Numerical renormalization group and multi-orbital Kondo physics

Size: px
Start display at page:

Download "Numerical renormalization group and multi-orbital Kondo physics"

Transcription

1 Numerical renormalization group and multi-orbital Kondo physics Theo Costi Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich 25th September 2015 Autumn School on Correlated Electrons: From Kondo to Hubbard

2 Outline 1 Introduction 2 Wilson s NRG 3 Complete Basis Set 4 Recent Developments 5 Summary

3 Collaborations Dr Hoa Nghiem (Postdoc, Juelich), Lukas Merker (PhD, Juelich) RWTH Aachen colaborators Dr Dante Kennes, Prof. Volker Meden (complementary methods, FRG/DMRG), Uni. Tuebingen, Prof. Sabine Andergassen (FRG)

4 References on NRG and codes K.G. Wilson, Rev. Mod. Phys [Kondo model] Krishna-murthy et al, PRB 1980 [Anderson model] R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys [further developments/models] A. C. Hewson, The Kondo Problem to Heavy Fermions, C.U.P. (1997) Recommended public domain NRG codes: flexible DM-NRG code (G. Zarand, et al., Budapest) NRG-Ljubljana code (R. Zitko, Ljubljana)

5 Quantum impurity systems Quantum impurity systems U Environment Impurity: small system, discrete spectrum Environment: large system, quasi-continuous spectrum Coupling: hybridization, Kondo exchange,... General structure: H = H imp + H int + H bath

6 Quantum impurity systems Anderson model Single-level Anderson impurity model (n d = d d ): H AM = X " d n d + Un d" n d# + X V kd (c k d + d c k ) k {z } {z } H imp H int + X k c k c k k {z } H bath We take constant hybridization function: (1) (!) = X k V 2 kd (! k) ( F = 0) non-constant hybridization can also be dealt with in NRG (e.g., for applications to DMFT, pseudogap systems,...)

7 Quantum impurity systems Multi-orbital and multi-channel Anderson Model Rotationally symmetric case, e.g., for transition metal ions l = 2, and m = 2, 1, 0, +1, +2 H = X " dm n m U X n m n m + 1 X 2 U0 n m n m 0 m m m6=m (U0 J) X J X n m n m 0 d m d m d 2 m d 0 m 0 m6=m 0 m6=m 0 J 0 X d m d m 2 d m 0 d m 0 m6=m 0 + X km V km (c km d m + h.c.) + X km km c km c km Crystal field and spin-orbit interactions ) Further lowering of symmetry, fewer channels

8 Experiments Magnetic impurities in non-magnetic metals Fe in Au: de Haas et al 1934 Fe in Ag: Mallet et al 2006 Au - sample 1 Au -sample 2 T [K] de Haas et al: resistivity minimum and increase as T! 0! Kondo 1964: explanation in terms of magnetic impurities Kondo 1964: R K (T )= c imp ln(k B T /D)!1as T! 0!!

9 I Experiments Quantum dots, Kondo effect and nanoscale size SET s 100nm lateral quantum dots ) Tunable Kondo effect Goldhaber-Gordon et al 1998 source ~ ε d +U Gate Dot V ~T K ε d drain V g T K = p U/2e " d (" d +U)/2 U ) exponential sensitivity Single-electron transistor based on Kondo effect

10 Experiments High/low spin molecules in nanogaps C 60 : Roch et al 2009 Underscreened Kondo effect Asymmetric lead couplings: partial screening of S = 1 ) Underscreened Kondo effect (N. Roch et al PRL 2009)

11 Experiments Magnetic atoms on surfaces: Kondo + spin anisotropy Co (S=3/2): Kondo+anisotropy Ti (S=1/2): usual Kondo effect Otte et al 2008 Otte et al 2008 H imp = gµ B S z + DSz 2 for Co adatom with S=3/2 D > 0 ) m = 1/2 $ 1/2 transitions ) Kondo effect m = ±1/2!±3/2 transitions, side-bands to Kondo

12 Linear chain form NRG: linear chain form of the Anderson model H AM = X z } { " d n d + Un d" n d# + V X (f 0 d + d f 0 )+ X k V f 0 = P k V kd c k k c k c k Tridiagonalize H bath = P k k c k c k using Lanczos with starting vector defined by Vf 0 = P k V kdc k to obtain linear chain form: H AM = X " d n d + Un d" n d# + V X (f 0 d + d f 0 ) + 1X n=0, n f + n f n + 1X n=0, t n (f + n f n+1 + H.c.)...suitable for numerical treatment by adding one orbital at a time, starting with d, then f 0, then f 1,...

