w2dynamics : operation and applications

Size: px
Start display at page:

Download "w2dynamics : operation and applications"

Transcription

1 w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü)

2 A solver for multi-orbital problems For LDA+DMFT we need to solve an Anderson model containing one correlated impurity site, with typically several d-orbitals a =1,...,N orb H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) spin-flip pair-hopping

3 Hybridization-expansion the best continuous-time quantum Monte Carlo scheme to solve impurity models with complicated interactions (as e.g. the Kanamori Hamiltonian) is the hybridization-expansion ( CT-HYB ) terms leading to a bad sign problem in BSS / Hirsch-Fye -QMC H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a =1,...,N orb a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) spin-flip pair-hopping

4 References hybridization expansion P. Werner, et al., Phys. Rev. Lett. 97, (2006) P. Werner and A. J. Millis, Phys. Rev. B 74, (2006) K. Haule, Phys. Rev B 75, (2007) E. Gull, et al., Rev. Mod. Phys. 83, 349 (2011) N. Parragh, et al., Phys. Rev. B 86, (2012)! hybridization expansion - Krylov A. M. Laeuchli and P. Werner, Phys. Rev. B 76, (2007) T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986) Legendre representation L. Boehnke, et al., Phys. Rev. B 84, (2011)

5 The impurity-model (AIM) to be solved FROM SOMEWHERE F (τ) or, equivalently F (iω n ) In Exact Diagonalization : F (iω n )= l V 2 l iω n ε l G 0 CT-HYB calculation F (τ) H loc

6 Hybridization expansion Hamiltonian of the full Anderson model H = H loc + H bath + H hyb H hyb = l V α l c αa l + Vl α a l c α interaction picture perturbation expansion in the hybridization β β Z = 1 dτ 1 k! k 0 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) dτk α 1 α k α 1 α l k 1 l k l 1 l k V α 1 l 1 V α 1 l 1 V α k l k V α k lk brute force analytically : F(τ)

7 Sampling the local trace Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) after warmup H loc = Un a, n a, a + U n a,σ n b, σ +(U J)n a,σ n b,σ a>b,σ a=b J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) insertion One flavor of creation/ annihilation operators removal generalization to multiple flavors

8 Advantages of the Krylov scheme 7 orbitals with Kanamori interaction doable with Krylov! N. Parragh, et al., PRB 86, (2012) other CT-HYB scheme (so-called matrix-matrix ): H loc cheap exact time evolution (basis is the eigenbasis of ) matrix representation of annihilation/creation operators

9 Krylov implementation β... 0 bottleneck: computation of the local trace : Tr c e βh loc c αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) our basis: occupation numbers sparse matrix in our basis eff. matrix-vector product eigenvectors of H loc example for 1 orbital { 0,,, } e τ 1 H loc c α 1 e τ 1 H loc φ 0 with Lanczos e τh loc v p 1 k=0 ( τ) k H k k! loc v how many outer states are needed for the computation of the trace? how to keep the matrix-size as small as possible?

10 How many outer states? Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) = = φ 0 e βe(0) loc... φ0 + e β(e(1) loc E(0) loc ) φ 1 e βe(0) loc... φ β(e (1) at low-t: loc E(0) loc ) 1 we fix the outer state(s) because of c/c + we can still visit an excited state for a short time inside the trace φ i e βh loc... e τ 1 H loc c α 1 i=0 e τ 1 H loc φ i φ 0 φ 0 at low-t the trace is long easy to accommodate enough visits very controllable and convenient truncation parameter of Krylov CT-HYB at very low T we can restrict ourselves to the lowest multiplet

11 Tanabe-Sugano diagram for d 5 Kanamori full Coulomb high-spin e g 10Dq t 2g low-spin low-spin e g U=5.14eV J=0.71eV t 2g 10Dq low-spin F 0 =4eV F 2 =8.615eV F 4 =5.3846eV high-spin low-spin 10Dq (cubic crystal field) degeneracies high-spin low-spin 10Dq (cubic crystal field)

12 Exploiting conserved quantities good quantum numbers of H loc maximum block-diagonalization eigenvectors of H loc example for 1 orbital { 0,,, } e τ 1 H loc c α 1 e τ 1 H loc φ 0 with Lanczos e τh loc v p 1 k=0 ( τ) k H k k! loc v

13 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 1 +½ ½ P. Werner and A. J. Millis, PRB 74, (2006)

