oxford 05.05.2015 Mario Flory Entanglement entropy & Kondo 1 / 30 Overview Part

More information

Charmonium production in antiproton-induced reactions on nuclei

Charmonium production in antiproton-induced reactions on nuclei Charmonium production in antiproton-induced reactions on nuclei Alexei Larionov Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany and National Research Center Kurchatov

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Kazuo Hida (Saitama University) Ken ichi Takano (Toyota

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization Diego Porras Outline Spin-boson trapped ion quantum simulators o Rabi Lattice/Jahn-Teller models o Gauge symmetries

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Open and Reduced Wilson Chains for Quantum Impurity Models

Open and Reduced Wilson Chains for Quantum Impurity Models Open and Reduced Wilson Chains for Quantum Impurity Models Master s Thesis Nils-Oliver Linden Chair of Theoretical Solid State Physics Faculty of Physics Ludwig-Maximilians-University Munich Supervisors:

More information

KONDO 101. Ganpathy Murthy. November 21, University of Kentucky

KONDO 101. Ganpathy Murthy. November 21, University of Kentucky KONDO 101 Ganpathy Murthy University of Kentucky November 21, 2006 Outline The resistivity minimum. Why is this surprising? How to think about resistivity. Kondo's Hamiltonian and perturbative explanation.

More information

Two-channel Kondo physics in odd impurity chains

Two-channel Kondo physics in odd impurity chains Two-channel ondo physics in odd impurity chains Andrew. Mitchell, 1, David E. Logan 1 and H. R. rishnamurthy 3 1 Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

General quantum quenches in the transverse field Ising chain

General quantum quenches in the transverse field Ising chain General quantum quenches in the transverse field Ising chain Tatjana Puškarov and Dirk Schuricht Institute for Theoretical Physics Utrecht University Novi Sad, 23.12.2015 Non-equilibrium dynamics of isolated

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Microscopic structure of entanglement in the many-body environment of a qubit

Microscopic structure of entanglement in the many-body environment of a qubit Microscopic structure of entanglement in the many-body environment of a qubit Serge Florens, [Ne el Institute - CNRS/UJF Grenoble] displacements 0.4 0.2 0.0 0.2 fpol. fanti. fsh 0.4 10-7 : Microscopic

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Kondo Effect in Coupled Quantum Dots. Abstract

Kondo Effect in Coupled Quantum Dots. Abstract Kondo Effect in Coupled Quantum Dots A. M. Chang +, J. C. Chen + Department of Physics, Duke University, Durham, NC 27708-0305 Institute of Physics, Academia Sinica, Taipei, Taiwan + Department of Physics,

More information