13 Linear chain form Atomic and zero-bandwidth limits H m= 1 AM (V = 0) = X " d n d + Un d" n d# H m=0 AM ( k = 0) = X " d n d + Un d" n d# + V X (f 0 d + d f 0 ) A (!) = 1 X hp d qi 2 (e Eq + e Ep ) (! (E q E p ) Z V = 0: atomic limit! " d + U F " d p,q k = F = 0: zero bandwidth limit! " d + U F " d O(V 2 /U) A(!) A(!)

14 Linear chain form Anderson model: the Kondo resonance H AM = X " d n d + Un d" n d# + V X k (f 0 d + d f 0 ) + 1X n=0, n f + n f n + 1X n=0, t n (f + n f n+1 + H.c.) Finite bandwidth Add f 1, f 2,... ) broadening O( ) of " d, and " d + U excitations ) Kondo resonance T K e 1/J, J V 2 /U Kondo resonance! " d + U F " d 2 T K e 1/J A(!) 2

15 Linear chain form Iterative diagonalization/recursion relation Define truncated Hamiltonian (m conduction orbitals): H AM H m = " d n d + Un d" n d# + V X (f + 0 d + d + f 0 ) + mx,n=0 n f + n f n + mx 1,n=0 t n (f + n f n+1 + f + n+1 f n ) satisfying recursion relation: H m+1 = H m + X m+1 f m+1 f m + t m X (f + m f m+1 + f + m+1 f m ). diagonalize H m = P p E m p pi mm hp use product basis r, e m+1 i ri m e m+1 i with e m+1 i = 0i, "i, #i, "#i to set up matrix of H m+1 via recursion relation and diagonalize,...

16 Iterative diagonalization/truncation Iterative diagonalization v t 0 t 1 t 2 t m-1... H imp ε 0 ε 1 ε 2 ε m Exact, if all states retained. m... In practice, no. states of H m is O(4 m+1 ) (= 4096 at m = 5) Symmetries help H m = P H m N e,s,sz ([ ˆN e, H m ]=[ ~ S 2, H m ]=[S z, H m ]=0) For m > 5, truncate to O(1000) lowest eigenstates Truncation works, provided t m decay sufficiently fast with m

17 Iterative diagonalization/truncation Logarithmic discretization N(ω) 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ω Logarithmic discretization of band kn /D = ± n, n = 0, 1,... with > 1, e.g. =2 ) t m m/2, m m For 1, average over discretizations (Oliveira), kn /D = ± n z+1, n = 1,...(±1, n = 0)

18 Iterative diagonalization/truncation NRG for multiple-channels Transition metal ions l = 2, and m = 2, 1, 0, +1, +2 H = H imp ({" dm }, U, U 0, J)+ X km V mf 0m = P k V kmc km z } { V km (c km d m + h.c.) + X km km c km c km Convert to linear chain form using Lanczos: H = H imp ({" dm }, U, U 0, J)+ X m V m (f 0m d m + h.c.) + +1X n=0 m X nm f nm f nm + +1X n=0 m X t nm (f nm f n+1m + h.c.) NRG: Hilbert space increases by 4 2l+1 = 1024 per shell added!

19 Iterative diagonalization/truncation NRG for multiple-channels: exploiting symmetries For 3-channel S = 3/2 Kondo model, without symmetries, fraction of kept states = 1/4 3 = 1/64. implementing SU(3) symmetries (Hanl, Weichselbaum et al, PRB 2013) increased this fraction to 1/4 2 = 1/16, making the 3-channel Kondo calculation equivalent to a 2-channel calculation allowed comparing to experimental resistivity (R(T )) and dephasing ( ' (T )) data for Fe/Au for