14 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 1 -½ ½

15 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 1

16 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot

17 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 0 1

18 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2-1 1

19 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot S 2 tot 2 0 1

20 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b diagonal in the occupation-number basis off-diagonal the pattern of singly-occupied orbitals is conserved! PS -number N. Parragh, et al., PRB 86, (2012)

21 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot 1 +½

22 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot PS 1 +½ 1 PS = N orb 1 a=0 2 a (n a, n a, ) 2

23 Example for two orbitals eigenbasis of the Kanamori Hamiltonian H loc = a Un a, n a, + a>b,σ U n a,σ n b, σ +(U J)n a,σ n b,σ J(c a, c b, c b, c a, + c b, c b, c a, c a, + h.c.) a=b N tot (Sz) tot PS 1 +½ 2 PS = N orb 1 a=0 2 a (n a, n a, ) 2

24 Advantages of the PS -number N. Parragh, et al., PRB 86, (2012) PS = N orb 1 a=0 2 a (n a, n a, ) 2

25 Where do the operators go? We sample partition-function configurations 1 k! β β dτk 0 α 1 α k α 1 α l k 1 l k l 1 l k Z = dτ 1 k 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) V α 1 l 1 V α 1 l 1 V α k l k V α k lk p(k): distribution of the c operators U β Anderson model (βt=100) P. Werner, et al., PRL 97, (2006) Anderson-Holstein model (βt=400, ω 0 =0.2t) E. Gull, et al., RMP 83, 349 (2006)

26 Where do the operators go? We sample partition-function configurations 1 k! β β dτk 0 α 1 α k α 1 α l k 1 l k l 1 l k Z = dτ 1 k 0 Tr c e βh loc Tc αk (τ k )c α (τk) c α1 (τ 1 )c k α1(τ1) Tr a e βh bath Ta l k (τ k )a l (τ k k) a l 1 (τ 1 )a l (τ 1 1) V α 1 l 1 V α 1 l 1 V α k l k V α k lk p(k): distribution of the c operators but we have encountered situations with more complicated p(k): DOUBLE-PEAKED HISTOGRAM???

27 Where does the AIM come from? FROM SOMEWHERE F (τ) or, equivalently F (iω n ) plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree flexible and user-defined Python classes in w2dynamics various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa )

28 plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa )

29 Periodic Anderson Model ( t dd -PAM )

30 Hole-doped Mott insulator 10% doping with t pd =0 n d =0.9 10% doping with t pd 0 n tot =n d +n p =2.9 all energies in units of t pp t dd =1/4

31 Histogram in the t dd -PAM spectral representation of the hyb. function CT-HYB histogram t pd =0.00 t pd =0.25 t pd =0.50 t pd =0.75 t pd =1.00 expansion order

32 How can we label the histogram peaks? Hubbard model (t pd =0) below half-filling σ = one possible way: order-resolved density-matrix (in Fock space) k σ m ρ α, α = αα α = 0,,, ρ 0, 0 ρ, ρ, ρ, φ i e βh loc......c α1(τ1) φ i i=0 a bit more of hybridization events with many spin up in order to empty the impurity

33 How can we label the histogram peaks? t dd -PAM (t pd =0.75) 10% hole doping ρ 0, 0 σ = ρ, order-resolved density-matrix: k σ m ρ α, α = αα now diagrams making the impurity doubly occupied belong almost fully to the second peak in our case the p-band is almost full, it can only give electrons second peak has p character ρ, ρ, hybridization events filling the impurity φ i e βh loc......c α1(τ1) φ i i=0

34 Simple way of getting two peaks? coherent state of the harmonic oscillator a α = α α α =e α2 /2 n=0 α n n! n which n contribute? P (n) = n α 2 = e α2 n! α 2n two components with different strength of the hybridization

35 Kinetic energy argument

36 Kinetic energy argument In CT-HYB the kinetic energy can be calculated from the average exp. order Z = D[ψ ψ]e S ( 1)k 0 ( S) k S = hybridization part of the action k! k k = 1 D[ψ ψ]e S 0 k ( 1)k ( S) k = 1 D[ψ ψ]e S ( 1) k 1 0 Z k! Z (k 1)! ( S)k 1 S = S S = β 0 dτ l,σ a lσ k τ µ + ε l integrating out the bath fermions a lσ + V l c σa lσ + V l a lσ c σ S = β 0 β 0 k dτdτ σ k = 1 T E kin S =Tr[F G] c σ(τ)f (τ τ )c σ (τ )

37 Kinetic energy argument Two components with different mobility? k = 1 T E kin two different screening channels? ongoing study of the spin susceptibility

38 Second moment What does the second moment of the distribution correspond to? Z = D[ψ ψ]e S ( 1)k 0 ( S) k S = hybridization part of the action k! k k 2 = 1 Z D[ψ ψ]e S 0 k k 2 ( 1)k k! ( S) k = 1 Z D[ψ ψ]e S 0 k k ( 1) k 2 k 1 (k 2)! ( S)k 2 ( S) 2 ( S) 2 connected to a four-point T-product does a susceptibility get large when the distribution becomes bi-modal? see also yesterday s talk by Sergio Ciuchi ongoing project with AG Held supervised by M. Wallerberger and A. Toschi

39 Conclusions plain vanilla DMFT LDA+DMFT H(k) in wannier90-format long-range ordered magnetic solutions enlarged basis ( PAM /dp-models) and DMFT+Hartree w2dynamics various flavors of non-equivalent atoms/layers/ real-space schemes ( nanodmft and nanodγa ) talk by Nico about future developments and talk by Markus about two-particle results

40

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Realistic Materials Simulations Using Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory Realistic Materials Simulations sing Dynamical Mean Field Theory Elias Assmann AG Held, Institut für Festkörperphysik, T Wien VSC ser Workshop, Feb 28 2012 Elias Assmann (IFP T Wien) LDA+DMFT VSC Workshop

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

A continuous time algorithm for quantum impurity models

A continuous time algorithm for quantum impurity models ISSP, Aug. 6 p.1 A continuou time algorithm for quantum impurity model Philipp Werner Department of Phyic, Columbia Univerity cond-mat/512727 ISSP, Aug. 6 p.2 Outline Introduction Dynamical mean field

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Continuous Time Monte Carlo methods for fermions

Continuous Time Monte Carlo methods for fermions Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich) Outline Calculation of Path Integral

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Continuous-time quantum Monte Carlo algorithms for impurity problems

Continuous-time quantum Monte Carlo algorithms for impurity problems Continuous-time quantum Monte Carlo algorithms for impurity problems Michel Ferrero Centre de Physique Théorique Ecole Polytechnique, France Quantum Monte Carlo methods at work for novel phases of matter

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II)

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) S. Ciuchi Uni/INFM Aquila Collaborations M. Capone - ISC

More information

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions! A. J. Millis College de France Oct 12, 2015 Two classes of nonequilibrium manybody phenomena 1. Steady state

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

IMPACT ionization and thermalization in photo-doped Mott insulators

IMPACT ionization and thermalization in photo-doped Mott insulators IMPACT ionization and thermalization in photo-doped Mott insulators Philipp Werner (Fribourg) in collaboration with Martin Eckstein (Hamburg) Karsten Held (Vienna) Cargese, September 16 Motivation Photo-doping:

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

arxiv: v1 [cond-mat.str-el] 11 Nov 2013

arxiv: v1 [cond-mat.str-el] 11 Nov 2013 arxiv:1311.2420v1 [cond-mat.str-el] 11 Nov 2013 Monte-Carlo simulation of graphene in terms of occupation numbers for the ecitonic order parameter at heagonal lattice. Institute for Theoretical Problems

More information

1 GW+DMFT. KH Computational Physics QMC. Dynamical Mean Field Theory + Band Structure Method. Γ[G] = Trlog G Tr(ΣG) + Φ[G] (1)

1 GW+DMFT. KH Computational Physics QMC. Dynamical Mean Field Theory + Band Structure Method. Γ[G] = Trlog G Tr(ΣG) + Φ[G] (1) Dynamical Mean Field Theory + Band Structure Method 1 GW+DMFT We will express the various types of approximations in language of Luttinger-Ward functionals. The exact Luttinger Ward functional takes the

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Harald O. Jeschke Johannes Ferber, Hunpyo Lee, Kateryna Foyevtsova, Roser Valentí Institut für Theoretische

More information

Spectral Density Functional Theory

Spectral Density Functional Theory Spectral Density Functional Theory Sergej Savrasov Financial support NSF US DOE LANL Collaborators and Content Constructing New Functionals to Access Energetics and Spectra of Correlated Solids Phonons

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

?What are the physics questions?