20 Iterative diagonalization/truncation Multi-channel fully screened/single-channel underscreened resistivities Resistivity for 3 channel S = 3/2 Kondo model, Hanl et al PRB Resistivity for 1-channel spin S 1/2 Kondo model, Parks et al Science 2010 n=1 ρ(t,b=0)/ ρ(0,0) AuFe3 AgFe2 AgFe3 T (1) (K) 0.6± ± ±0.2 K T (2) (K) K 1.0± ± ±0.3 n=2 n=3 0 T (3) (K) K 1.7± ± ± T (K)

21 Physical properties Output from NRG procedure Kept/discarded states Energy Levels Kept states Discarded states (Toth et al) m 0-1 m 0 m Many-body eigenvalues Ep m and eigenvectors pi m on all relevant energy scales t m m/2, m = 0, 1,...,N. From eigenvalues calculate Z = P p e thermodynamics Ep and From eigenstates calculate matrix elements, hence Green functions and transport Discarded states not used in iterative diagonalization, but useful for calculating physical properties (see later)

22 Physical properties Thermodynamics Impurity entropy/specific heat S imp [k B ]/ln(2) C imp [k B ] z-averaged z=1 (a) (b) Merker et al k B T/D Entropy S(T )=(E F)/T, E = hh AM i, F = 1 ln Z Specific heat C(T )=k 2 B hham 2 hh AM i 2 i Discretization oscillations at 1 eliminated by z-averaging (here =4, n z = 2).

23 Physical properties Dynamics d-spectral function 2 NRG spectra are discrete ( E qq 0 = E q 0 E q ): π 0 A(ω,T=0) Merker et al 2013 A d (!, T )= X q,q 0 w qq 0(T )! E qq ω/ 0 broaden with logarithmic Gaussians: (! E q 0 q)! e b2 /4 b E q 0 q p e (ln(!/ E q 0 q )/b)2 Discretization oscillations at 1 eliminated by z-averaging (here =10, n z = 8).

24 Linear transport Linear transport Thermopower for U < 0 Conductance: Merker et al Andergassen et al, ε d = -U/2 ε d = 0 ε d = U/2 S (µv/k) V g /T K =0.1 V g /T K =1 V g /T K =10 V g /T K =100 G[2 e 2 /h] T/T K T/T K Linear response transport from spectral functions A(!, T ): G(T )= e2 h S(T )= Z 1 e T X / A(!,T ) z } { T (!, T R P /@!) T (!, T ) R P d! /@!) T (!, T )

25 Kept states in NRG Kept/discarded states Energy Levels Kept states Discarded states (Toth et al) m 0-1 m 0 m Z = P p e Ep Z 6= P N m=0 =Z m(t ) z X } { e E p m p Double counting Conventional approach: Z (T ) Z m (T ) for T T m t m Use discarded states to build a complete set of eigenstates for summing up unambiguously contributions from different H m (Anders & Schiller 2005) All states must reside in same Hilbert space: that of H N

26 Construction of the complete basis set Environment states e v H imp ε 0 t 0 t 1 t 2 t m-1 ε 1 ε 2 ε m... m... N H m qmi = E m q qmi, q =(k, l) =(kept,discarded) Product states lemi = lmi ei with e =(e m+1,...,e N i, m = m 0,...,N form a complete set (Anders & Schiller 2005) NX m=m 0 X lemihlem = 1 le Allows unambiguous summation of contributions from different H m

27 Full density matrix Full density matrix (FDM) Full density matrix and partition function (Weichselbaum & von Delft 2007): = 1 Z (T ) Z (T )= NX m=m 0 NX m=m 0 4 N X e le m X e l E m l lemihlem, Tr = 1 ) E m l NX m=m 0 4 N m Z m (T ) Rewrite as weighted sum of shell density matrices m : NX X = w m m, m = lemi e m=m 0 Z m Tr [ m ]=1, w m = 4 N m Z m Z, le N X E m l hlem. m=m 0 w m = 1

28 Full density matrix Thermodynamics Local observables Ô = n d, n d" n d#, d f 0, S z,... h i hôi = Tr Ô = X hl 0 e 0 m 0 Ô l0 e 0 m 0 i l 0 e 0 m 0 = X X l 0 e 0 m 0 lem w m ll 0 ee 0 mm z } 0 { hl 0 e 0 m 0 lemi e E m l Z m E m l = X e w m Oll Z m = X 4 N m w m Oll m lem m lm O m ll z } { hlem Ô l0 e 0 m 0 i E m l e 4 N m Z m NX = w m Oll m m=m 0,l e Z m E m l