?What are the physics questions? ?What are the physics questions? charge transfer: --how much charge moves? -- how far? --into what orbitals? --causing what lattice relaxations? order parameter transfer: --penetration depth --domain walls

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

arxiv: v1 [cond-mat.str-el] 18 May 2010

arxiv: v1 [cond-mat.str-el] 18 May 2010 Strength of Correlations in electron and hole doped cuprates Cédric Weber, 1 Kristjan Haule, 1 and Gabriel Kotliar 1 1 Department of Physics, Rutgers University, Piscataway, NJ 08854, USA arxiv:1005.3095v1

More information

Time-dependent DMRG:

Time-dependent DMRG: The time-dependent DMRG and its applications Adrian Feiguin Time-dependent DMRG: ^ ^ ih Ψ( t) = 0 t t [ H ( t) E ] Ψ( )... In a truncated basis: t=3 τ t=4 τ t=5τ t=2 τ t= τ t=0 Hilbert space S.R.White

More information

IFP. AG Toschi & AG Held

IFP. AG Toschi & AG Held Theory @ IFP Dr. Georg Rohringer AG Toschi & AG Held Thomas Schäfer Elias Assmann Dr. Jan Tomczak Patrik Gunacker Liang Si Dr. Marco Battiato Recent/Current PAs Monika Stipsitz, Patrik Gunacker, Rainer

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory PACS numbers: THE CORRELATION ENERGY FIT The correlation energy of the electron

More information

Multipartite entanglement in fermionic systems via a geometric

Multipartite entanglement in fermionic systems via a geometric Multipartite entanglement in fermionic systems via a geometric measure Department of Physics University of Pune Pune - 411007 International Workshop on Quantum Information HRI Allahabad February 2012 In

More information

4 Development of the LDA+DMFT Approach

4 Development of the LDA+DMFT Approach 4 Development of the LDA+DMFT Approach Alexander Lichtenstein I. Institut für Theoretische Physik Universität Hamburg Contents 1 Introduction 2 2 Functional approach: from DFT to DMFT 4 3 Local correlations:

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Accelerated Monte Carlo simulations with restricted Boltzmann machines

Accelerated Monte Carlo simulations with restricted Boltzmann machines Accelerated simulations with restricted Boltzmann machines Li Huang 1 Lei Wang 2 1 China Academy of Engineering Physics 2 Institute of Physics, Chinese Academy of Sciences July 6, 2017 Machine Learning

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Excitonic Condensation of Strongly Correlated Electrons. Jan Kuneš DFG FOR1346

Excitonic Condensation of Strongly Correlated Electrons. Jan Kuneš DFG FOR1346 Excitonic Condensation of Strongly Correlated Electrons Jan Kuneš DFG FOR1346 Outline Excitonic condensation in fermion systems EC phase in the two-band Hubbard model (DMFT results) (PrxLn1-x)yCa1-yCoO3

More information

Quantum impurity models Algorithms and applications

Quantum impurity models Algorithms and applications 1 Quantum impurity models Algorithms and applications Collège de France, 5 Mai 21 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Motivations : why do we need specific algorithms? A few

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Master theses & project works. AG Toschi & AG Held

Master theses & project works. AG Toschi & AG Held Master theses & project works Tin Ribic Thomas Schäfer AG Toschi & AG Held Agnese Tagliavini Dr. Jan Tomczak Patrik Gunacker Dr. Marco Battiato Petra Pudleiner Dr. Patrik Thunström Liang Si Dr. Gang Li

More information

MOTTNESS AND STRONG COUPLING

MOTTNESS AND STRONG COUPLING MOTTNESS AND STRONG COUPLING ROB LEIGH UNIVERSITY OF ILLINOIS Rutgers University April 2008 based on various papers with Philip Phillips and Ting-Pong Choy PRL 99 (2007) 046404 PRB 77 (2008) 014512 PRB

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Simulation of quantum dynamics and transport using multiconfiguration wave-function methods

Simulation of quantum dynamics and transport using multiconfiguration wave-function methods Simulation of quantum dynamics and transport using multiconfiguration wave-function methods Michael Thoss University of Erlangen-Nürnberg Haobin Wang (University of Colorado, Denver) Outline Methodology

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Numerical Methods in Many-body Physics

Numerical Methods in Many-body Physics Numerical Methods in Many-body Physics Reinhard M. Noack Philipps-Universität Marburg Exchange Lecture BME, Budapest, Spring 2007 International Research Training Group 790 Electron-Electron Interactions

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base

Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base PHYSICAL REVIEW B 75, 553 2007 Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base Kristjan Haule Department of

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Quantum Cluster Methods: An introduction

Quantum Cluster Methods: An introduction Quantum Cluster Methods: An introduction David Sénéchal Département de physique, Université de Sherbrooke International summer school on New trends in computational approaches for many-body systems May

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information