29 Full density matrix Double occupancy Double occupancy: hn d" n d# i!hn d" ihn d# i, U! 0 Double occupancy: hn d" n d# i 1, U FDM (lines) and conventional (symbols) in excellent agreement: FDM simpler, obviates need to chose best shell for given T U/ 0 = (a) ε d / 0 = (b) T/T K <n d n d > <n d n d >

30 Application to Dynamics Dynamics Evaluation of equilibrium retarded Green function (Weichselbaum & von Delft 2007; Peters et al 2006): G AB (t) = i (t)h[a(t), B] + i i (t)tr [ (A(t)B + BA(t))] = i (t) C A(t)B + C BA(t) Consider correlation function C A(t)B : h i C A(t)B = Tr [ A(t)B] =Tr [ A(t)B] =Tr A(t)ˆ1B = X X hlem e iht Ae iht l 0 e 0 m 0 ihl 0 e 0 m 0 B lemi lem l 0 e 0 m 0 = X X hlem e iht Ae iht l 0 e 0 m 0 ihl 0 e 0 m 0 B lemi {z } lem l 0 e 0 m 0 e i(em0 l 0 E m l )t hl 0 e 0 m 0 A lemi

31 Application to Dynamics Dynamics... Peters et al 2006 C m0 >m A(t)B = kemihkem = X z X } { hlem e iht Ae iht l 0 e 0 m 0 ihl 0 e 0 m 0 B lemi lem l 0 e 0 m 0 >m Avoid off-diagonal matrix elements A m6=m0 ll 0 by using 1 = 1 m m mx X 1 m = l 0 e 0 m 0 ihl 0 e 0 m 0 m 0 =m 0 l 0 e 0 NX X X 1 + m = l 0 e 0 m 0 ihl 0 e 0 m 0 = kemih kem. m 0 =m+1 l 0 e 0 ke

32 Application to Dynamics Dynamics... only shell diagonal matrix elements appear: A m ll 0... and reduced density matrices Hofstetter 2000: R m red (k 0, k) = P e hk 0 em kemi G AB (! + i )= X m + X m + X m w m X Z m X lk lkk 0 A m kl Bm lk 0 A m lk Bm kl w m X Z m ll 0 A m ll 0Bm l 0 l E m l E l m + e E m l 0 e! + i (El m 0 e! + i (Ek m El m ) +... Rm red (k 0, k)! + i (El m Ek m) +... E m l )

33 Time-dependent NRG (TDNRG) Motivation: pump-probe spectroscopies Loth et al 2010 Fe on CuN/Cu Spin relaxation

34 Time-dependent NRG (TDNRG) Transient response following a sudden quench H(t) = ( O(t) =Tr = NX m=m 0 t)h i + (t)h f h i e ihf t e ihf t Ô X i!f sr (m)e i(e s m Er m)t Ors m rs /2KK 0 (Anders & Schiller 2005 FDM gen.: Nghiem & Costi 2014) " d (t) = (t)u/2: Nghiem et al 2014 n d(t) N z = t Γ O(t! 0 + ) exact in TDNRG (Nghiem et al PRB 2014) O(t!1) not exact in TDNRG (Anders & Schiller 2005, Nghiem et al PRB 2014)

35 Time-dependent NRG (TDNRG) Multiple quenches and general pulses n-quantum quenches (t) =e ihq p+1 (t p) e ihqp p...e ihq 1 1 e ihq e ihqp p e ihq p+1 (t p) O(t) =Tr h i e ihf t e ihf t Ô Nghiem et al 2014 H Q2 2 z} {... H f = H Qn+1 z} { H Qn n H Q1 1 H i z} { = H Q n t = /2KK X 0 mrs i!q p+1 rs (m, p )e i(e m r E m s )(t p) O m sr Formalism rests ONLY on NRG (truncation) approximation! Other approaches use hybrid (DMRG-TDNRG) and additional approximations (Eidelstein et al 2013)

36 Time-dependent NRG (TDNRG) General pulses and periodic switching linear ramp: Nghiem & Costi periodic switching ε d (t)/γ n d (t) ε d (t) /Γ Quench Ramp tγ n d (t) tγ Linear ramp: time-delay in occupation n d (t) Periodic switching (U = 0): coherent control of nanodevices (qubits,...)

37 Summary NRG: powerful method for strongly correlated systems NRG: still in development for: time-dependent & non-equilibrium phenomena complex multi-channel models (see Mitchell et al PRB 2013) Plenty of work still to do for smart PhD students!

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla* Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

5 Numerical renormalization group and multiorbital

5 Numerical renormalization group and multiorbital 5 Numerical renormalization group and multiorbital Kondo physics T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

arxiv: v1 [cond-mat.str-el] 20 Mar 2008 arxiv:83.34v1 [cond-mat.str-el] 2 Mar 28 A Numerical Renormalization Group approach to Non-Equilibrium Green s Functions for Quantum Impurity Models Frithjof B. Anders Institut für Theoretische Physik,

More information

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Dephasing, relaxation and thermalization in one-dimensional quantum systems Dephasing, relaxation and thermalization in one-dimensional quantum systems Fachbereich Physik, TU Kaiserslautern 26.7.2012 Outline 1 Introduction 2 Dephasing, relaxation and thermalization 3 Particle

More information

Numerical methods out of equilibrium -Threelectures-

Numerical methods out of equilibrium -Threelectures- Numerical methods out of equilibrium -Threelectures- Michael Thorwart Freiburg Institute for Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg funded by the Excellence Initiative of the German

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Time-dependent DMRG:

Time-dependent DMRG: The time-dependent DMRG and its applications Adrian Feiguin Time-dependent DMRG: ^ ^ ih Ψ( t) = 0 t t [ H ( t) E ] Ψ( )... In a truncated basis: t=3 τ t=4 τ t=5τ t=2 τ t= τ t=0 Hilbert space S.R.White

More information

Open and Reduced Wilson Chains for Quantum Impurity Models

Open and Reduced Wilson Chains for Quantum Impurity Models Open and Reduced Wilson Chains for Quantum Impurity Models Master s Thesis Nils-Oliver Linden Chair of Theoretical Solid State Physics Faculty of Physics Ludwig-Maximilians-University Munich Supervisors:

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Volker Meden Institut für Theorie der Statistischen Physik with Christoph Karrasch, Sabine Andergassen, Dirk Schuricht,

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Matrix product state approach for a two-lead multilevel Anderson impurity model

Matrix product state approach for a two-lead multilevel Anderson impurity model Matrix product state approach for a two-lead multilevel Anderson impurity model Andreas Holzner, 1,2 Andreas Weichselbaum, 1 and Jan von Delft 1 1 Physics Department, Arnold Sommerfeld Center for Theoretical

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Evidence of anisotropic Kondo coupling in nanostructured devices

Evidence of anisotropic Kondo coupling in nanostructured devices Evidence of anisotropic Kondo coupling in nanostructured devices Luiz Nunes de Oliveira and Krissia Zawadzki University of São Paulo University of São Paulo Stockholm, 19 September 2012 Nanostructured

More information

Don Eigler IBM Fellow. Spin Excitation Spectroscopy : A Tool Set For Nano-Scale Spin Systems

Don Eigler IBM Fellow. Spin Excitation Spectroscopy : A Tool Set For Nano-Scale Spin Systems Don Eigler IBM Fellow Spin Excitation Spectroscopy : A Tool Set For Nano-Scale Spin Systems NSF Grantees Conference, Arlington, VA. December 6, 2010 A Challenge Build a Spin-Only Nano-Scale Digital Computer

More information

Coherence by elevated temperature

Coherence by elevated temperature Coherence by elevated temperature Volker Meden with Dante Kennes, Alex Kashuba, Mikhail Pletyukhov, Herbert Schoeller Institut für Theorie der Statistischen Physik Goal dynamics of dissipative quantum

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

arxiv: v2 [cond-mat.str-el] 13 Apr 2018

arxiv: v2 [cond-mat.str-el] 13 Apr 2018 Molecular Kondo effect in flat-band lattices Minh-Tien Tran,,3 and Thuy Thi Nguyen Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. Institute of

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Emergent SU(4) Kondo physics in a spin charge-entangled double quantum dot

Emergent SU(4) Kondo physics in a spin charge-entangled double quantum dot Emergent SU(4) Kondo physics in a spin charge-entangled double quantum dot A. J. Keller 1, S. Amasha 1,, I. Weymann 2, C. P. Moca 3,4, I. G. Rau 1,, J. A. Katine 5, Hadas Shtrikman 6, G. Zaránd 3, and

More information

Quantum quenches in the thermodynamic limit

Quantum quenches in the thermodynamic limit Quantum quenches in the thermodynamic limit Marcos Rigol Department of Physics The Pennsylvania State University Correlations, criticality, and coherence in quantum systems Evora, Portugal October 9, 204

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate Dissertation vorgelegt von Henning-Timm Langwald betreut durch Prof. Dr. Jürgen Schnack

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Multiple-impurity Anderson model for quantum dots coupled in parallel

Multiple-impurity Anderson model for quantum dots coupled in parallel PHYSICAL REVIEW B 74, 0453 006 Multiple-impurity Anderson model for quantum dots coupled in parallel R. Žitko and J. Bonča, Jožef Stefan Institute, Ljubljana, Slovenia Faculty of Mathematics and Physics,

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG The end is (not) in sight: exact diagonalization, Lanczos, and DMRG Jürgen Schnack, Matthias Exler, Peter Hage, Frank Hesmer Department of Physics - University of Osnabrück http://www.physik.uni-osnabrueck.de/makrosysteme/

More information

Kondo Spin Splitting with Slave Boson

Kondo Spin Splitting with Slave Boson razilian Journal of Physics, vol. 36, no. 3, September, 26 97 Kondo Spin Splitting with Slave oson J. M. Aguiar Hualde, Departamento de Física J.J. Giambiagi, Facultad de Ciencias Exactas, Universidad

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Shell model description of dipole strength at low energy

Shell model description of dipole strength at low energy Shell model description of dipole strength at low energy Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg 8-12.5.217 Kamila Sieja (IPHC) 8-12.5.217 1 / 18 Overview & Motivation Low energy

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Exact diagonalization methods

Exact diagonalization methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Exact diagonalization methods Anders W. Sandvik, Boston University Representation of states in the computer bit

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Numerical Methods in Many-body Physics

Numerical Methods in Many-body Physics Numerical Methods in Many-body Physics Reinhard M. Noack Philipps-Universität Marburg Exchange Lecture BME, Budapest, Spring 2007 International Research Training Group 790 Electron-Electron Interactions

More information

NON-EQUILIBRIUM DYNAMICS IN

NON-EQUILIBRIUM DYNAMICS IN NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS Masud Haque Maynooth University Dept. Mathematical Physics Maynooth, Ireland Max-Planck Institute for Physics of Complex Systems (MPI-PKS) Dresden,

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Measuring entanglement entropy of a generic many-body system. Dima Abanin (Harvard) Eugene Demler (Harvard)

Measuring entanglement entropy of a generic many-body system. Dima Abanin (Harvard) Eugene Demler (Harvard) Measuring entanglement entropy of a generic many-body system Dima Abanin (Harvard) Eugene Demler (Harvard) CIFAR Summer School, Toronto May 17, 2012 Entanglement Entropy: Definition -Many-body system in

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model PHYSIK-DEPARTMENT The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model Diplomarbeit von Markus Johannes Hanl TECHNISCHE UNIVERSITÄT MÜNCHEN Contents Abstract

More information

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Matrix product state calculations for one-dimensional quantum chains and quantum impurity models Wolfgang Münder Dissertation an der Fakultät für Physik der Ludwig Maximilians Universität München vorgelegt

More information

(De)-localization in mean-field quantum glasses

(De)-localization in mean-field quantum glasses QMATH13, Georgia Tech, Atlanta October 10, 2016 (De)-localization in mean-field quantum glasses Chris R. Laumann (Boston U) Chris Baldwin (UW/BU) Arijeet Pal (Oxford) Antonello Scardicchio (ICTP) CRL,

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Experimental Realization of Shor s Quantum Factoring Algorithm

Experimental Realization of Shor s Quantum Factoring Algorithm Experimental Realization of Shor s Quantum Factoring Algorithm M. Steffen1,2,3, L.M.K. Vandersypen1,2, G. Breyta1, C.S. Yannoni1, M. Sherwood1, I.L.Chuang1,3 1 IBM Almaden Research Center, San Jose, CA

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information